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Figure 1: EMP-Net maintains an internal representation which corresponds to a real world environment. This internal spatial

memory is continuously updated through a dense matching algorithm, allowing an autonomous agent to localise and model

the world through sequences of observations.

Abstract

Continuously estimating an agent’s state space and a

representation of its surroundings has proven vital towards

full autonomy. A shared common ground among systems

which successfully achieve this feat is the integration of pre-

viously encountered observations into the current state be-

ing estimated. This necessitates the use of a memory module

for incorporating previously visited states whilst simulta-

neously offering an internal representation of the observed

environment. In this work we develop a memory module

which contains rigidly aligned point-embeddings that rep-

resent a coherent scene structure acquired from an RGB-D

sequence of observations. The point-embeddings are ex-

tracted using modern convolutional neural network archi-

tectures, and alignment is performed by computing a dense

correspondence matrix between a new observation and the

current embeddings residing in the memory module. The

whole framework is end-to-end trainable, resulting in a

recurrent joint optimisation of the point-embeddings con-

tained in the memory. This process amplifies the shared in-

formation across states, providing increased robustness and

accuracy. We show significant improvement of our method

across a set of experiments performed on the synthetic VIZ-

Doom environment and a real world Active Vision Dataset.

1. Introduction

In recent times, there has been a large surge in interest

towards developing agents which are fully autonomous. A

core aspect of full autonomy lies in the spatial awareness of

an agent about its surrounding environment [9]; this under-

standing would enable the extension towards other useful

applications including navigation [10] as well as human-

robot interaction [7]. Although performance in image un-

derstanding challenges such as segmentation [4, 16, 26],

depth estimation [12, 37, 40], video prediction [27, 43], ob-

ject classification [18,25,36] and detection [13,34] has seen

vast improvement with the aid of deep learning, this level of

success has yet to translate towards the intersection between

spatial awareness and scene understanding. Currently, this

is an active area of research [14, 19, 33], with the vision

community realising its potential towards merging intelli-

gent agents seamlessly and safely into real world environ-

ments.

Fundamentally, an autonomous agent is required to

maintain an internal representation of the observed scene

structure that may be accessed for performing tasks such
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as navigation, planning, object interaction and manipula-

tion [14]. Traditional SLAM methods [9, 29] maintain an

internal representation via keyframes, stored in a graph-like

structure which provides an efficient approach for large-

scale navigation tasks. Although, in order to distil the local

structural information of a scene, dense representations [31]

are often better suited for the given task. Incidentally, this

dense representation is also more applicable for modern

deep learning approaches.

Given this, we identify an important relationship be-

tween the representation of a scene structure and the ge-

ometric formulation of the problem. Nowadays, the in-

creased popularity of cameras with depth sensors mounted

on robotic platforms means that RGB-D information of the

scene is readily available. For an agent navigating an envi-

ronment whilst simultaneously collecting colour and depth

information, a natural representation is a 3D point entity

which can capture the spatial neighbourhood information

of its surroundings. The alignment of such representations

has been heavily explored in the literature [38].

In this work, we reformulate the task of finding 3D point

correspondences as a cross-entropy optimisation problem.

By having access to depth sensory and the agent’s pose in-

formation in the data collection stage, a ground-truth corre-

spondence matrix can be constructed between two consec-

utive frames such that 3D points which match are assigned

a probability of ‘1’, and non-matches assigned a ‘0’. Using

a Convolutional Neural Network (CNN), we extract feature

embeddings from an acquired observation, which are then

assigned to projected depth points. Collectively, we refer

to these embedding-coordinate pairs as point-embeddings.

This allows for end-to-end optimisation on the correspon-

dences between closest point-embeddings (Fig. 1).

By iteratively repeating this process, extracted point

embeddings stored from previously seen observations are

jointly optimised within a processed sequence of frames,

forming a recurrent memory mechanism. The point-

embeddings along with their 3D location are stored within

a memory component which we refer to as the Short-

term Spatial Memory Module (SSMM). Through contin-

uously inferring a correspondence matrix between point-

embeddings in the SSMM and newly extracted point-

embeddings, we obtain the relative pose between the incom-

ing frame and a local coordinate frame of the SSMM. The

result is a SSMM which contains point-embeddings which

are structurally aligned to their original structure in the real

world.

We evaluate our method on two datasets: a synthetic en-

vironment from the Doom video-game, and a real environ-

ment captured from a robotic platform from the Active Vi-

sion Dataset. In both datasets, we show that our method

significantly outperforms baselines on localisation tasks.

The rest of this paper is organised as follows: in Sec-

tion 2, we give a brief review of related work. In Section 3,

we provide details of our proposed method. In Section 4,

we show experimental results and discuss possible exten-

sions to our method in Section 5.

