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Abstract

Appearance information alone is often not sufficient to

accurately differentiate between fine-grained visual cate-

gories. Human experts make use of additional cues such

as where, and when, a given image was taken in order to

inform their final decision. This contextual information is

readily available in many online image collections but has

been underutilized by existing image classifiers that focus

solely on making predictions based on the image contents.

We propose an efficient spatio-temporal prior, that when

conditioned on a geographical location and time, estimates

the probability that a given object category occurs at that

location. Our prior is trained from presence-only observa-

tion data and jointly models object categories, their spatio-

temporal distributions, and photographer biases. Experi-

ments performed on multiple challenging image classifica-

tion datasets show that combining our prior with the predic-

tions from image classifiers results in a large improvement

in final classification performance.

1. Introduction

Correctly classifying objects into different fine-grained

visual categories is a challenging problem. In contrast to

generic object recognition, it can require knowledge of sub-

tle features that are essential for differentiating between vi-

sually similar categories. However, without having access

to additional information that may not be present in an im-

age, many categories can be visually indistinguishable. For

example, the two toad species in Fig. 1 are similar in ap-

pearance but tend to be found in very different locations in

Europe. Knowing where a given image was taken can pro-

vide a strong prior for what objects it may contain.

Most images that are captured and shared online today

also come with additional metadata in the form of where

they were taken, when they were taken, and who captured

them. This information not only offers the possibility of

helping to resolve ambiguous cases for image classification,

but can also enable us to generate predictions of where, and

when, different objects are likely to be observed.

Figure 1: Differentiating between two visually similar cat-

egories such as the European (left) and Spiny (right) Toad

can be challenging without additional context. To address

this problem, we propose a spatio-temporal prior that en-

codes where, and when, a given category is likely to occur.

For a known test location our prior predicts how likely it is

for each category to be present. Darker colors indicate lo-

cations that are more likely to contain the object of interest.

Existing work that uses location information to improve

classification performance either discretizes the input data

into spatio-temporal volumes [5], store the entire training

set in memory at inference time [64], or jointly train deep

images classifiers along with corresponding location infor-

mation [55]. Methods that discretize or store the raw train-

ing data do not scale well in terms of memory, and jointly

training image classifiers with location information neces-

sitates that location information is present at test time -

which may not always be the case. We take inspiration

from species distribution modeling (SDM) [20], and instead

model a separate geographical prior that can be combined

with the predictions of any image classifier. However, un-

like many approaches to SDM that assume they have ac-

cess to presence and absence information at training time

(e.g. [56]), we make a more general assumption that only

presence information is available i.e. we know where the

categories have been observed, but have no explicit data re-

garding where they are not found.

In this work we make the following contributions: (1) An

efficient spatio-temporal prior that jointly models the rela-

tionship between location, time of year, photographer, and

the presence of multiple different object categories. (2) A

novel presence-only training loss to capture these relation-
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ships. (3) Experiments that show that combining the proba-

bilistic predictions of image classifiers with our prior signif-

icantly improves the test time performance on challenging

fine-grained image datasets.

2. Related Work

Here we discuss work related to spatio-temporal mod-

els that encode the location of a set of discrete object cate-

gories. We do not address methods that explore other uses

of location information such as inferring where an image

was taken given only the raw pixels [29, 60], or methods

that use location to disambiguate visually similar places for

image localization [59, 68].

Fine-Grained Image Classification

Correctly determining which one of multiple possible fine-

grained categories is present in an image requires under-

standing the relationship between subtle visual features and

the corresponding image-level category label e.g. [61, 35,

66, 58]. Existing approaches have investigated the model-

ing of parts [41, 71, 9, 70, 32], higher order feature interac-

tions [40, 23], attention mechanisms [65, 72, 62], noisy web

data [37], novel training losses [14], and pairwise category

information [17]. Orthogonal to those works, we propose a

spatio-temporal prior that can be combined with the prob-

abilistic predictions of any image classifier to improve the

final classification performance.

