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Figure 1. Applications of guided image-to-image translation. We present an algorithm that translates an input image into a correspond-

ing output image while respecting the constraints specified in the provided guidance image. These controllable image-to-image translation

problems often require task-specific architectures and training objective functions as the guidance can take various different forms (e.g.,

color strokes, sketch, texture patch, image, and mask). We introduce a new conditioning scheme for controlling image synthesis using avail-

able guidance signals and demonstrate applicability to several sample applications, including person image synthesis guided by a given

pose (top), sketch-to-photo synthesis guided with a texture patch (middle), and depth upsampling guided with an RGB image (bottom).

Abstract

We address the problem of guided image-to-image trans-

lation where we translate an input image into another while

respecting the constraints provided by an external, user-

provided guidance image. Various types of conditioning

mechanisms for leveraging the given guidance image have

been explored, including input concatenation, feature con-

catenation, and conditional affine transformation of feature

activations. All these conditioning mechanisms, however,

are uni-directional, i.e., no information flow from the input

image back to the guidance. To better utilize the constraints

of the guidance image, we present a bi-directional feature

transformation (bFT) scheme. We show that our novel bFT

scheme outperforms other conditioning schemes and has

comparable results to state-of-the-art methods on different

tasks.

1. Introduction

In an image-to-image translation problem [17], we aim

to translate an image from one domain to another. Many

problems in computer vision, graphics, and image process-

ing can be formulated as image-to-image translation tasks,

including semantic image synthesis, style transfer, coloriza-

tion, sketch to photos, to name a few. An extension to these

image-to-image translation problems involves an additional

guidance image that helps achieve controllable translation.

A guidance image typically reflects the desired visual ef-

fects or constraints specified by a user or provides additional

information via other modalities (color/depth, flash/non-
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flash, color/IR). A guidance image can thus take many dif-

ferent forms, e.g. color strokes or palette, semantic labels,

texture patch, image, or mask. As such, most of the ex-

isting solutions for such problems often have application-

specific architectures and objective functions, and conse-

quently cannot be directly applied to other problems.

The main technical question for guided image-to-image

translation problems is how the conditional guidance image

is used to affect the processing of the input source image.

Various forms of conditioning schemes have been proposed

in the literature. The most common one is to directly con-

catenate the input source image and the guidance image at

the input level (i.e., concatenation along the channel dimen-

sion). While being parameter efficient, this approach as-

sumes that the additional guidance is required at the input

level and the information can be carried through all the sub-

sequent layers. Another commonly used alternative is to

concatenate the guidance and the input information at the

feature level, assuming that the guidance feature represen-

tation is required at a certain level within the model.

A recent generalized conditioning scheme formalized as

Feature-wise Linear Modulation (FiLM) has been success-

fully applied in visual reasoning task [32]. In this scheme,

affine transformations are applied to intermediate feature

activations using scaling and shifting parameters learned

from some external conditional information. In this ap-

proach, the learned scaling and shifting operations are ap-

plied feature-wise (i.e., spatially invariant). There are other

conditioning approaches similar to FiLM that have shown

effectiveness in the context of style transfer. In this task,

given an input image and a guidance style image, the goal

is to synthesize an image that combines the content of the

input image with the style of the guidance image. One such

approach is conditional instance normalization (CIN) [7],

which can be seen as a FiLM layer replacing a normaliza-

tion layer. In CIN, the feature representation is first nor-

malized to zero mean and unit standard deviation. Then

an affine transformation is applied to the normalized fea-

ture representation using scaling and shifting parameters

learned from the guidance style image. Another approach

is adaptive instance normalization (AdaIN) [14]. AdaIN is

very similar to CIN, however, unlike CIN, it does not learn

the affine transformation parameters but uses the mean and

standard deviation of the guidance style image as the scal-

ing and shifting parameters respectively.

In this work, we propose a generalized conditioning

scheme to incorporate the guidance image into the image-

to-image translation model and show its applicability to

different applications. There are two key differences be-

tween our proposed approach and the existing conditioning

schemes. First, we propose to apply the conditioning op-

eration in both direction with information flowing not only

from the guidance image to the input image, but from the

input image to the guidance image as well. Second, we ex-

tend the existing feature-wise feature transformation to be

spatially varying to adapt to different contents in the input

image. We refer to our proposed approach as bi-directional

feature transformation (bFT). We validate the design of bFT

through extensive experiments across multiple applications,

including pose guidance appearance transfer, image synthe-

sis with texture patch guidance, and joint depth upsampling.

