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Abstract

Deep convolutional neural networks perform better

on images containing spatially invariant noise (synthetic

noise); however, their performance is limited on real-noisy

photographs and requires multiple stage network model-

ing. To advance the practicability of denoising algorithms,

this paper proposes a novel single-stage blind real image

denoising network (RIDNet) by employing a modular ar-

chitecture. We use a residual on the residual structure to

ease the flow of low-frequency information and apply fea-

ture attention to exploit the channel dependencies. Further-

more, the evaluation in terms of quantitative metrics and vi-

sual quality on three synthetic and four real noisy datasets

against 19 state-of-the-art algorithms demonstrate the su-

periority of our RIDNet.

1. Introduction

Image denoising is a low-level vision task that is essen-

tial in a number of ways. First of all, during image acqui-

sition, some noise corruption is inevitable and can down-

grade the visual quality considerably; therefore, removing

noise from the acquired image is a key step for many com-

puter vision and image analysis applications [28]. Sec-

ondly, denoising is a unique testing ground for evaluat-

ing image prior and optimization methods from a Bayesian

perspective [30, 67]. Furthermore, many image restora-

tion tasks can be solved in the unrolled inference through

variable splitting methods by a set of denoising subtasks,

which further widens the applicability of image denois-

ing [3, 33, 51, 64].

Generally, denoising algorithms can be categorized as

model-based and learning-based. Model-based algorithms

include non-local self-similarity (NSS) [18, 13, 20], spar-

sity [30, 48], gradient methods [46, 56, 54], Markov random

field models [52], and external denoising priors [9, 61, 42].

The model-based algorithms are computationally expen-

sive, time-consuming, unable to suppress the spatially vari-

ant noise directly and characterize complex image textures.
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Noisy CBDNet [31] RIDNet (Ours)

Figure 1. A real noisy face image from RNI15 dataset [38]. Un-

like CBDNet [31], RIDNet does not have over-smoothing or over-

contrasting artifacts (Best viewed in color on high-resolution dis-

play)

On the other hand, discriminative learning aims to model

the image prior from a set of noisy and ground-truth image

sets. One technique is to learn the prior in steps in the con-

text of truncated inference [17] while another approach is

to employ brute force learning, for example, MLP [14] and

CNN methods [63, 64]. CNN models [65, 31] improved

denoising performance, due to their modeling capacity, net-

work training, and design. However, the performance of the

current learning models is limited and tailored for a specific

level of noise.

A practical denoising algorithm should be efficient, flex-

ible, perform denoising using a single model and handle

both spatially variant and invariant noise when the noise

standard-deviation is known or unknown. Unfortunately,

the current state-of-the-art algorithms are far from achiev-

ing all of these aims. We present a CNN model which is

efficient and capable of handling synthetic as well as real-

noise present in images. We summarize the contributions of

this work in the following paragraphs.

1.1. Contributions

• Present CNN based approaches for real image denois-

ing employ two-stage models; we present the first

model that provides state-of-the-art results using only

one stage.

• To best of our knowledge, our model is the first to in-

corporate feature attention in denoising.

• Most current models connect the weight layers con-

secutively; and so increasing the depth will not help

improve performance [21, 41]. Also, such networks
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can suffer from vanishing gradients [11]. We present

a modular network, where increasing the number of

modules helps improve performance.

• We experiment on three synthetic image datasets and

four real-image noise datasets to show that our model

achieves state-of-the-art results on synthetic and real

images quantitatively and qualitatively.

