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Abstract

The objective of this paper is to be able to separate a

video into its natural layers, and to control which of the

separated layers to attend to. For example, to be able to

separate reflections, transparency or object motion.

We make the following three contributions: (i) we in-

troduce a new structured neural network architecture that

explicitly incorporates layers (as spatial masks) into its de-

sign. This improves separation performance over previous

general purpose networks for this task; (ii) we demonstrate

that we can augment the architecture to leverage external

cues such as audio for controllability and to help disam-

biguation; and (iii) we experimentally demonstrate the ef-

fectiveness of our approach and training procedure with

controlled experiments while also showing that the pro-

posed model can be successfully applied to real-word ap-

plications such as reflection removal and action recognition

in cluttered scenes.

1. Introduction

“The more you look the more you see”, is generally true

for our complex, ambiguous visual world. Consider the ev-

eryday task of cleaning teeth in front of a mirror. People

performing this task may first attend to the mirror surface to

identify any dirty spots, clean them up, then switch atten-

tion to their mouth reflected in the mirror. Or they may hear

steps behind them and switch attention to a new face now

reflecting in the mirror. Not all visual possibilities can be

investigated at once given a fixed computational budget and

this creates the need for such controllable attention mecha-

nisms.

Layers offer a simple but useful model for handling this

complexity of the visual world [51]. They provide a com-

positional model of an image or video sequence, and cover

a multitude of scenarios (reflections, shadows, occlusions,

haze, blur, ...) according to the composition rule. For exam-

ple, an additive composition models reflections, and occlu-

∗Equal contribution.

Figure 1: We propose a model, C3, able to decompose a video

into meaningful layers. This decomposition process is controllable

through external cues such as audio, that can select the layer to

output.

sion is modelled by superimposing opaque layers in a depth

ordering. Given a a layered decomposition, attention can

switch between the various layers as necessary for the task

at hand.

Our objective in this paper is to separate videos into

their constituent layers, and to select the layers to attend

to as illustrated in Figure 1. A number of recent works

have used deep learning to separate layers in images and

videos [4, 13, 17, 19, 27, 58], with varying success, but the

selection of the layers has either had to be hard coded into

the architecture, or the layers are arbitrarily mapped to the

outputs. For example, [4] considers the problem of sepa-

rating blended videos into component videos, but because

the mapping between input videos and outputs is arbitrary,

training is forced to use a permutation invariant loss, and

there is no control over the mapping at inference time. How

can this symmetry between the composed input layers and

output layers be broken?

The solution explored here is based on the simple fact

that videos do not consist of visual streams alone, they also

have an audio stream; and, significantly, the visual and au-
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dio streams are often correlated. The correlation can be

strong (e.g. the synchronised sound and movement of beat-

ing on a drum), or quite weak (e.g. street noise that separates

an outdoor from indoor scene), but this correlation can be

employed to break the symmetry. This symmetry breaking

is related to recent approaches to the cocktail party audio

separation problem [2, 16] where visual cues are used to

select speakers and improve the quality of the separation.

Here we use audio cues to select the visual layers.

Contributions: The contributions of this paper are three-

fold: (i) we propose a new structured neural network archi-

tecture that explicitly incorporates layers (as spatial masks)

into its design; (ii) we demonstrate that we can augment

the architecture to leverage external cues such as audio for

controllability and to help disambiguation; and (iii) we ex-

perimentally demonstrate the effectiveness of our approach

and training procedure with controlled experiments while

also showing that the proposed model can be successfully

applied to real-word applications such as reflection removal

and action recognition in cluttered scenes.

We show that the new architecture leads to improved

layer separation. This is demonstrated both qualitatively

and quantitatively by comparing to recent general purpose

models, such as the visual centrifuge [4]. For the quanti-

tative evaluation we evaluate how the downstream task of

human action recognition is affected by reflection removal.

For this, we compare the performance of a standard action

classification network on sequences with reflections, and

with reflections removed using the layer architecture, and

demonstrate a significant improvement in the latter case.