We demonstrate that our method, while not application-

specific, achieves competitive or better performance than

the state-of-the-art. Through extensive ablation study, we

also show that the proposed bFT is more effective than com-

monly used conditional schemes such as input/feature con-

catenation, CIN [7] and AdaIN [14].

We make the following two contributions. First, we

present the bi-directional feature transformation for generic

guided image-to-image translation tasks. Compared to ex-

isting approaches that only allow the information flow from

guidance to the source image, we show that incorporating

the information from the input to the guidance further help

improve the performance of the end task. Second, we pro-

pose a spatially varying extension of feature-wise transfor-

mation to better capture local contents from the guidance

and the source image.

2. Related Work

Image-to-image translation A generative model is an

approach to learn a data distribution to generate new sam-

ples. One widely used technique is generative adversarial

networks (GANs) [9]. In GANs, there is a generator that

tries to generate samples that look realistic to fool the dis-

criminator, which tries to accurately tell whether a sam-

ple is real or fake. Conditional GANs extend the GANs

by incorporating conditional information. One specific ap-

plication of conditional GANs is image-to-image transla-

tion [17, 36, 31]. Several recent advances include learn-

ing from unpaired dataset [42, 38, 25], improving diver-

sity [20, 15, 43], application to domain adaptation [2, 13, 4],

and extension to video [35].

Our work builds upon the recent advances in image-to-

image translation and aims to extend it to a broader set of

controllable image synthesis problems. We develop our net-

work architecture similar to that of the pix2pix [17], but the

proposed bi-directional and spatially varying feature trans-

formation layer is network-agnostic.

Guided image-to-image translation A variant of image-

to-image translation problem is to incorporate additional

guidance image. In a guided image-to-image translation

problem, we aim to translate an image from one domain

into another while respecting certain constraints specified

by a guidance image. This guidance image can take many

forms. Examples include color strokes [21, 27], patches
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Figure 2. Conditioning schemes. There are many schemes to incorporate the additional guidance into the image-to-image translation

model. One straight forward scheme is (a) input concatenation, this will assume that we need the guidance image at the first stage of the

model. Another scheme is (b) feature concatenation. It assumes that we need the feature representation of the guide before upsampling.

In (c) we replace every normalization layer with our novel feature transformation (FT) layer that manipulates the input using scaling and

shifting parameters generated from the guide using a parameter generator (PG). We denote this uni-directional scheme as uFT. In this work,

we propose (d) a bi-directional feature transformation scheme denoted as bFT. In bFT, the input is manipulated using scaling and shifting

parameters generated from the guide and the guide is also manipulated using scaling and shifting parameters generated from the input.

[41], or color palette [3] to aid in user-guided colorization.

The guidance can also be a domain label, as in a multi-

domain image-to-image translation [5]. Another form could

be a style image as in the problem of style transfer [7, 8, 14],

a texture patch to texturize a sketch image [37], or a high-

resolution RGB image to aid in depth upsampling [24, 23].

Moreover, the guidance signal could be the multi-channel

and sparse, such as pose landmark for pose guided person

image synthesis problems [28, 29, 33, 30]. The guidance

could also be a mask and sketch enabling users to inpaint

and manipulate images [39]. Due to the many different pos-

sible forms of the guidance images, most of the existing

solutions for this class of problems are tailored toward spe-

cific applications, e.g., with specifically designed network

architectures and training objectives.

Compared to many existing efforts in guided image-to-

image translation, we focus on developing a conditioning

scheme that is application-independent. This makes our

technique more widely applicable to many tasks with dif-

ferent forms of guidance.

Conditioning schemes Figure 2 compares with several

commonly used conditioning schemes. The most straight-

forward way of performing guided image-to-image trans-

lation is to concatenate the input and the guidance image

(along the feature channel dimension), followed by con-

ventional image-to-image translation models. Such an in-

put concatenation approach can be viewed as a simple con-

ditioning scheme. This approach assumes that the guid-

ance signals are required from the input stage [39, 41,

37]. Several other types of conditioning schemes have

been proposed in the literature. Instead of concatenat-

ing the guidance and the input image at the input, one

can also concatenate their feature activations at a certain

layer [23, 19]. However, it may be non-trivial to choose

a suitable level of the layer to concentrate input/guidance

features for subsequent processing. A recent and a more

general scheme, Feature-wise Linear Modulation (FiLM)

[32], applies feature-wise affine transformation using scal-

ing and shifting parameters generated from conditioning

information. Such a scheme has shown improved perfor-

mance when applied to the problem of visual reasoning.