2. Related Works

In this section, we present and discuss recent trends in

the image denoising. Two notable denoising algorithms,

NLM [13] and BM3D [18], use self-similar patches. Due

to their success, many variants were proposed, including

SADCT [27], SAPCA [20], NLB [37], and INLM [29]

which seek self-similar patches in different transform do-

mains. Dictionary-based methods [25, 43, 22] enforce spar-

sity by employing self-similar patches and learning over-

complete dictionaries from clean images. Many algorithms

[67, 26, 59] investigated the maximum likelihood algorithm

to learn a statistical prior, e.g. the Gaussian Mixture Model

of natural patches or patch groups for patch restoration. Fur-

thermore, Levin et al. [40] and Chatterjee et al. [16], moti-

vated external denoising [9, 7, 42, 62] by showing that an

image can be recovered with negligible error by selecting

reference patches from a clean external database. However,

all of the external algorithms are class-specific.

Recently, Schmidt et al. [53] introduced a cascade of

shrinkage fields (CSF) which integrated half-quadratic op-

timization and random-fields. Shrinkage aims to suppress

smaller values (noise values) and learn mappings discrim-

inatively. The CSF assumes the data fidelity term to be

quadratic and that it has a discrete Fourier transform based

closed-form solution.

Currently, due to the popularity of convolutional neural

networks (CNNs), image denoising algorithms [63, 64, 39,

14, 53, 8] have achieved a performance boost. Notable de-

noising neural networks, DnCNN [63], and IrCNN [64] pre-

dict the residue present in the image instead of the denoised

image as the input to the loss function is ground truth noise

as compared to the original clean image. Both networks

achieved better results despite having a simple architecture

where repeated blocks of convolutional, batch normaliza-

tion and ReLU activations are used. Furthermore, IrCNN

[64] and DnCNN [63] are dependent on blindly predicted

noise i.e. without taking into account the underlying struc-

tures and textures of the noisy image.

Another essential image restoration framework is Train-

able Nonlinear Reaction-Diffusion (TRND) [17] which

uses a field-of-experts prior [52] into the deep neural net-

work for a specific number of inference steps by extending

the non-linear diffusion paradigm into a profoundly train-

able parametrized linear filters and the influence functions.

Although the results of TRND are favorable, the model re-

quires a significant amount of data to learn the parame-

ters and influence functions as well as overall fine-tuning,

hyper-parameter determination, and stage-wise training.

Similarly, non-local color net (NLNet) [39] was motivated

by non-local self-similar (NSS) priors which employ non-

local self-similarity coupled with discriminative learning.

NLNet improved upon the traditional methods; but, it lags

in performance compared to most of the CNNs [64, 63] due

to the adaptaton of NSS priors, as it is unable to find the

analogs for all the patches in the image.

Building upon the success of DnCNN [63], Jiao et

al. proposed a network consisting of two stacked sub-

nets, named “FormattingNet” and “DiffResNet” respec-

tively. The architecture of both networks is similar, and

the difference lies in the loss layers used. The first sub-

net employs total variational and perceptual loss while the

second one uses ℓ2 loss. The overall model is named as

FormResNet and improves upon [64, 63] by a small mar-

gin. Lately, Bae et al. [10] employed persistent homology

analysis [24] via wavelet transformed domain to learn the

features in CNN denoising. The performance of the model

is marginally better compared to [63, 35], which can be at-

tributed to a large number of feature maps employed rather

than the model itself. Recently, Anwar et al. introduced

CIMM, a deep denoising CNN architecture, composed of

identity mapping modules [8]. The network learns features

in cascaded identity modules using dilated kernels and uses

self-ensemble to boost performance. CIMM improved upon

all the previous CNN models [63, 35].

Recently, many algorithms focused on blind denoising

on real-noisy images [50, 31, 12]. The algorithms [64, 63,

35] benefitted from the modeling capacity of CNNs and

have shown the ability to learn a single-blind denoising

model; however, the denoising performance is limited, and

the results are not satisfactory on real photographs. Gen-

erally speaking, real-noisy image denoising is a two-step

process: the first involves noise estimation while the second

addresses non-blind denoising. Noise clinic (NC) [38] esti-

mates the noise model dependent on signal and frequency

followed by denoising the image using non-local Bayes

(NLB). In comparison, Zhang et al. [65] proposed a non-

blind Gaussian denoising network, termed FFDNet that can

produce satisfying results on some of the real noisy im-

ages; however, it requires manual intervention to select high

noise-level.