Location and Classification

A small number of approaches have explored the use of lo-

cation information to improve image classification at test

time. Berg et al. [5] proposed a spatio-temporal prior that

when combined with the output of an image classifier in-

creased the accuracy of bird species classification. Their

approach discretized location and time into spatio-temporal

cubes and used an adaptive kernel density estimator to rep-

resent the distribution of each species independently. Also

in the context of predicting the presence of different bio-

logical species, Wittich et al. [64] evaluated different near-

est neighbor based lookup strategies for retrieving the most

relevant instances from a training set of geo-tagged observa-

tions. These approaches are inefficient in terms their mem-

ory requirements as they necessitate storing either the entire

training set or a discretized version of it. Existing reposito-

ries of citizen science data (e.g. [53, 2, 1]) can contain on

the order of tens of millions of observations making them

prohibitively large to store and retrieve on mobile devices.

Choosing the correct discretization is challenging [48], and

incorrect choices can significantly affect the final perfor-

mance [38, 46]. A key benefit of our approach is that dis-

cretization is not required.

Tang et al. [55] explored different feature encodings for

incorporating location information directly into deep neural

networks at training time. This included raw location fea-

tures (i.e. longitude and latitude), demographic information

collected via a census, user provided hash-tags, and geo-

graphical map features (e.g. land use estimates). The dis-

advantage of their method is that it assumes that location

information is present at test time and that all the required

features can be computed for a given test location. Further-

more, they cannot use location information that does not

have an associated image. They also need to retrain their

entire model if new location data is collected. We instead

propose an efficient spatio-temporal prior that jointly mod-

els the spatial distribution of multiple object categories that

can be trained independently of the image classifier. Parallel

to our work, [13] builds on [55] by exploring different ways

to integrate location information into deep image classifiers.

Spatio-Temporal Distribution Modelling

Our goal is to estimate the spatio-temporal distribution of a

set of object categories. Related to this, there is a rich liter-

ature exploring models for estimating the distribution of bi-

ological specimens across geographic space and time [31].

This is referred to as species distribution modelling or en-

vironmental niche modelling. Broadly, these methods can

be divided into two groups, those that use presence-absence

data and those that use presence-only data [28].

Making a presence-absence observation at a given loca-

tion requires that every species from a predefined set of in-

terest be confirmed as either present or absent for that sam-

pling event. In practice, this kind of data is onerous to col-

lect because it requires intense survey effort to confirm that

a species is absent with a high degree of certainty [43].

However, once this data is collected it can be combined

with standard supervised classification approaches such as

logistic regression [28], probit regression [52], Gaussian

processes [26], decision trees [20], and neural networks

[67, 49, 45], among others [18, 47]. Presence-absence

data is also compatible with traditional multi-label learning

[34, 8, 69, 12, 63]. Recently deep models have been applied

to this problem in order to jointly model the location pref-

erences of different species [27, 11, 22, 56, 7] and human

sampling biases [10].

In contrast, a presence-only (i.e. incidental) observation

may be recorded wherever an object of interest is encoun-

tered - without requiring any absences to be verified. While

presence-only data can be much easier to collect, the lack

of absence information makes it more difficult to model.

This limitation is typically dealt with in one of three dif-

ferent ways. The first approach is to generate ‘pseudo-

negatives’ and then apply one of the presence-absence ap-

proaches from above. As no true negative information is

available, these approaches randomly sample a set of lo-

cations and make the assumption that these locations are

absences e.g. [19, 50, 3]. The second commonly used ap-
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proach is to train a highly regularized model directly on the

presence-only data e.g. by fitting a maximum entropy dis-

tribution [51] or a low-rank model [21], forcing the model

to explain data where it has been observed and to be un-

certain elsewhere. Finally, and most related to our work,

there are approaches that use additional information such

as the detectability of a given species and a photographer’s

propensity to image them e.g. [44, 24].

Unlike many of the classic approaches for spatio-

temporal distribution modelling, in this work we jointly

learn a continuous spatio-temporal prior for each category

of interest using a neural network to amortize the compu-

tation. In contrast to previous deep distribution models e.g.

[27, 11, 56], we do not require presence-absence data or ad-

ditional environmental features as input. We instead exploit

the structure that exists in online image repositories, such

as those collected by citizen scientists, to jointly model ob-

jects, their locations, and photographer biases.

3. Methods

Here we outline our spatio-temporal prior, which mod-

els the geographical and temporal distribution of a set

of object categories and photographers. During train-

ing we assume that we have access to a set of tuples

D = {(Ii,xi, yi, pi)|i = 1, ..., N}, where Ii is an im-

age, yi ∈ {1, ...., C} is the corresponding class label,

xi = [loni, lati, timei] represents the location (longitude

and latitude) and time the image was taken, and pi is the

individual, i.e. photographer, who captured the image. Note

that the location does not need to be captured alongside the

image. D can be assembled from unrelated image and loca-

tion datasets as long as both contain the same categories.