2. Related Work

The related literature to our work can be organised into

three categories.

Frame-based Prior to the introduction of memory based

models for localisation and mapping tasks, frame-by-frame

methods [8,23] and more recently [11,28], explored the ex-

ploitation of geometric constraints for reducing the search

space when optimising Convolutional Neural Networks

(CNN). The pioneering work of [23] applied direct pose re-

gression for inferring the relative pose between two views.

The work by [8] enhanced the information provided to the

regression network by including the optical flow between

two consecutive frames. A natural extension was explored

by [11] which simultaneously estimated a depth map along

with a latent optical flow constraint for regressing the pose

between consecutive frames. CodeSLAM [3] optimises an

encoder-decoder setup to efficiently represent depth frames

as latent codes. These latent codes are optimised so that

pose information can be used to transform one latent code

to another. Most recently, [28] combined a photometric

loss with depth estimation and additionally used the inferred

depth for minimising the residual error of 3D iterative clos-

est point [15] loss. In our work, we similarly minimise a

closest point loss, though we minimise the direct closest

point errors between an internally modelled environment

and an incoming observation.

Sequence-based The importance of maintaining an inter-

nal representation of previously seen observations was ini-

tially explored in DeepVO [39] and VINet [6]. Both works

process sequential information by extracting features us-

ing a CNN, which are inputted to an LSTM [20] for fus-

ing past observations while regressing the relative pose be-

tween two consecutive frames. DeepTAM [42] reformu-

lated the Dense Tracking and Mapping (DTAM) approach

of [31] as a learning problem. Similar to DeepVO, Deep-

TAM regresses the pose directly and in addition, estimates

an expensive cost volume for mapping the environment. An

elegant extension to the above approaches by [5] exploits

bidirectional LSTMs for obtaining temporally smooth pose

estimates (however this bidirectional property introduces an

inference lag). Similarly, we maintain a consistent spatial

temporal representation of the environment, although our

short-term memory recall is more verbose and engineered

to have more explicit meaning of localising against previ-

ously seen observations.
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Figure 2: The proposed architecture of EMP-Net. Incoming observations are processed to extract point-embeddings and

localise against a short-term memory module. The memory module is updated with the new set of point-embeddings after

aligning them to the memory’s coordinate frame using the inferred pose.

Map-based Incorporating a more explicit map represen-

tation of an agents previously visited states was explored

by Reinforcement Learning based approaches [14, 33, 41]

where optimising towards a goal which forces an agent to

model the environment was found beneficial. Both Neural

SLAM [41] and Neural Map [33] have a fixed latent map

size, with a 2D top-down map representation. However,

both of these works only assess their models on synthetic

mazes and toy tasks. [14] extended upon this with the in-

troduction the Cognitive Mapper and Planner (CMP). CMP

integrated navigation into the pipeline and also changed the

global map representation to an egocentric latent map rep-

resentation. [19] focused on extending the mapping aspect

of [14] through the introduction of MapNet, which learns

a ground-projection allocentric latent map of the explored

environment. MapNet performs a brute-force localisation

process at every time step; by doing so, temporal informa-

tion is lost and irrelevant areas in the map are considered as

viable localisation options. In contrast, our work uses this

temporal information as a prior for localisation and updat-

ing the internal map.

3. Embedded Memory Points Network

In Fig. 2, a illustrative overview of our system is shown

and a brief descriptive summary of our method is provided

in the next subsection. Following this, we describe in more

detail each core step of our framework. For the remainder of

the paper, we use non-bold subscripts to represent matrices

or scalars (depending on the context, i.e. R), bold subscripts

to represent vectors (i.e. q) and indexing into both is done

using brackets (i.e. A[i, j] or q[i]). Additionally, we refer to

the central memory unit of our system, the Short-term Spa-

tial Memory Module (SSMM), as two components, denoted

as Mf and Mc which indicates the respective stored em-

beddings and their corresponding 3D points in the SSMM.

3.1. System Overview

An incoming RGB-D observation at time t, xt ∈
R

h×w×4 of height h and width w, is processed by a CNN

(Section 3.2) to produce the embeddings ht,f ∈ R
Nr×n.

Each embedding’s corresponding locations in egocentric

camera coordinates ht,c ∈ R
Nr×3 is obtained through pro-

jecting the depth information using the camera intrinsic ma-

trix K. ht,f and ht,c represent the collectively generated

point-embeddings. Nr is the number point-embeddings

generated and n indicates the number of embedding chan-

nels.