Very recently, CBDNet [31] trains a blind denoising

model for real photographs. CBDNet [31] is composed of

two subnetworks: noise estimation and non-blind denois-

ing. CBDNet [31] also incorporated multiple losses, is engi-

neered to train on real-synthetic noise and real-image noise

and enforces a higher noise standard deviation for low noise

images. Furthermore, [31, 65] may require manual inter-
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Figure 2. The architecture of the proposed network. Different green colors of the conv layers denote different dilations while the smaller

size of the conv layer means the kernel is 1× 1. The second row shows the architecture of each EAM.

vention to improve results. On the other hand, we present an

end-to-end architecture that learns the noise and produces

results on real noisy images without requiring separate sub-

nets or manual intervention.

3. CNN Denoiser

3.1. Network Architecture

Our model is composed of three main modules i.e. fea-

ture extraction, feature learning residual on the residual

module, and reconstruction, as shown in Figure 2. Let us

consider x is a noisy input image and ŷ is the denoised out-

put image. Our feature extraction module is composed of

only one convolutional layer to extract initial features f0
from the noisy input:

f0 = Me(x), (1)

where Me(·) performs convolution on the noisy input im-

age. Next, f0 is passed on to the feature learning residual

on the residual module, termed as Mfl,

fr = Mfl(f0), (2)

where fr are the learned features and Mfl(·) is the main fea-

ture learning residual on the residual component, composed

of enhancement attention modules (EAM) that are cascaded

together as shown in Figure 2. Our network has small depth,

but provides a wide receptive field through kernel dilation in

each EAM initial two branch convolutions. The output fea-

tures of the final layer are fed to the reconstruction module,

which is again composed of one convolutional layer.

ŷ = Mr(fr), (3)

where Mr(·) denotes the reconstruction layer.

There are several choices available as loss function for

optimization such as ℓ2 [63, 64, 8], perceptual loss [35, 31],

total variation loss [35] and asymmetric loss [31]. Some

networks [35, 31] employs more than one loss to optimize

the model, contrary to earlier networks, we only employ

one loss i.e. ℓ1. Now, given a batch of N training pairs,

{xi, yi}
N
i=1

, where x is the noisy input and y is the ground

truth, the aim is to minimize the ℓ1 loss function as

L(W) =
1

N

N∑

i=1

||RIDNet(xi)− yi||1, (4)

where RIDNet(·) is our network and W denotes the set of

all the network parameters learned. Our feature extraction

Me and reconstruction module Mr resemble the previous

algorithms [21, 8]. We now focus on the feature learning

residual on the residual block, and feature attention.

3.2. Feature learning Residual on the Residual

In this section, we provide more details on the enhance-

ment attention modules that uses a Residual on the Residual

structure with local skip and short skip connections. Each

EAM is further composed of D blocks followed by fea-

ture attention. Due to the residual on the residual archi-

tecture, very deep networks are now possible that improve

denoising performance; however, we restrict our model to

four EAM modules only. The first part of EAM covers

the full receptive field of input features, followed by learn-

ing on the features; then the features are compressed for

speed, and finally a feature attention module enhances the

weights of important features from the maps. The first part

of EAM is realized using a novel merge-and-run unit as

shown in Figure 2 second row. The input features branched

and are passed through two dilated convolutions, then con-

catenated and passed through another convolution. Next,

the features are learned using a residual block of two con-

volutions while compression is achieved by an enhanced

residual block (ERB) of three convolutional layers. The last

layer of ERB flattens the features by applying a 1×1 kernel.

Finally, the output of the feature attention unit is added to

the input of EAM.
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Figure 3. The feature attention mechanism for selecting the essen-

tial features.

In image recognition, residual blocks [32] are stacked

together to construct a network of more than 1000 layers.