2. Related work

Attention control. Attention in neural network modelling

has had a significant impact in natural language processing,

such as machine translation, [6, 49] and vision [54], where

it is implemented as a soft masking of features. In these set-

tings attention is often not directly evaluated, but is just used

as an aid to improve the end performance. In this paper we

investigate models of attention in isolation, aiming for high

consistency and controllability. By consistency we mean

the ability to maintain the focus of attention on a particular

target. By controllability we mean the ability to switch to a

different target on command.

Visual attentional control is actively studied in psychol-

ogy and neuroscience [15, 21, 29, 36, 48, 57] and, when

malfunctioning, is a potentially important cause of condi-

tions such as ADHD, autism or schizophrenia [33]. One of

the problems studied in these fields is the relationship be-

tween attention control based on top-down processes that

are voluntary and goal-directed, and bottom-up processes

that are stimulus-driven (e.g. saliency) [28, 48]. Another in-

teresting aspect is the types of representations that are sub-

ject to attention, often categorized into location-based [42],

object-based or feature-based [7]: examples of the latter in-

clude attending to anything that is red, or to anything that

moves. Another relevant stream of research relates to the

role of attention in multisensory integration [45, 47]. Note

also that attention does not always require eye movement –

this is called covert (as opposed to overt) attention. In this

paper we consider covert attention as we will not be consid-

ering active vision approaches, and focus on feature-based

visual attention control.

Cross-modal attention control. The idea of using one

modality to control attention in the other has a long history,

one notable application being informed audio source sepa-

ration and denoising [8, 22, 39, 52]. Visual information has

been used to aid audio denoising [22, 39], solve the cock-

tail party problem of isolating sound coming from different

speakers [2, 16, 37, 52] or musical instruments [8, 20, 59].

Other sources of information used for audio source separa-

tion include text to separate speech [32] and score to sepa-

rate musical instruments [26].

More relevant to this paper where audio is used for con-

trol, [5, 37, 40, 59] learn to attend to the object that is mak-

ing the sound. However, unlike in this work, they do not

directly output the disentangled video nor can they be used

to remove reflections as objects are assumed to be perfectly

opaque.

Other examples of control across modalities include tem-

porally localizing a moment in a video using language [25],

video summarization guided by titles [44] or query object

labels [41], object localization from spoken words [24],

image-text alignment [30], and interactive object segmen-

tation via user clicks [10].

Layered video representations. Layered image and video

representations have a long history in computer vision [50]

and are an appealing framework for modelling 2.1D depth

relationships [43, 56], motion segmentation [50], reflec-

tions [9, 13, 17, 18, 23, 27, 31, 35, 46, 55, 58], trans-

parency [4, 19], or even haze [19]. There is also evidence

that the brain uses multi-layered visual representations for

modelling transparency and occlusion [53].

3. Approach

This section describes the two technical contributions of

this work. First, in Section 3.1, a novel architecture for

decomposing videos into layers. This architecture is built

upon the visual centrifuge [4], a generic U-Net like encoder-

decoder, but extends it with two structural changes tailored

towards the layered video decomposition task. Second, in

Section 3.2, the decomposition model is endowed with con-

trollability – the ability of the network to use external cues
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Figure 2: Network architecture for layer decomposition (3.1).

to control what it should focus on reconstructing. Here, we

propose to use a natural video modality, namely audio, to

select layers. Given this external cue, different mechanisms

for controlling the outputs are investigated. Finally, in Sec-

tion 3.3, we describe how this model can be trained for suc-

cessful controllable video decomposition.

In the following, V stands for an input video. Formally,

V ∈ R
T×W×H×3 where T is the number of frames, W

and H are the width and height of the frames, and there

are 3 standard RGB channels. The network produces an

T ×W ×H× (n×3) tensor, interpreted as n output videos

O, where each Oi is of the same size as V .

3.1. Architecture for layer decomposition

We start from the visual centrifuge [4], a U-Net [38]

encoder-decoder architecture, which separates an input

video into n output videos. The encoder consists of an

I3D network [12] and the decoder is composed by stacking

3D up convolutions. However, the U-Net architecture used

there is generic and not tailored to the layered video decom-

position task (this is verified experimentally in Section 4.1).