At test time, given an image and where and when it was

taken we aim to estimate which category it contains i.e.

P (y|I,x). One approach is to model the joint distribu-

tion P (I,x) as in [55], but this necessitates that the loca-

tion information is always available at test time. Instead,

inspired by [5], we can incorporate location information as

a Bayesian spatio-temporal prior. If we assume that I and x

are conditionally independent given y, then

P (y|I,x) =
P (I,x|y)P (y)

P (I,x)
(1)

=
P (I)P (x)

P (I,x)

P (y|I)P (y|x)

P (y)
(2)

∝ P (y|I)P (y|x), (3)

where we assume a uniform prior P (y) = 1/C for y ∈
{1 . . . , C}. In reality an image may contain location infor-

mation unrelated to the class label (e.g. the background), but

we assume this factorization is valid. By factoring the dis-

tribution in this way we can represent the image classifier,

P (y|I), and spatio-temporal prior, P (y|x), separately. Note

P(y|x)P(y|I) ∝  P(y|I,x)

location 
encoder f()

location 
context x

(lon, lat, time)

classifierimage I

object 
embedding O

Figure 2: Inference time. Our goal is to estimate if an

object category y is present in an input image I. At test time

we make use of additional spatio-temporal information x in

the form of where and when the image was taken.

that at test time we do not assume that we have any knowl-

edge of the individual p who captured the image. In this

work we focus our attention on representing P (y|x). For

P (y|I) we can use any discriminative model that produces

a probabilistic output e.g. a convolutional neural network.

Presence-Absence Loss

As we are modeling the spatio-temporal prior indepen-

dently from the image classifier our training data is now of

the form D = {(xi, yi, pi)|i = 1, ..., N}. In the ideal case

we would have complete information consisting of where

and when a given category has both been observed to be

present and observed to be not present e.g. as in [11, 56].

Then instead of yi ∈ 1, ..., C, each spatio-temporal loca-

tion xi would be associated with a binary multi-label vec-

tor yi = [y1i , ..., y
C
i ] where each entry yci ∈ {0, 1} indi-

cates whether or not category c has been observed as being

present at xi. This formulation results in a standard multi-

label learning problem, enabling us to estimate the parame-

ters of the spatio-temporal model by solving

max
θ

N∑

i=1

C∑

c=1

yci log(ŷ
c
i ) + (1− yci ) log(1− ŷci ), (4)

where we define ŷci = P (yci |xi) and P is parameterized

by θ. However, as discussed previously, presence-absence

information is both difficult and time consuming to acquire

in real world settings.

Presence-Only Loss

In this work we explore the more challenging presence-only

setting where each spatio-temporal location xi is associated

with a single label yi ∈ {1, ...., C} indicating which cate-

gory was observed. In essence, we have a label vector yi

where there is only one affirmative entry, i.e. yci = 1 for

9598



some c, and the remaining entries are unknown. In this set-

ting, Eqn. 4 can be written as

max
θ

N∑

i=1

log(ŷcii ) +Ai, (5)

where Ai represents a proxy absence term for the ith train-

ing example and ci is the corresponding observed category.

Now the question becomes how to choose Ai.

One common approach for representing Ai is to generate

‘pseudo-negatives’ [3] by randomly sampling absence data

from some parametric distribution. For instance, one might

set

Ai = log(1− P (yi|ri)). (6)

where ri is a randomly selected spatio-temporal loca-

tion with [lon(ri), lat(ri)] ∼ Unif(S2) and time(ri) ∼
Unif([0, 1]). The implicit assumption is that each category

(whether man-made or naturally occurring) occurs in a rela-

tively small subset of S2×[0, 1], so the probability of a cate-

gory occurring at a randomly chosen location r ∈ S
2×[0, 1]

is small as well. To the extent that this assumption holds,

these pseudo-negatives are likely to be valid.

An alternative approach is to instead sample absences

over locations and times where the presence data for other

categories occurs. In this case we would set Ai according

to Eqn. 6 but sample negative locations from the positive

occurrence locations i.e. ri ∼ Unif({x1, . . . ,xN}). This

biases the training towards regions that contain valid data.

3.1. Our Approach

In this section we outline how we model and train our

spatio-temporal prior P (y|x).