Similarly, in image superresolution, EDSR [41] stacked the

residual blocks and used long skip connections (LSC) to

form a very deep network. However, to date, very deep

networks have not been investigated for denoising. Moti-

vated by the success of [66], we introduce the residual on

the residual as a basic module for our network to construct

deeper systems. Now consider the m-th module of the EAM

is given as

fm = EAMm(EAMm− 1(· · · (M0(f0)) · · · )), (5)

where fm is the output of the EAMm feature learning

module, in other words fm = EAMm(fm−1). The out-

put of each EAM is added to the input of the group as

fm = fm+fm−1. We have observed that simply cascading

the residual modules will not achieve better performance,

instead we add the input of the feature extractor module to

the final output of the stacked modules as

fg = f0 +Mfl(Ww,b), (6)

where Ww,b are the weights and biases learned in the group.

This addition i.e. LSC, eases the flow of information across

groups. fg is passed to reconstruction layer to output the

same number of channels as the input of the network. Fur-

thermore, we use another long skip connection to add the

input image to the network output i.e. ŷ = Mr(fg) + x, in

order to learn the residual (noise) rather than the denoised

image, as this technique helps in faster learning as com-

pared to learning original image due to the sparse represen-

tation of the noise.

3.2.1 Feature Attention

This section provides information about the feature atten-

tion mechanism. Attention [60] has been around for some

time; however, it has not been employed in image de-

noising. Channel features in image denoising methods are

treated equally, which is not appropriate for many cases. To

exploit and learn the critical content of the image, we focus

attention on the relationship between the channel features;

hence the name: feature attention (see Figure 3).

An important question here is how to generate attention

differently for each channel-wise feature. Images generally

can be considered as having low-frequency regions (smooth

or flat areas), and high-frequency regions (e.g., lines edges

and texture). As convolutional layers exploit local informa-

tion only and are unable to utilize global contextual infor-

mation, we first employ global average pooling to express

the statistics denoting the whole image, other options for

aggregation of the features can also be explored to repre-

sent the image descriptor. Let fc be the output features of

the last convolutional layer having c feature maps of size

h × w; global average pooling will reduce the size from

h× w × c to 1× 1× c as:

gp =
1

h× w

h∑

i=1

w∑

i=1

fc(i, j), (7)

where fc(i, j) is the feature value at position (i, j) in the

feature maps.

Furthermore as investigated in [34], we propose a self-

gating mechanism to capture the channel dependencies

from the descriptor retrieved by global average pooling. Ac-

cording to [34], the mentioned mechanism must learn the

nonlinear synergies between channels as well as mutually-

exclusive relationships. Here, we employ soft-shrinkage

and sigmoid functions to implement the gating mechanism.

Let us consider δ, and α are the soft-shrinkage and sigmoid

operators, respectively. Then the gating mechanism is

rc = α(HU (δ(HD(gp)))), (8)

where HD and HU are the channel reduction and chan-

nel upsampling operators, respectively. The output of the

global pooling layer gp is convolved with a downsampling

Conv layer, activated by the soft-shrinkage function. To dif-

ferentiate the channel features, the output is then fed into

an upsampling Conv layer followed by sigmoid activation.

Moreover, to compute the statistics, the output of the sig-

moid (rc) is adaptively rescaled by the input fc of the chan-

nel features as

f̂c = rc × fc (9)

3.3. Implementation

Our proposed model contains four EAM blocks. The

kernel size for each convolutional layer is set to 3 × 3, ex-

cept the last Conv layer in the enhanced residual block and

those of the features attention units, where the kernel size

is 1 × 1. Zero padding is used for 3 × 3 to achieve the

same size outputs feature maps. The number of channels

for each convolutional layer is fixed at 64, except for fea-

ture attention downscaling. A factor of 16 reduces these

Conv layers; hence having only four feature maps. The final

convolutional layer either outputs three or one feature maps

depending on the input. As for running time, our method

takes about 0.2 second to process a 512× 512 image.
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Long skip connection (LSC) X X X X

Short skip connection (SSC) X X X X X

Long connection (LC) X X X

Feature attention (FA) X X X X X

PSNR (in dB) 28.45 28.77 28.81 28.86 28.52 28.85 28.86 28.90 28.96

Table 1. Investigation of skip connections and feature attention. The best result in PSNR (dB) on values on BSD68 [52] in 2×10
5 iterations

is presented.