Therefore, we propose two structural modifications specifi-

cally designed to achieve layered decomposition, forming a

new network architecture, Compositional Centrifuge (C2),

shown in Figure 2a. Firstly, a bespoke gating mechanism is

used in the encoder, which enables selection of scene seg-

ments across space/time, thereby making the decoder’s task

easier. Secondly, layer compositionality is imposed by con-

straining how the output videos are generated – the layer

generator outputs multiple layers L and their composing

coefficients β such that the output videos O are produced

as a linear combination of the layers. These modifications

are described in detail next.

Encoder. We aim to recover layers in the presence of occlu-

sions and transparent surfaces. In such cases there are win-

dows of opportunity when objects are fully visible and their

appearance can be modelled, and periods when the objects

are temporarily invisible or indistinguishable and hence can

only be tracked. We incorporate this intuition into a novel

spatio-temporal encoder architecture. The core idea is that

the features produced by the I3D are gated with multiple

(m) masks, also produced by the encoder itself. The gated

features therefore already encode information about the un-

derlying layers and this helps the decoder’s task. In order to

avoid gating all features with all m masks, which would be

prohibitively expensive in terms of computation and mem-

ory usage, feature channels are divided into m mutually-

exclusive groups and each mask is applied only to the cor-

responding group.

More formally, the mask generator produces M ∈
[0, 1]

T×W×H×m
which is interpreted as a set of m spatio-

temporal masks M = (M c)mc=1. M is constrained to sum

to 1 along the channel dimension by using a softmax non-

linearity. Denote Fl the output feature taken at level l in

the I3D. We assume that Fl ∈ R
Tl×Wl×Hl×(m×dl), i.e. the

number of output channels of Fl is a multiple of m. Given

this, Fl can be grouped into m features (F c
l )

m
c=1 where

F c
l ∈ R

Tl×Wl×Hl×dl . The following transformation is ap-

plied to each F c
l :

F̃ c
l = M c

l ⊙ F c
l , (1)

where M c
l is obtained by downsampling M c to the shape

[Tl × Wl × Hl], ⊙ refers to the Hadamard matrix product

with a slight abuse of notation as the channel dimension is

broadcast, i.e. the same mask is used across the channels.

This process is illustrated in Figure 2a. The extended ver-

sion of this paper [3] gives details on which feature levels

are used in practice.

Imposing compositionality. In order to bias the decoder

towards constructing layered decompositions, we split it

into two parts – the layer generator produces m layers L

and composing coefficients β which are then combined by

the composition module to form the final n output videos

O. The motivation is that individual layers should ideally

represent independent scene units, such as moving objects,

reflections or shadows, that can be composed in different

ways into full scene videos. The proposed model architec-

ture is designed to impose the inductive bias towards this

type of compositionality.
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More formally, the layer generator outputs a set of m

layers L = (Lj)
m
j=1, where Lj ∈ R

T×H×W×3, and a set of

n × m composing coefficients β = (βij)(i,j)∈[[1,n]]×[[1,m]].

These are then combined in the composition module (Fig-

ure 2b) to produce the final output videos O:

Oi =
∑

j

βij ⊙ Lj . (2)

3.2. Controllable symmetry breaking

The method presented in the previous section is inher-

ently symmetric – the network is free to assign videos to

output slots in any order. In this section, we present a strat-

egy for controllable attention that is able to break the sym-

metry by making use of side-information, a control signal,

provided as an additional input to the network. Audio is

used as a natural control signal since it is readily available

with the video. In our mirror example from the introduction,

hearing speech indicates the attention should be focused on

the person in the mirror, not the mirror surface itself. For

the rest of this section, audio is used as the control signal,

but the proposed approach remains agnostic to the control

signal nature.

Next, we explain how to compute audio features, fuse

them with the visual features, and finally, how to obtain the

output video which corresponds to the input audio. The ar-

chitecture, named Controllable Compositional Centrifuge

(C3), is shown in Figure 3.

Audio network. The audio first needs to be processed be-

fore feeding it as a control signal to the video decomposition

model. We follow the strategy employed in [5] to process

the audio. Namely, the log spectrogram of the raw audio

signal is computed and treated as an image, and a VGG-like

network is used to extract the audio features. The network

is trained from scratch jointly with the video decomposition

model.