Location and Object Embedding

In many contexts, different objects do not occur indepen-

dently at a given spatio-temporal location. Knowing that

object A is present may provide information regarding the

presence or absence of object B at the same place and time.

Similarly, different spatio-temporal locations are not inde-

pendent, and may share commonalities. We exploit this

structure to encode low dimensional embeddings of objects

and spatio-temporal locations.

Taking inspiration from [11], we model our spatio-

temporal prior as P (y|x) ∝ s(f(x)O). Here, f : R3 →
RD is a multi-layered fully-connected neural network that

maps a spatio-temporal location x to a D dimensional em-

bedding vector. O ∈ RD×C represents an object embed-

ding matrix, where each column is a different category. The

product f(x)O results in a C dimensional vector, where

each element represents the affinity that a spatio-temporal

location x has for category y. The intuition is that we are

representing spatio-temporal locations and object categories

in a shared embedding space where the inner product be-

tween the embedding of a location x and an object y is

large if y is likely to occur at location x. Finally, s() is

an entry-wise sigmoid operation to ensure that the resulting

prediction are in the range [0, 1].

Photographer Embedding

In online image collections we often have access to addi-

tional information at training time in the form of the pho-

tographer p ∈ P who captured the image. To see why

this information is valuable, consider the following exam-

ple. Suppose a photographer p visits location x and does

not report object y. If p has never taken an image of an ob-

ject like y, then this non-report gives us little information.

However, if p has a history of reporting categories similar

to object y, then this constitutes weak evidence that y might

actually be absent at that location. Thus, we can interpret

the same presence-only information in different ways de-

pending on the individual who provides it.

To capture photographer biases, we embed photogra-

phers into the same shared embedding space as the ob-

jects and locations. This is achieved by learning a photog-

rapher embedding matrix P ∈ RD×|P| at training time.

Like different object categories, photographers may have

affinities for particular locations and times, and share sim-

ilarities in their spatio-temporal patterns with other pho-

tographers. This enables us to represent both a photogra-

pher’s preference for a given location P (p|x) ∝ s(f(x)P),
and a photographer’s affinity for a given object category

P (y|p) ∝ s(OTP). Once trained, the photographer em-

beddings P are not required at test time, see Fig. 2.

Joint Embedding Loss

Our goal at training time is to estimate the set of parameters

θ = [θf ,O,P], where θf denotes the weights of the loca-

tion embedding network f(), O is the category embedding

matrix, and P is the photographer embedding matrix.

We start with the constraint that our model should be

conservative i.e. if a category y has been observed at

the spatio-temporal location x in the training set, then

s(f(x)O:,y) should be close to 1, otherwise it should be

close to 0. Here, O:,y indicates the yth column of O.

We rely on the location embedding function f() to inter-

polate between presence locations. This is conservative in

the sense that it assumes that an object is absent if it has

not been observed. This is a very strong assumption, but it

enables the spatio-temporal prior to be aggressive in down-

weighting incorrect predictions from the image classifier.

Our first loss encourages the model to predict the pres-

ence of objects where they have been observed in the train-

ing set and downweight their likelihood where they have not
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been observed:

Lo loc(x, r,O, y) =λ log(s(f(x)O:,y))+

C∑

i=1
i 6=y

log(1− s(f(x)O:,i))+

C∑

i=1

log(1− s(f(r)O:,i)).

(7)

λ is a hyperparameter used to weight the positive obser-

vations and r is a uniformly random spatio-temporal data-

point. Next, we want the affinity between a photographer

p and a location x be high if p was present at x, and low

otherwise:

Lp loc(x, r,P, p) = log(s(f(x)P:,p))+

log(1− s(f(r)P:,p)).
(8)

We assume that a photographer has a low affinity for a cat-

egory unless they have previously observed it:

Lp o(O,P, y, p) =λ log(s(OT
:,yP:,p))+

C∑

i=1
i 6=y

log(1− s(f(OT
:,iP:,p)).

(9)

Finally, to estimate the parameters of our prior we maximize

L = Lo loc + Lp loc + Lp o, (10)

by iterating over each of the datapoints in the training set.

4. Experiments

We evaluate the effectiveness of our spatio-temporal

prior by performing experiments on several image classifi-

cation datasets that have location and time information. We

choose image classification because for other domains (e.g.

species distribution modeling) it is challenging to obtain ac-

curate ground truth information regarding the true spatio-

temporal distributions of the categories of interest.