4. Experiments

4.1. Training settings

To generate noisy synthetic images, we employ

BSD500 [44], DIV2K [4], and MIT-Adobe FiveK [15], re-

sulting in 4k images while for real noisy images, we use

cropped patches of 512×512 from SSID [1], Poly [55], and

RENOIR [6]. Data augmentation is performed on training

images, which includes random rotations of 90◦, 180◦, 270◦

and flipping horizontally. In each training batch, 32 patches

are extracted as inputs with a size of 80 × 80. Adam [36]

is used as the optimizer with default parameters. The learn-

ing rate is initially set to 10−4 and then halved after 105

iterations. The network is implemented in the Pytorch [47]

framework and trained with an Nvidia Tesla V100 GPU.

Furthermore, we use PSNR as evaluation metric.

4.2. Ablation Studies

4.2.1 Influence of the skip connections

Skip connections play a crucial role in our network. Here,

we demonstrate the effectiveness of the skip connections.

Our model is composed of three basic types of connections

which includes long skip connection (LSC), short skip con-

nections (SSC), and local connections (LC). Table 1 shows

the average PSNR for the BSD68 [52] dataset. The highest

performance is obtained when all the skip connections are

available while the performance is lower when any connec-

tion is absent. We also observed that increasing the depth

of the network in the absence of skip connections does not

benefit performance.

4.2.2 Feature-attention

Another important aspect of our network is feature atten-

tion. Table 1 compares the PSNR values of the networks

with and without feature attention. The results support our

claim about the benefit of using feature attention. Since the

inception of DnCNN [63], the CNN models have matured,

and further performance improvement requires the careful

design of blocks and rescaling of the feature maps. The two

mentioned characteristics are present in our model in the

form of feature-attention and the skip connections.

4.3. Comparisons

We evaluate our algorithm using the Peak Signal-

to-Noise Ratio (PSNR) index as the error metric and

compare against many state-of-the-art competitive algo-

rithms which include traditional methods i.e. CBM3D [19],

WNNM [30], EPLL [67], CSF [53] and CNN-based denois-

ers i.e. MLP [14], TNRD [17], DnCNN [63], IrCNN [64],

CNLNet [39], FFDNet [65] and CBDNet [31]. To be fair

in comparison, we use the default setting of the traditional

methods provided by the corresponding authors.

4.3.1 Test Datasets

In the experiments, we test four noisy real-world datasets

i.e. RNI15 [38], DND [49], Nam [45] and SSID [1]. Fur-

thermore, we prepare three synthetic noisy datasets from

the widely used 12 classical images, BSD68 [52] color and

gray 68 images for testing. We corrupt the clean images by

additive white Gaussian noise using noise sigma of 15, 25

and 50 standard deviations.

• RNI15 [38] provides 15 real-world noisy images. Un-

fortunately, the clean images are not given for this

dataset; therefore, only the qualitative comparison is

presented for this dataset.

• Nam [45] comprises of 11 static scenes and the cor-

responding noise-free images obtained by the mean of

500 noisy images of the same scene. The size of the

images are enormous; hence, we cropped the images

in 512× 512 patches and randomly selected 110 from

those for testing.

• DnD is recently proposed by Plotz et al. [49] which

originally contains 50 pairs of real-world noisy and

noise-free scenes. The scenes are further cropped into

patches of size 512 × 512 by the providers of the

dataset which resulted in 1000 smaller images. The

near noise-free images are not publicly available, and

the results (PSNR/SSIM) can only be obtained through

the online system introduced by [49].