Audio-visual fusion. To feed the audio signal to the video

model, we concatenate audio features to the outputs of the

encoder before they get passed to the decoder. Since visual

and audio features have different shapes – their sampling

rates differ and they are 3-D and 4-D tensors for audio and

vision, respectively – they cannot be concatenated naively.

We make the two features compatible by (1) average pool-

ing the audio features over frequency dimension, (2) sam-

pling audio features in time to match the number of tem-

poral video feature samples, and (3) broadcasting the audio

feature in the spatial dimensions. After these operations the

audio tensor is concatenated with the visual tensor along the

channel dimension. This fusion process is illustrated in Fig-

ure 3. We provide the full details of this architecture in the

extended version of this paper [3].

log spectrogram

Audio

Network

[T, W, H, C]Encoder

Decoder

Mean F.

Pool

[T',C']

Time

Sample

[T,C'] [T,W,H,C']
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[
T
'
,
 
F
,
 
C
'
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Figure 3: The Controllable Compositional Centrifuge (C3).

The Encoder-Decoder components are the same as in C
2 (Fig-

ure 2a). Audio features are extracted from the audio control signal

and fused with the visual features before entering the decoder.

Attention control. We propose two strategies for obtain-

ing the output video which corresponds to the input audio.

One is to use deterministic control where the desired video

is forced to be output in a specific pre-defined output slot,

without loss of generality O1 is used. While simple, this

strategy might be too rigid as it imposes too many con-

straints onto the network. For example, a network might

naturally learn to output guitars in slot 1, drums in slot 2,

etc., while deterministic control is forcing it to change this

ordering at will. This intuition motivates our second strat-

egy – internal prediction – where the network is free to pro-

duce output videos in any order it sees fit, but it also pro-

vides a pointer to the output slot which contains the desired

video. Internal prediction is trained jointly with the rest of

the network, full details of the architecture are given in the

extended version of this paper [3]. The training procedure

and losses for the two control strategies are described in the

next section.

3.3. Training procedure

Training data. Since it is hard to obtain supervised training

data for the video decomposition problem, we adopt and

extend the approach of [4] and synthetically generate the

training data. This by construction provides direct access to

one meaningful ground truth decomposition. Specifically,

we start from two real videos V1, V2 ∈ R
T×W×H×3. These
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videos are mixed together to generate a training video V ∈
R

T×W×H×3:

V = α⊙ V1 + (1−α)⊙ V2, (3)

where α ∈ [0, 1]
T×W×H

is a composing mask.

We explore two ways to generate the composing mask

α. The first one is transparent blending, used by [4], where

α = 1
21. While attractive because of its simplicity, it does

not capture the full complexity of the real world composi-

tions we wish to address, such as occlusions. For this rea-

son, we also explore a second strategy, referred to as oc-

clusion blending, where α is allowed to vary in space and

takes values 0 or 1. In more detail, we follow the proce-

dure of [14] where spatio-temporal SLIC superpixels [1]

are extracted from V1, and one is chosen at random. The

compositing mask α is set to 1 inside the superpixel and 0

elsewhere; this produces mixtures of completely transparent

or completely opaque spatio-temporal regions. The impact

of the α sampling strategy on the final performance is ex-

plored in Section 4.1.

Training loss: without control. By construction, for an

input training video V we know that one valid decompo-

sition is into V1 and V2. However, when training without

control, there is no easy way to know beforehand the order

in which output videos are produced by the network. We

therefore optimize the network weights to minimize the fol-

lowing permutation invariant reconstruction loss [4]:

Lpil ({V1, V2},O) = min
(i,j)|i 6=j

ℓ(V1, Oi) + ℓ(V2, Oj), (4)

where ℓ is a video reconstruction loss, e.g. a pixel wise error

loss (see Section 4 for our particular choice).

Training loss: with control. When training with audio as

the control signal, the audio of one video (V1 without loss

of generality) is also provided. This potentially removes the

need for the permutation invariant loss required in the no-

control case, but the loss depends on the choice of control

strategy. The two proposed strategies are illustrated in Fig-

ure 4 and described next.