4.1. Datasets

While location metadata is readily available for on-

line image collections, many popular image classification

datasets do not contain this information e.g. [61, 57, 16, 39].

Some datasets exist with location information, but for only

a subset of the images e.g. [25]. However, datasets con-

taining images of different species of plants and animals

are available with location, time, and photographer informa-

tion. To this end, we perform experiments on the iNaturalist

2017 and 2018 (iNat2017 and iNat2018) species classifi-

cation datasets which contain images collected and anno-

tated by citizen scientists [58]. They have 5,089 and 8,142

categories respectively. While [5] evaluated their location

prior on the BirdSnap dataset, the images and location meta-

data used are not provided by the authors. We recollect the

images and location data from the web using the original

image URLs. Despite the dataset consisting of images of

species commonly found in North America, when we rec-

ollected the images and locations we found that the origi-

nal images are from all over the world and 40% were miss-

ing location. Like [5], we also simulate location metadata

for BirdSnap [5] and another fine-grained dataset of birds,

NABirds [57], by associating each image with a species ob-

servation from eBird [53]. Our train locations and photogra-

phers are sampled from eBird 2015, and the test set is from

2016. BirdSnap and NABirds contain images from 500

and 555 different species of North America birds. Finally,

we also perform experiments on YFCC100M-GEO100 [55]

(YFCC). YFCC contains 100 everyday object categories

with associated locations, but no date or photographer in-

formation is provided. The train and test split used in [55]

is not available and so we created a new one. Unlike the

other datasets, many of the object categories in YFCC are

not geographically distinct e.g. ‘band’, ‘ford’, or ‘ipod’.

4.2. Implementation Details

Our location encoder f() is a fully-connected neural net-

work consisting of an input layer, followed by multiple

residual layers [30], and a final output embedding layer. We

jointly train the location encoder, along with the photogra-

pher and object embeddings using Adam [36] for 30 epochs

with a batch size of 1024, using dropout to prevent over-

fitting. The dimensionality of the shared embedding space

is set to D = 256. When weighting the positive instances

during training we set λ to the number of categories. To

counteract the heavily imbalanced nature of many of the

datasets, we limit the maximum number of datapoints for

each category per epoch. We set the maximum number of

datapoints to 100, and for each epoch we randomly select a

different subset for each category. The only exception is for

YFCC, where capping the data hurt performance. Details of

our network architecture are in the supplementary material.

Except where noted, at test time, our model takes three

inputs – longitude, latitude, and day of the year, specifying

where and when the image of interest was captured. For

these three input features x we explored different methods

for ‘wrapping’ the coordinates i.e. an observation taken on

December 31st should result in a similar embedding to one

captured on January 1st. Similarly, we want geographi-

cal coordinates to wrap around the earth. To achieve this,

for each input dimension l of x we perform the mapping

[sin(πxl), cos(πxl)], resulting in two numbers for each di-

mension. Here, we assume that each dimension of the input

has been normalized to the range xl ∈ [−1, 1].

For the image classifiers P (y|I) we fine-tune a separate

InceptionV3 [54] network for each of the datasets begin-

ning with ImageNet initialized weights [16] with an image
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YFCC BirdSnap BirdSnap† NABirds† iNat2017 iNat2018

P (y|x) - Prior Type Test Test Test Test Val Test Pu Test Pr Val Test Pu Test Pr

No Prior (i.e. uniform) 50.15 70.07 70.07 76.08 63.27 64.16 63.63 60.20 50.17 50.33

Nearest Neighbor (num) 51.78 70.82 77.76 79.99 65.34 66.04 65.61 68.70 54.54 54.58

Nearest Neighbor (spatial) 51.21 71.57 77.98 80.79 65.85 67.02 66.41 67.55 53.67 53.81

Discretized Grid 51.06 71.09 77.19 79.58 65.49 66.62 66.07 67.27 53.13 53.16

Adaptive Kernel [5] 51.47 71.57 78.65 81.11 64.86 65.83 65.59 65.23 53.17 53.21

Tang et al. [55] 50.43 70.16 72.33 77.34 66.15 67.08 66.53 65.61 54.12 54.25

Ours no date 50.70 71.66 78.65 81.15 69.34 70.62 70.18 72.41 57.68 57.84

Ours full - 71.84 79.58 81.50 69.60 70.83 70.51 72.68 58.44 58.59

Table 1: Classification accuracy. Results after combining image classification predictions P (y|I) with different spatio-

temporal priors P (y|x). All results are top 1 accuracy with classifier predictions extracted from an InceptionV3 [54] network

fine-tuned on each of the respective datasets. † indicates that simulated locations, dates, and photographers from the eBird

dataset [53] are used. The baseline algorithms do not use date information.