• SSID [1] (Smartphone Image Denoising Dataset) is re-

cently introduced. The authors have collected 30k real

noisy images and their corresponding clean images;

however, only 320 images are released for training and

1280 images pairs for validation, as testing images are
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Noise Methods

Level BM3D WNNM EPLL TNRD DenoiseNet DnCNN IrCNN NLNet FFDNet Ours

15 31.08 31.32 31.19 31.42 31.44 31.73 31.63 31.52 31.63 31.81

25 28.57 28.83 28.68 28.92 29.04 29.23 29.15 29.03 29.23 29.34

50 25.62 25.83 25.67 26.01 26.06 26.23 26.19 26.07 26.29 26.40

Table 2. The similarity between the denoised and the clean images of BSD68 dataset [52] for our method and competing measured in terms

of average PSNR for σ=15, 25, and 50 on grayscale images.

Methods σ = 15 σ = 25 σ = 50

BM3D [18] 32.37 29.97 26.72

WNNM [30] 32.70 30.26 27.05

EPLL [67] 32.14 29.69 26.47

MLP [14] - 30.03 26.78

CSF [53] 32.32 29.84 -

TNRD [17] 32.50 30.06 26.81

DnCNN [63] 32.86 30.44 27.18

IrCNN [64] 32.77 30.38 27.14

FFDNet [65] 32.75 30.43 27.32

Ours 32.91 30.60 27.43

Table 3. The quantitative comparison between denoising algo-

rithms on 12 classical images, (in terms of PSNR). The best results

are highlighted as bold.

not released yet. We will use the validation images for

testing our algorithm and the competitive methods.

4.3.2 Grayscale noisy images

In this subsection, we evaluate our model on the noisy

grayscale images corrupted by spatially invariant addi-

tive white Gaussian noise. We compare against nonlo-

cal self-similarity representative models i.e. BM3D [18]

and WNNM [30], learning based methods i.e. EPLL,

TNRD [17], MLP [14], DnCNN [63], IrCNN [64], and

CSF [53]. In Tables 3 and 2, we present the PSNR val-

ues on Set12 and BSD68. It is to be remembered here that

BSD500 [44] and BSD68 [52] are two disjoint sets. Our

method outperforms all the competitive algorithms on both

datasets for all noise levels; this may be due to the larger

receptive field as well as better modeling capacity.

4.3.3 Color noisy images

Next, for noisy color image denoising, we keep all the pa-

rameters of the network similar to the grayscale model, ex-

cept the first and last layer are changed to input and output

three channels rather than one. Figure 4 presents the visual

comparison and Table 4 reports the PSNR numbers between

our methods and the alternative algorithms. Our algorithm

consistently outperforms all the other techniques published

in Table 4 for CBSD68 dataset [52]. Similarly, our net-

work produces the best perceptual quality images as shown

in Figure 4. A closer inspection on the vase reveals that our

31.68dB 32.21dB

Noisy BM3D [19] IRCNN [64]

32.33dB 32.84dB

DnCNN [63] Ours GT
Figure 4. Denoising performance of our RIDNet versus state-of-

the-art methods on a color images from [52] for σn = 50

network generates textures closest to the ground-truth with

fewer artifacts and more details.

4.3.4 Real-World noisy images

To further assess the practicality of our model, we employ a

real noise dataset. The evaluation is difficult because of the

unknown level of noise, the various noise sources such as

shot noise, quantization noise etc., imaging pipeline i.e. im-

age resizing, lossy compression etc. Furthermore, the noise

is spatially variant (non-Gaussian) and also signal depen-

dent; hence, the assumption that noise is spatially invariant,

employed by many algorithms does not hold for real image

noise. Therefore, real-noisy images evaluation determines

the success of the algorithms in real-world applications.