Other variations of FiLM have shown good performance

in the context of style transfer. Those approaches can be

seen as replacing a normalization layer with a FiLM layer.

One notable approach is the conditional instance normal-

ization (CIN), where the scaling and shifting parameters are

learned [7]. Another approach is adaptive instance normal-

ization (AdaIN) where instead of learning the scaling and

shifting parameters, the mean and standard deviation from

the guidance features are used directly [14].

Unlike existing conditioning schemes that allow infor-

mation flow only from the guidance to the input (i.e., uni-

directional conditioning), we show that the proposed bi-

directional conditioning method leads to sizable perfor-

mance improvement. Furthermore, we generalize the ex-

isting spatially invariant feature-wise transform methods to

support spatially varying transformation.

3. Bi-Directional Feature Transformation

In this work, we aim to translate an image from one do-

main to another while respecting the constraints specified

by a given guidance image. To tackle this problem, we pro-

pose Bi-Directional Feature Transformation (bFT) to incor-

porate the additional guidance image into the conditional
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Figure 4. Feature Transformation (FT). We present a feature

transformation layer to incorporate the guidance into the image-

to-image translation model. A key difference between a FiLM

layer and our FT layer is that the scaling γ and shifting β parame-

ters of the FiLM layer are vectors, while in our FT layer they are

tensors. Therefore, the scaling and shifting operations are applied

in spatially varying manner in our FT layer in contrast to spatially

invariant modulation as in the FiLM layer.

generative model. We show that this conditioning scheme

can be applied to various guided image-to-image translation

problems without application-specific designs.

3.1. Feature transformation layer

Here, we first present the feature transformation (FT)

layer to incorporate the guidance information. In an FT

layer, we perform an affine transformation on the normal-

ized input features using scaling and shifting parameters

computed from the features of the given guidance image.

In Eqn. 1, we show this operation for an l-th layer. The

scaling and shifting parameters γ and β are computed from

the guidance signal using a parameter generator shown in

Figure 3.

F l+1
input = γ l

guide

F l
input −mean(F l

input)

std(F l
input)

+β l
guide. (1)

A key difference between the FiLM layer [32] and the

proposed FT layer is highlighted in Figure 4. Specifically,

the scaling γ and shifting β parameters of the FiLM lay-

ers are vectors and are applied channel-wise. That is, the

same affine transformation of feature activations is applied

the same way regardless of the spatial position on the fea-

ture map. Such approaches are reasonable for tasks such as

style transfer or visual reasoning. However, they may not be

able to capture fine-grained spatial details that are important

for image-to-image translation problems. In contrast, the

parameters in our FT layer are three-dimensional tensors

which offer a flexible way for modulating the input features

in a spatially varying manner and supports various forms of

guidance signals (e.g., dense, sparse, or multi-channel).

3.2. Bi­directional conditioning scheme

To further utilize the available information from the

guidance image, we propose a bi-directional conditioning

scheme. Unlike existing conditioning schemes that only al-

low the guidance signal to influence the input image pro-

cess, our approach supports bi-directional communication
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between two branches of the networks processing the in-

put and guidance image. This bi-directional flow of infor-

mation enables the generative model to better capture the

constraints of the guidance image. In our proposed bFT

scheme, we replace every normalization layer with our pro-

posed FT layer. At l-th layer, the guidance feature represen-

tation manipulates the input feature representation as shown

in Eqn. 1, and at the same time is manipulated by that input

feature representation. Such that:

F l+1
guide = γ l

input

F l
guide −mean(F l

guide)

std(F l
guide)

+β l
input (2)

Our intuition is that such a bi-directional approach can be

seen as a bi-directional communication between a teacher

(guidance branch) and a student (input image branch). A

one-way communication from the teacher to the student

might not help the student understand the teacher as much

as two-way communication.