Deterministic control loss. Here, the network is forced to

output the desired video V1 as O1 so a natural loss is:

Ldet ({V1, V2},O) = ℓ(V1, O1) + ℓ(V2, O2). (5)

Note that for this loss the number of output videos has to

be restricted to n = 2. This limitation is another drawback

of deterministic control as it allows less freedom to propose

multiple output video options.

Internal prediction loss. In this strategy, the network freely

decomposes the input video into outputs, and therefore the

training loss is the same permutation invariant loss as for

Control 
Regressor

Strategy 1: deterministic control

Strategy 2: internal pred. control

Figure 4: Audio control strategies for video decomposition.

In this example, the inputs are the video V , a composition of V1

showing a violin and V2 showing drums, and an audio control sig-

nal, A1, being the sound of the violin. With deterministic control,

V1 is forced to be put in output slot O1 (and therefore V2 in O2).

With internal prediction control, the network can freely order the

output videos, so is trained with the permutation invariant loss, but

it contains an additional control regressor module which is trained

to point to the desired output.

the no-control case (4). In addition, the network also points

to the output which corresponds to the desired video, where

the pointing mechanism is implemented as a module which

outputs n real values s = (si)
n
i=1, one for each output

video. These represent predicted dissimilarity between the

desired video and output videos, and the attended output is

chosen as argmini si. This module is trained with the fol-

lowing regression loss:

Lreg (V1, s) =

n
∑

i=1

|si − ℓ(V1, sg(Oi))|, (6)

where sg is the stop gradient operator. Stopping the

gradient flow is important as it ensures that the only effect

of training the module is to learn to point to the desired

video. Its training is not allowed to influence the output

videos themselves, as if it did, it could sacrifice the recon-

struction quality in order to set an easier regression problem

for itself.

4. Experiments

This section evaluates the merits of the proposed Com-

positional Centrifuge (C2) compared to previous work, per-

forms ablation studies, investigates attention control via the
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Model Loss (Transp.) Loss (Occl.) Size

Identity 0.364 0.362 –

Centrifuge [4] 0.149 0.253 22.6M

CentrifugePC [4] 0.135 0.264 45.4M

C2 w/o masking 0.131 0.200 23.4M

C2 0.120 0.190 27.1M

Table 1: Model comparison in terms of average validation

loss for synthetically generated videos with transp(arancy) and

occl(usions), as well as size in millions of parameters. All the

results are obtained using models with n = 4 output layers. Cen-

trifugePC is the predictor-corrector centrifuge [4], Identity is a

baseline where the output videos are just copies of the input.

audio control signal and the effectiveness of the two pro-

posed attention control strategies of the Controllable Com-

positional Centrifuge (C3), followed by qualitative decom-

position examples on natural videos, and evaluation on the

downstream task of action recognition.

Implementation details. Following [4, 34], in all experi-

ments we use the following video reconstruction loss, de-

fined for videos U and V as:

ℓ(U, V ) =
1

2T

(

∑

t

‖Ut − Vt‖1 + ‖∇(Ut)−∇(Vt)‖1

)

,

where ‖ · ‖1 is the L1 norm and ∇(·) is the spatial gradient

operator.

All models are trained and evaluated on the blended ver-

sions of the training and validation sets of the Kinetics-600

dataset [11]. Training is done using stochastic gradient de-

scent with momentum for 124k iterations, using batch size

128. We employed a learning rate schedule, dividing by 10

the initial learning rate of 0.5 after 80k, 100k and 120k iter-

ations. In all experiments we randomly sampled 64-frame

clips at 128x128 resolution by taking random crops from

videos whose smaller size being resized to 148 pixels.

4.1. Quantitative analysis

In this section, we evaluate the effectiveness of our ap-

proaches through quantitative comparisons on synthetically

generated data using blended versions of the Kinetics-600

videos.

Effectiveness of the C2 architecture for video decomposi-

tion. The baseline visual centrifuge achieves a slightly bet-

ter performance (lower loss) than originally reported [4] by

training on clips which are twice as long (64 vs 32 frames).

As can be seen in Table 1, our proposed architecture outper-

forms both the Centrifuge baseline [4], as well as the twice

as large predictor-corrector model of [4]. Furthermore, both

of our architectural improvements – the masking and the

T
ra
n
sp
ar
en
t

O
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Figure 5: Outputs of C2 on blended Kinetics validation clips.