DnD: Table 5 presents the quantitative results

(PSNR/SSIM) on the sRGB data for competitive al-

gorithms and our method obtained from the online DnD

benchmark website available publicly. The blind Gaussian

denoiser DnCNN [63] performs inefficiently and is unable

to achieve better results than BM3D [18] and WNNM [30]

due to the poor generalization of the noise during training.

Similarly, the non-blind Gaussian traditional denoisers

are able to report limited performance, although the noise

standard-deviation is provided. This may be due to the fact

that these denoisers [18, 30, 67] are tailored for AWGN

only and real-noise is different in characteristics to syn-
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Noise Methods

Levels CBM3D [19] MLP [14] TNRD [17] DnCNN [63] IrCNN [64] CNLNet [39] FFDNet [65] Ours

15 33.50 - 31.37 33.89 33.86 33.69 33.87 34.01

25 30.69 28.92 28.88 31.33 31.16 30.96 31.21 31.37

50 27.37 26.00 25.94 27.97 27.86 27.64 27.96 28.14

Table 4. Performance comparison between our network and existing state-of-the-art algorithms on the color version of the BSD68

dataset [52].

30.896dB 29.98dB 30.73dB 29.42dB

Noisy CBM3D [18] WNNM [30] NC [38] TWSC [57]

30.88dB 28.43dB 31.37dB 31.06dB 32.31dB

Noisy Image MCWNNM [58] NI [2] FFDNet [65] CBDNet [31] RIDNet (Ours)
Figure 5. A real noisy example from DND dataset [49] for comparison of our method against the state-of-the-art algorithms.

Method Blind/Non-blind PSNR SSIM

CDnCNNB [63] Blind 32.43 0.7900

EPLL [67] Non-blind 33.51 0.8244

TNRD [17] Non-blind 33.65 0.8306

NCSR [23] Non-blind 34.05 0.8351

MLP [14] Non-blind 34.23 0.8331

FFDNet [65] Non-blind 34.40 0.8474

BM3D [18] Non-blind 34.51 0.8507

FoE [52] Non-blind 34.62 0.8845

WNNM [30] Non-blind 34.67 0.8646

NC [38] Blind 35.43 0.8841

NI [2] Blind 35.11 0.8778

CIMM [8] Non-blind 36.04 0.9136

KSVD [5] Non-blind 36.49 0.8978

MCWNNM [58] Non-blind 37.38 0.9294

TWSC [57] Non-blind 37.96 0.9416

FFDNet+ [65] Non-blind 37.61 0.9415

CBDNet [31] Blind 38.06 0.9421

RIDNET (Ours) Blind 39.23 0.9526

Table 5. The Mean PSNR and SSIM denoising results of state-of-

the-art algorithms evaluated on the DnD sRGB images [49]

thetic noise. Incorporating feature attention and capturing

the appropriate characteristics of the noise through a novel

module means our algorithm leads by large margin i.e.

1.17dB PSNR compared to the second performing method,

CBDNet [31]. Furthermore, our algorithm only employs

real-noisy images for training using only ℓ1 loss while

CBDNet [31] uses many techniques such as multiple losses

Noisy FFDNet CBDNet RIDNet

Figure 6. Comparison of our method against the other methods

on a real image from RNI15 [38] benchmark containing spatially

variant noise.

(i.e. total variation, ℓ2 and asymmetric learning) and both

real-noise as well as synthetically generated real-noise.

As reported by the author of CBDNet [31], it is able to

achieve 37.72 dB with real-noise images only. Noise

Clinic (NC) [38] and Neat Image (NI) [2] are the other two

state-of-the-art blind denoisers other than [31]. NI [2] is

commercially available as a part of Photoshop and Corel

PaintShop. Our network is able to achieve 3.82dB and

4.14dB more PSNR from NC [38] and NI [2], respectively.