Top1 Top3 Top5

iNat2017 - InceptionV3 299× 299
No Prior (i.e. uniform) 63.27 79.82 84.51

Ours no wrap encode 69.48 84.43 88.15

Ours no photographer 69.39 83.97 87.71

Ours no date 69.34 84.16 87.89

Ours full 69.60 84.41 88.07

iNat2018 - InceptionV3 299× 299
No Prior (i.e. uniform) 60.20 77.90 83.29

Ours no wrap encode 72.12 87.00 90.52

Ours no photographer 72.84 87.30 90.75

Ours no date 72.41 87.19 90.60

Ours full 72.68 87.26 90.79

iNat2018 - InceptionV3 520× 520
No Prior (i.e. uniform) 66.18 83.32 88.04

Ours no wrap encode 77.09 90.68 93.54

Ours no photographer 77.64 90.82 93.52

Ours no date 77.41 90.80 93.58

Ours full 77.49 90.85 93.57

Table 2: Ablation. Classification accuracy for different

variants of our prior on the iNat2017 and iNat2018 [58]

validation sets. In the case of iNat2018, we still observe

improvements when combining our prior with a more pow-

erful image classifier - see rows ‘InceptionV3 520× 520’.

resolution of 299× 299 (unless otherwise noted).

4.3. Quantitative Evaluation

In Table 1 we evaluate how much our spatio-temporal

prior improves image classification performance by com-

paring it to several baselines. We found that adding a uni-

form prior to the outputs of the nearest neighbor based

baselines increases their performance. This adds robust-

ness in cases where there are no objects from the training

set present near the test locations. The lack of this uniform

prior explains the poor results for nearest neighbor based

approaches in [55]. For the comparison to Tang et al. [55],

we jointly train a linear layer to embed the raw location in-

formation along with an output layer to combine the loca-

tion embedding with the features from the last linear layer

of the image classifier. The rest of the weights of the im-

age classifier are not updated. For each of the baseline al-

gorithms we select their hyperparameters (e.g. the number

of neighbors) on a held out validation set for each dataset.

When location information is not available at test time, we

assume a uniform prior over the categories.

Our model performs on par, or better, than the baselines

across all datasets. The advantage of our approach is that it

is computationally efficient at test time and does not require

features from the image classifier during training. Com-

pared to nearest neighbor based methods, it only requires

a forward pass through a compact fully-connected neural

network. In addition, it also captures structural informa-

tion such as object and photographer biases. One failure

case that is worth noting are the results on YFCC [55]. We

observe that all methods perform similar to using no loca-

tion information (No Prior). This can be explained by the

relative lack of spatio-temporal structure in the object cate-

gories present in the dataset. Again, this is consistent with

the findings in [55], where the authors had to use additional

features to increase the performance.

4.3.1 Ablation Study

In Table 2 we compare the performance of different vari-

ants of our model on iNat2017 and iNat2018 [58]. Again,

across all metrics there is a large increase in performance

compared to the baseline uniform prior. In some cases,

we even observe that there is an additional boost in perfor-

mance when we explicitly model photographer biases.

Training fine-grained image classifiers with larger in-

put images can significantly increase classification perfor-

mance [15]. We observe that the benefit of our spatio-

temporal prior is still apparent even when we use a more

powerful classifier that has been training for longer with

larger images. This increase in accuracy is also present

when we evaluate performance using more lenient evalua-

tion metrics i.e. top 5 vs. top 1 accuracy. This is significant

because it highlights that for some datasets the performance

boost provided by the spatio-temporal prior is orthogonal to

improvements in the underlying image classifier.
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(a) Location embedding (b) Photographer location affinity

Figure 3: Spatial predictions. (a) Embeddings for each location on the earth for a model trained on iNat2018 [58]. We

observe that the embeddings appears to capture information related to climate zones, despite not being trained on any climate

data. (b) Log plot of estimated photographer location preferences. Darker colors indicate that more photographers have

captured images in those locations. We can see that there is a large bias towards North America, Europe, and New Zealand.