Each row shows one example via a representative frame, with

columns showing the input blended clip V , two output videos O1

and O2, and the two ground truth clips V1 and V2. Top three rows

show the network is able to successfully decompose videos with

transparencies. Bottom three rows show synthetic occlusions –

this is a much harder task where, apart from having to detect the

occlusions, the network also has to inpaint the occluded parts of

each video. C
2 performs satisfactory in such a challenging sce-

nario.

Model Loss (Transp.) Control Acc.

C2 0.120 50% (chance)

C3 w/ deterministic control 0.191 79.1%

C3 w/ internal prediction 0.119 77.7%

Table 2: Model comparison on average validation reconstruction

loss and control accuracy. The controllable models, C3, use audio

as the control signal.

composition module – improve the performance (recall that

the baseline Centrifuge is equivalent to C2 without the two

improvements). The improvements are especially apparent

for occlusion blending since our architecture is explicitly

designed to account for more complicated real-world blend-

ing than the simple transparency blending used in [4].

Attention control. The effectiveness of the two proposed

attention control strategies using the audio control signal

is evaluated next. Apart from comparing the reconstruc-

tion quality, we also contrast the methods in terms of their

control accuracy, i.e. their ability to output the desired

5739



T
ra
n
sp
ar
en
t

O
cc
lu
si
o
n

Figure 6: Visualization of the internals of the compositional model. Recall that the C2 model produces the output videos via the

composition module (Figure 2b) which multiplies the layers L with composing coefficients β. Here we visualize the individual β ⊙ L

terms which when added together form the output videos. It can be observed that the layers and composing coefficient indeed decompose

the input video V into its constituent parts, for both the transparent and occlusion blending.

video into the correct output slot. For a given video V

(composed of videos V1 and V2) and audio control signal

A1, the output is deemed to be correctly controlled if the

chosen output slot Oc reconstructs the desired video V1

well. Recall that the ‘chosen output slot’ is simply slot

Oc = O1 for the deterministic control, and predicted by

the control regressor as Oargmin
i
(si) for the internal pre-

diction control. The chosen output video Oc is deemed

to reconstruct the desired video well if its reconstruction

loss is the smallest out of all outputs (up to a threshold

t = 0.2 ∗ (maxi ℓ(V1, Oi)−mini ℓ(V1, Oi)) to account for

potentially nearly identical outputs when outputing more

than 2 layers): ℓ(V1, Oc) < mini ℓ(V1, Oi) + t.

Table 2 evaluates control performance across different

models with the transparency blending. It shows that the

non-controllable C2 network, as expected, achieves control

accuracy equal to random chance, while the two control-

lable variants of C3 indeed exhibit highly controllable be-

haviour. The two strategies are comparable on control ac-

curacy, while internal prediction control clearly beats deter-

ministic control in terms of reconstruction loss, confirming

our intuition that deterministic control imposes overly tight

constraints on the network.

4.2. Qualitative analysis

Here we perform qualitative analysis of the performance

of our decomposition networks and investigate the internal

layered representations.

Figure 5 shows the video decompositions obtained from

our C2 network for transparent and occlusion blending. The

network is able to almost perfectly decompose the videos

with transparencies, while it does a reasonable job of re-

constructing videos in the much harder case where strong

occlusions are present and it needs to inpaint parts of the

videos it has never seen.

The internal representations produced by our layer gen-

erator, which are combined in the composition module to

produce the output videos, are visualized in Figure 6. Our

architecture indeed biases the model towards learning com-

positionality as the internal layers show a high degree of

Figure 7: Qualitative results of C3 with internal prediction.

For visualization purposes, as it is hard to display sound, we show

a frame of the video from which we use the audio as control on

the left most column (A1). V (second column) represents the vi-

sual input to the model. The right 4 columns are the outputs of C3.

All examples exhibit good reconstruction error. The first four rows

illustrate accurate control behaviour, where C3 has correctly pre-

dicted the output that corresponds to the control signal (illustrated

by a green marker under the frame). The last row illustrates an

incorrect control (specified with a red marker under the wrongly

chosen frame), where C3 was fooled by a liquid sound that is plau-

sible in the two scenarios.

independence and specialize towards reconstructing one of

the two constituent videos.