4. Experimental Results

We evaluate our proposed bi-directional feature trans-

formation conditioning scheme on three different guided

image-to-image translation problems with three different

types of the guidance signal. For all tasks, we use GANs

with two possible architectures as our generator model, ei-

ther Unet or Resnet. We follow the same training objective

function (a weighted combination of L1 loss and an adver-

sarial loss LGAN) as in [17]:

LGAN(G,D)+λL1(G). (3)

where we set λ to 100 for all the experiments. For each

task we compare our results with state-of-the-art methods

as well as pix2pix [17] (with input concatenation condition-

ing).

4.1. Controllable sketch­to­photo synthesis

In this texture transfer task, given a sketch and a random

sized texture patch as the guidance signal, we aim to synthe-

size a photo that fills the input sketch respecting that given

texture patch.

Implementation details We use the Unet architecture of

[17] as the base architecture of our model. For both our

bFT model and pix2pix, we train using a learning rate of

0.0002 with 7 layers of Unet architecture. We use an Adam

optimizer for both with beta1 as 0.5 for pix2pix, and beta1

as 0.9 for our model. For the handbag dataset, we train

for 500 epochs with a batch size of 64. For the shoes and

clothes datasets, we train for 100 epochs with batch size of

256.

Table 1. Texture Transfer Task: visual quality evaluation using the

Learned Perceptual Image Patch Similarity (LPIPS) metric [40]

and Frechet Inception Distance (FID) [12] on the datasets gener-

ated by [37]. A lower score is better.

Handbag Dataset Shoes Dataset Clothes Dataset

LPIPS FID LPIPS FID LPIPS FID

Xian et al. [37] 0.171 60.848 0.124 44.762 0.113 49.568

pix2pix [17] 0.234 96.31 0.238 197.492 0.439 190.161

Ours 0.161 74.885 0.124 121.241 0.067 58.407

Datasets and metrics We use the 128x128 data generated

by Xian et al. [37] and follow the same texture patch gener-

ation algorithm from the ground truth images. We evaluate

the results using the Learned Perceptual Image Patch Simi-

larity (LPIPS) metric proposed by Zhang et al. [40] and the

frechet inception distance (FID) proposed by Heusel et al.

[12]. For every sketch in the test set, we generate 10 random

sized ground truth texture patches using the texture patch

generation algorithm from Xian et al. [37] and compute the

LPIPS and the FID of the synthesized images. We use the

provided pretrained models of Xian et al. [37] to compute

their results. Their pretrained models are trained on ground

truth patches as well as external patches, while our model

and pix2pix are trained only on ground truth patches.

Evaluation We show the quantitative results of our work

compared to Isola et al. [17] and Xian et al. [37] in Ta-

ble 1. While our model training is considerably simpler

(trained with only two losses) than that of the Xian et al.

[37] (with seven different loss terms), we show favorable re-

sults against both pix2pix [17] and Xian et al. [37] in terms

of the LPIPS metric on all three datasets. We also show the

FID results.

We show sample qualitative results on the handbag,

shoes, and clothes datasets in Figure 5 using ground truth

texture patches as the guidance signal.

4.2. Controllable person­image synthesis

In the pose transfer task, given an image of a person and

a target pose as a guidance signal, we aim to synthesize an

image of that given person in the desired pose.

Implementation details We use ResNet architecture as

the base architecture of our model. For both our bFT model

and pix2pix, we train for 100 epochs using a learning rate of

0.0002 with a batch size of 8, then we minimize the learning

rate to 0.00002 and train for 50 additional epochs. We use

the Adam optimizer for both with beta1 as 0.5 for pix2pix,

and beta1 as 0.9 for our model. We use 8 layers for the Unet

architecture for pix2pix.
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Figure 5. Controllable sketch-to-photo synthesis with texture patches. Texture transfer qualitative comparison with state-of-the-art-

results on the handbags, shoes, and clothes datasets from [37]. Here we use the ground truth texture patches as the guidance signal.

Input Guide Ma [28] Siarohin [33] pix2pix [17] Ours Target

Figure 6. Controllable person-image synthesis with pose keypoints. Pose transfer qualitative results on DeepFashion dataset. Our model

in general achieves sharper results on this challenging task.