Spirobranchus giganteus

Stenorhynchus seticornis

Argiope keyserling

Papilio aegeus

Figure 4: Object embedding. t-SNE [42] plot of

the learned embedding O for all 8,142 categories from

iNat2018 [58]. The location in the object embedding space

encodes a category’s preferences for a particular geograph-

ical region. We observe that categories that have similar

spatio-temporal distributions tend to be close.

4.4. Qualitative Evaluation

Our model captures the relationship between objects, lo-

cations, and photographers. In Fig. 3 (a) we can see the re-

sulting embeddings for each input location from our model

trained on iNat2018 [58]. By applying the embedding func-

tion f() to each location we can generate its D dimensional

embedding vector. We then use ICA [33] to project the em-

bedded features to a three dimensional space and mask out

the ocean for visualization. Perhaps as expected, there is

low frequency structure in the resulting image i.e. nearby

locations tend to support similar objects. One advantage

of our approach is that we are not restricted to a fixed dis-

cretization. As a result we can generate embeddings for any

location and time. In Fig. 4 we visualize our learned object

embedding O. Objects that have similar spatio-temporal

distributions tend to result in similar embedding vectors.

Distinct from other work, our prior also models the re-

lationship between photographers and locations, and pho-

tographers and object categories. In Fig. 3 (b) we plot the

estimated affinity for each input location across all photog-

raphers i.e.
∑

p s(f(x)P:,p). We only show results for pho-

tographers who provided at least 100 observations in the

iNat2018 [58] training set, resulting in 634 individuals. In

Fig. 5 we display the estimated affinity for each object cate-

gory for a set of photographers i.e. P (y|p) ∝ s(OTP). We

observe that the embedding captures the similarity in object

affinity held by different photographers.

Finally, in Fig. 6 we use our prior to generate spatio-

temporal predictions for several different species from

iNat2018 [58]. Each image is generated by querying ev-

ery location on the surface of the earth, on a specified day

of the year, to generate P (y = y∗|x) for the category of

interest. In practice, we evaluate 1000 × 2000 spatial loca-

tions for each time point (e.g. first day of the month). This

step is very efficient as we can pre-compute f(x) for every

location, independent of the category of interest. Again, for

visualization we mask out the predictions over the ocean.

4.5. Limitations

We are limited by the quality of the provided location

data e.g. it can be inaccurate or intentionally obfuscated. We

also make strong assumptions about a photographer’s affin-

ity for an individual object category. In reality, these inter-

actions may be complex i.e. once a photographer captures

an image of a particular category they may be less likely to

take an image of the same object in the near future. There

are also known spatial biases in the types of citizen science

data we use [4, 10]. However, this may not be a major issue

as we can assume that the distribution of test locations and

dates is similarly biased. We currently only use location,

time, and photographer ID during training. In practice, ad-

ditional data such as environmental variables may be a valu-

able signal for specific object categories [6].

5. Conclusion

We introduce a spatio-temporal prior to help disam-

biguate fine-grained categories resulting in improved test

time image classification performance. In addition to help-

ing image classification, our model also naturally captures
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Photographer Embedding Photographer A Photographer B Photographer C

A
B

C

Figure 5: Photographer object affinity. On the left we see a t-SNE [42] plot of the photographer embeddings P for

iNat2018 [58]. The three plots on the right depict the predicted affinities for three different photographers (A, B, and C)

visualized on the category embedding from Fig. 4. Brighter colors indicate a higher affinity for a given category. We

observe that individuals that are close in the photographer embedding space P (e.g. A and B) have similar category affinities,

compared to those that are far away (e.g. C).

Figure 6: Spatio-temporal predictions. Predicted distributions for several object categories for three different time points

using our full model trained on iNat2018 [58]. Darker colors indicate locations where the categories are predicted to be

found. In the first two rows we observe that our model captures seasonal migratory behaviors. On the bottom row, our model

correctly predicts that the Western Honey Bee can be found on several different continents. It is worth noting that the results

are affected by geographical sampling biases in the iNat2018 dataset.

the relationships between locations and objects, objects and

objects, photographers and objects, and photographers and

locations in an interpretable manner. Importantly, our prior

is efficient at test time, both in terms of model size and in-

ference speed, and scales to large numbers of categories.
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