Next, we visually compare the result of our method with

the competing methods on the denoised images provided

by the online system of Plotz et al. [49] in Figure 5. The

PSNR and SSIM values are also taken from the website.

From Figure 5, it is clear that the methods of [31, 65, 63]

perform poorly in removing the noise from the star and in

some cases the image is over-smoothed, on the other hand,

our algorithm can eliminate the noise while preserving the

finer details and structures in the star image.
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Noisy DnCNN FFDNet Ours

Figure 7. A real high noise example from RNI15 dataset [38]. Our

method is able to remove the noise in textured and smooth areas

without introducing artifacts.

Methods

Datasets BM3D DnCNN FFDNet CBDNet Ours

Nam [45] 37.30 35.55 38.7 39.01 39.09

SSID [1] 30.88 26.21 29.20 30.78 38.71

Table 6. The quantitative results (in PSNR (dB)) for the SSID [1]

and Nam [45] datasets.

RNI15: On RNI15 [38], we provide qualitative images

only as the ground-truth images are not available. Figure 6

presents the denoising results on a low noise intensity im-

age. FFDNet [65] and CBDNet [31] are unable to remove

the noise in its totality as can been seen near the bottom

left of handle and body of the cup image. On the contrary,

our method is able to remove the noise without the intro-

duction of any artifacts. We present another example from

the RNI15 dataset [38] with high noise in Figure 7. CD-

nCNN [63] and FFDNet [65] produce results of limited na-

ture as some noisy elements can be seen in the near the eye

and gloves of the Dog image. In comparison, our algorithm

recovers the actual texture and structures without compro-

mising on the removal of noise from the images.

Nam: We present the average PSNR scores of the resul-

tant denoised images in Table 6. Unlike CBDNet [31],

which is trained on Nam [45] to specifically deal with the

JPEG compression, we use the same network to denoise

the Nam images [45] and achieve favorable PSNR numbers.

Our performance in terms of PSNR is higher than any of the

current state-of-the-art algorithms. Furthermore, our claim

is supported by the visual quality of the images produced

by our model as shown in Figure 8. The amount of noise

present after denoising by our method is negligible as com-

pared to CDnCNN and other counterparts.

SSID: As a last dataset, we employ the SSID real noise

dataset which has the highest number of test (validation) im-

ages available. The results in terms of PSNR are shown in

the second row of Table 6. Again, it is clear that our method

outperforms FFDNet [65] and CBDNet [31] by a margin of

9.5dB and 7.93dB, respectively. In Figure 9, we show the

denoised results of a challenging image by different algo-

rithms. Our technique recovers the true colors which are

closer to the original pixel values while competing methods

Noisy CBM3D (39.13) IRCNN (33.73)

DnCNN (37.56) CBDNet (40.40) Ours (40.50)

Figure 8. An image from Nam dataset [45] with JPEG compres-

sion. CBDNet is trained explicitly on JPEG compressed images;

still, our method performed better.

25.75 dB 21.97 dB 20.76 dB

Noisy CBM3D IRCNN DnCNN

19.70 dB 28.84 dB 35.57 dB

FFDNet CBDNet Ours GT

Figure 9. A challenging example from SSID dataset [1]. Our

method can remove noise and restore true colors.

are unable to restore original colors and in specific regions

induce false colors.

5. Conclusion

In this paper, we present a new CNN denoising model

for synthetic noise and real noisy photographs. Unlike pre-

vious algorithms, our model is a single-blind denoising net-

work for real noisy images. We propose a novel restoration

module to learn the features and to enhance the capability

of the network further; we adopt feature attention to rescale

the channel-wise features by taking into account the depen-

dencies between the channels. We also use LSC, SSC, and

SC to allow low-frequency information to bypass so the net-

work can focus on residual learning. Extensive experiments

on three synthetic and four real-noise datasets demonstrate

the effectiveness of our proposed model.

This work was supported in part by NH&MRC Project

grant # 1082358.
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