Finally, Figure 7 shows qualitative results for the best

controllable network, C3 with internal prediction, where au-

dio is used as the control signal. The network is able to ac-

curately predict which output slot corresponds to the desired
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video, making few mistakes which are often reasonable due

to the inherent noisiness and ambiguity in the sound.

4.3. Downstream tasks

In the following, we investigate the usefulness of lay-

ered video decomposition as a preprocessing step for other

downstream tasks.

Graphics. Layered video decomposition can be used in var-

ious graphics applications, such as removal of reflections,

specularities, shadows, etc. Figure 8 shows some examples

of decompositions of real videos. Compared with previous

work of [4], as expected from the quantitative results, the

decompositions are better as the produced output videos are

more pure.

Action recognition. A natural use case for video decom-

position is action recognition in challenging scenarios with

transparencies, reflections and occlusions. Since there are

no action recognition datasets focused on such difficult set-

tings, we again resort to using blended videos. A pre-trained

I3D action recognition network [12] is used and its per-

formance is measured when the input is pure unblended

video, blended video, and decomposed videos, where the

decomposition is performed using the best baseline model

(predictor-corrector centrifuge, CentrifugePC [4]) or our

Compositional Centrifuge (C2). For the pure video perfor-

mance, we report the standard top-1 accuracy.

For transparency blended videos, the desired outputs

are both ground truth labels of the two constituent videos.

Therefore, the models make two predictions and are scored

1, 0.5 and 0 depending on whether both predictions are cor-

rect, only one or none is, respectively. When I3D is applied

directly on the blended video, the two predictions are natu-

rally obtained as the two classes with the largest scores. For

the decomposition models, each of the two output videos

contributes their highest scoring prediction.

In the case of occlusion blended videos, the desired out-

put is the ground truth label of V2 because there is not

enough signal to reconstruct V1 as the blended video only

contains a single superpixel from V1. When I3D is applied

directly on the blended video, the top prediction is used.

The decomposition models tend to consistently reconstruct

V2 in one particular output slot, so we apply the I3D net-

work onto the relevant output and report the top-1 accuracy.

Table 3 shows that decomposition significantly improves

the action recognition performance, while our C2 strongly

outperforms the baseline CentrifugePC [4] for both blend-

ing strategies. There is still a gap between C2 and the pure

video performance, but this is understandable as blended

videos are much more challenging.

5. Conclusion

General vision systems, that can serve a variety of pur-

poses, will probably require controllable attention mecha-

Figure 8: Comparison of our C2 model against [4] on real-

world videos. The input video is shown on the left, and the output

videos of C2 and [4] are interleaved in the remaining columns for

easier comparison. While both models manage to decompose the

videos reasonably well, C2 achieves less leakage of one video into

another. For example, C2 versus [4] output O1 (first row) removes

the reflections of branches on the right side better, (second row)

has fewer yellow circles of light, and (third row) makes the large

circular reflection in the top half of the image much fainter.

Mode Acc. (Transp.) Acc. (Occl.)

I3D – pure video 59.5 59.5

I3D 22.1 21.3

CentrifugePC [4] + I3D 34.4 21.5

C2 + I3D 40.1 24.7

Table 3: Action recognition accuracy on the Kinetics-600 vali-

dation set when the input to a pre-trained I3D classifier is a pure

– non-blended – video (top row), a blended video directly passed

through I3D, or a blended video that is first unblended using a

layer decomposition model. The two columns show accuracies for

two different blending processes: transparent and occluding.

nisms. There are just too many possible visual narratives to

investigate in natural scenes, for a system with finite com-

putational power to pursue them all at once, always. In this

paper we proposed a new compositional model for layered

video representation and introduced techniques to make the

resulting layers selectable via an external control signal – in

this case sound. We showed that the proposed model can

better endure automatically generated transparency and es-

pecially occlusions, compared to previous work, and that

the layers are selected based on sound cues with accuracies

of up to 80% on the blended Kinetics dataset. As future

work we would like to train our model on more naturally-

looking occlusions, possibly by generating the composing

mask using supervised segmentations instead of unsuper-

vised superpixels.
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