Datasets and metrics We use the 256x256 train and test

sets provided by Ma et al. [28] from the DeepFashion

dataset [26]. Following the evaluation protocols in litera-

ture, we use both SSIM and Inception Score (IS) to measure

the quality of the synthesized images. We also use the FID

metric.

Evaluation We show the quantitative results of our work

compared to state-of-the-art methods in Table 2. We note

that Siarohin et al. [33] trains on a different training set of

the DeepFashion dataset and excludes samples where pose

keypoints are not detected. To ensure fair comparison, we

modify our test set to exclude such samples. We report the

results on both the full test set and the modified one. We

use the pretrained models provided by [33, 28] to test their

models on our test set. We also note that Siarohin et al.

[33] uses the input pose as an additional input to the model.

We show favorable results against other methods using the

Frechet Inception Distance (FID).

Note that it is very difficult to measure the quality of a

synthesized image. In this task, however, we not only care

about the quality of the image, but also about it having the

same content and respecting the target pose. We show the

qualitative results in Figure 6.

Unlike the aforementioned methods that use keypoint

based pose, Neverova et al. [30] uses dense pose to per-
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Table 2. Pose Transfer task: visual quality evaluation on the Deep-

Fashion dataset [26]. A higher score of SSIM/IS is better. A lower

score of FID is better.

Full test set Modified test set

SSIM IS FID SSIM IS FID

Ma et al. [29] 0.614 3.29 - - - -

Ma et al. [28] 0.762 3.09 47.917 0.764 3.10 47.373

Siarohin et al. [33] 0.758 3.36 15.655 0.763 3.32 15.215

pix2pix [17] 0.770 2.96 66.752 0.774 2.93 65.907

Ours 0.767 3.22 12.266 0.771 3.19 12.056

form pose transfer and achieved a score of [SSIM=0.785,

IS=3.61], however, we were unable to obtain the data nor

the pre-trained model for comparison.

4.3. Depth upsampling

In depth upsampling, we aim to generate a high-

resolution depth map given a low resolution depth map with

the guidance of a high resolution RGB image.

Implementation details We use the ResNet architecture

as the base architecture of our model. For both our bFT

model and pix2pix, we only use L1 as the objective function

and train for 500 epochs using a learning rate of 0.0002 with

batch size of 2. We use an Adam optimizer for both with

beta1 as 0.5. For our work, we train on the original size

of the data 480x640, however, because pix2pix uses square

sized inputs, it is trained on 512x512 resized data and we

resize back before evaluation. We use 9 layers for the Unet

architecture of pix2pix.

Dataset and metric Following the setting of Li et al. [23],

we use 1000 samples from the NYU v2 dataset [34] for

training and we test on the remaining 449. We generate the

low resolution input depth map using bicubic upsampling

for three different scale factors 16, 8, and 4. Similar to the

works in literature we use RMSE to evaluate the quality of

the generated depth.

Evaluation We show the RMSE results of our work com-

pared to Isola et al. [17] and state-of-the-art methods in Ta-

ble 3. We report the results by Li et al. [23]. We also show

qualitative results for the three scale factors in Figure 7.

Our model, while not designed for depth upsampling, can

achieve state-of-the-art performance.

4.4. Ablation study

We conduct an ablation study to the effectiveness of our

proposed bi-directional conditioning scheme.

Table 3. Depth Upsampling task: root mean square error (RMSE)

results in centimeters for the NYU v2 dataset [34].

Depth Scale x4 x8 x16

Bicubic 8.16 14.22 22.32

MRF [6] 7.84 13.98 22.20

GF [11] 7.32 12.98 22.03

JBU [18] 4.07 13.62 22.03

Ham [10] 5.27 12.31 19.24

DMSG [16] 3.48 6.07 10.27

FBS [1] 4.29 8.94 14.59

DJF [22] 3.54 6.20 10.21

DJFR [23] 3.38 5.86 10.11

pix2pix [17] 4.12 6.48 10.17

Ours 3.35 5.73 9.01

Conditioning schemes We compare our proposed bi-

directional feature transformation scheme (bFT) to uni-

directional feature transformation (uFT), feature concatena-

tion, and input concatenation schemes shown in Figure 2.

We show quantitative results in Table 4.

Number of feature transformation (FT) layers In our

bFT model, we use FT in place of every normalization layer.

For pose transfer and depth upsampling tasks, we use a

Resnet base with 4 normalization layers. Replacing those

layers with our proposed FT layer, we end up with 4 FT

layers. We compare our approach with using FT at l, 2,

and 3 layers both bi-directionally and uni-directionally. We

show the quantitative results in Table 5.

Different approaches to affine transformation Using

our bi-directional approach, we compare our proposed FT

with CIN and AdaIN. In both CIN and AdaIN, we use FiLM

layer in place of every normalization layer. In CIN, we learn

the scaling and shifting parameters, while in AdaIN, we use

the mean as the scaling parameter and the standard devia-

tion as the shifting parameter. We also test feature transfor-

mation at only the last layer of the encoder and compare the

performance of our FT with CIN and AdaIN. We show the

quantitative results in Table 6.

4.5. User study

We conduct a user study on pair-wise comparisons. We

ask 100 subjects to answer 4 random pair-wise comparisons

per task and dataset. We ask the subject to select the image

that looks more realistic respecting the input and the given

guidance signal. We show the user study results in Figure 8.

4.6. Limitation

In the task of texture transfer, we observe a limitation of

our work when the guidance patch does not go well with the

input sketch. In such a case, the color of the guidance patch
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Figure 7. Depth upsampling guided by an RGB image. Comparison of depth upsampling qualitative results for a scale factor of 16 with

the state-of-the-art methods. The zoomed-in crops show that our method is able to capture fine details with sharper edges.

Table 4. Conditioning schemes.

Conditioning method Depth Upsampling Pose Transfer Texture Transfer

Handbags Shoes Clothes

4x 8x 16x SSIM IS FID LPIPS FID LPIPS FID LPIPS FID

Input Concatenation 6.65 8.42 11.86 0.782 3.10 42.330 0.182 85.600 0.137 124.973 0.061 60.795

Feature Concatenation 6.67 7.63 11.59 0.770 3.26 14.672 0.196 87.052 0.145 104.227 0.085 44.900

uFT 5.55 7.26 11.41 0.765 3.18 13.988 0.174 85.273 0.126 119.588 0.071 56.66

bFT (Ours) 3.35 5.73 9.01 0.767 3.17 13.240 0.171 80.179 0.123 119.832 0.067 58.467

Table 5. Number of feature transformation (FT) layers.

#Layers Depth Upsampling Pose Transfer

uFT bFT uFT bFT

x16 x16 SSIM IS FID SSIM IS FID

1 10.79 10.79 0.786 2.92 59.678 0.786 2.92 59.678

2 10.75 8.96 0.784 2.98 47.411 0.785 3.01 51.458

3 10.26 8.82 0.768 3.15 16.069 0.766 3.24 13.392

4 11.41 9.01 0.765 3.18 13.988 0.767 3.17 13.240

Table 6. Different approaches to affine transformation.

Method Depth Upsampling Pose Transfer

x16 SSIM IS FID

Ours 9.01 0.767 3.17 13.240

bi-directional AdaIN 13.36 0.722 3.37 160.846

bi-directional CIN 13.97 0.721 3.36 157.335

Final Layer - FT 11.40 0.769 3.25 18.292

Final Layer - AdaIN 14.30 0.720 3.30 146.596

Final Layer - CIN 14.51 0.720 3.58 168.503

would propagate through the sketch without fully respecting

its texture as shown in Figure 9.

5. Conclusion

We have presented a new conditional scheme for guided

image-to-image translation problems. Our core technical

contributions lie in the use of spatially varying feature

transformation and the design of bi-directional conditioning

scheme that allow the mutual modulation of the guidance

and input network branches. We validate the applicability

of our method on various tasks. While being application-

Figure 8. User Study. The percentage of people that find our

method more realistic respecting the input and guidance signal

over state-of-the-art methods using pair-wise comparisons.

Figure 9. Failure examples. When the guided patch does not

match well with the given sketch, our model fails to hallucinate

the given texture.

agnostic, our approach achieves competitive performance

with the state-of-the-art. The generality of our method

opens promising direction of incorporating a wide variety

of constraints for image-to-image translation problems.
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Dense pose transfer. In CVPR, 2018. 3, 6

[31] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In CVPR, 2019. 2

[32] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. 2018. 2, 3, 4

[33] Aliaksandr Siarohin, Enver Sangineto, Stéphane Lathuilière,
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