Computing pairwise distances between embeddings ht,f

and Mt−1,f ∈ R
Nrb×n, produces the distance map Dt,f ∈

R
Nrb×Nr (Section 3.3); with b denoting the buffer size of

M. The distance map Dt,f is converted into a Confidence

Map Lt,f ∈ R
Nrb×Nr by applying a column-wise softmax

operation and obtains the weight vector ωt ∈ R
Nr . This

allows the system to optimise for the relative pose Tt ∈
SE(3), between the downsampled point cloud ht,c and their

corresponding matches in Mt,c ∈ R
Nrb×3 in a weighted

least squares formulation (Section 3.4).

Finally, an update step is performed by populating

Mt−1,f with ht,f and transforming the downsampled point

cloud ht,c in egocentric coordinate frame to Mt−1,c’s co-

ordinate frame by applying the estimated pose Tt on ht,c

and populating Mt−1,c ∈ R
Nrb×3, resulting in an updated

Mt,f and Mt,c. For the rest of the paper, for reducing clut-

ter the time subscript t will be omitted unless specified oth-

erwise.

3.2. Extracting Point Embeddings

To extract point-embeddings from observations, we use

a CNN architecture which receives an RGB-D input x ∈
R

h×w×4 and produces a tensor x′ ∈ R
h′

×w′
×n where

h′ < h,w′ < w, and n is the channel length of each em-

bedding. At this stage, we need to associate an embedding
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in x′[i, j, .] with the 3D point it represents. This is accom-

plished in the following manner: first, the given depth map

D ∈ R
h×w is resized to D′ ∈ R

h′
×w′

such that it matches

the spatial dimensions of x′. In this case, a traditional bi-

linear downsampling approach was found to be sufficient.

Next, we compute the 3D location of each entry in D′[i, j]
in egocentric camera coordinates using the known camera

intrinsic matrix K and the downsampled depth map D′ as

shown below:

Pc[i, j, k] = D′[i, j]K−1
[

i, j, 1
]⊤

(1)

where Pc ∈ R
h′

×w′
×3. An entry in Pc[i, j, k] is a 3D point

in an egocentric camera coordinate frame corresponding to

the depth map entry D′[i, j]. Rearranging x′ ∈ R
h′

×w′
×n

to hf ∈ R
Nr×n with Nr = h′w′ and similarly Pc to

hc ∈ R
Nr×3 yields two initial inputs to the next component,

which localises both hf , hc against Mf ,Mc that contains

previously stored embeddings and 3D points in Mc’s coor-

dinate frame.

3.3. Short­term Spatial Memory Localisation

We require the output of the CNN, hf , to endow the

framework with embeddings that can coherently match an-

other set of point embeddings contained in Mf . For this,

we develop a loss function stemming from the ICP algo-

rithm [2]. Finding the relative pose between two sets of

point clouds requires finding the matching correspondences

between them. Typically, two key difficulties emerge from

this task: points not having any correspondences (due to

partial overlaps), and points having correspondences which

have more certainty than others. Here, we formulate the

optimisation problem to address both issues using a unified

weighting approach.

For an incoming observation x, we extract point-

embeddings hf in the manner described in Section 3.2. We

define the following operation as taking pairwise distances

between the embeddings Mf and hf :

Df [i, j] = dφ(Mf [i, .],hf [j, .]) (2)

Where Mf [i, .],hf [j, .] ∈ R
n are embedding row vectors,

Df ∈ R
Nrb×Nr is the pairwise distances matrix for the

embeddings and dφ is a distance metric on the embedding

space. Reformulating Df by applying the softmax opera-

tion yields:

Lf [i, j] =
e−Df [i,j]

∑Nrb

i′=1 e
−Df [i′,j]

(3)

Where Lf ∈ R
Nrb×Nr is the confidence matrix between

embeddings in Mf and hf . Note that a single column vec-

tor Lf [., j] is a confidence vector between the point hc[j, .]
and the entire set of points in Mc (Fig. 3 illustrates this

operation).

Short-term Spatial

Memory Module

Point 

Embeddings

Confidence Matrix

Figure 3: The confidence matrix is constructed by densely

computing a distance between embedded points of a current

observation and the stored embedded memory points in the

Short-term Spatial Memory Module. A darker colour indi-

cates a higher confidence value in the confidence matrix.

For optimising the confidence matrix Lf towards a

ground-truth confidence matrix Lgt, we define our loss

function as the cross-entropy loss:

lossc = −
1

Nr

Nr
∑

j=1

Nrb
∑

i=1

Lgt[i, j] logLf [i, j] (4)

The ground-truth confidence matrix Lgt ∈ R
Nrb×Nr is

computed using a procedure similar to the one outlined

above; more explicitly, we define Mgt ∈ R
Nrb×3 to

be a sequence of point clouds, aligned using the ground-

truth poses to a shared coordinate frame. For an incom-

ing ground-truth aligned point cloud hgt = Tgthc at time t

which follows point sequences stored in Mgt, the ground-

truth pairwise distances are computed as follows:

Dgt[i, j] = ‖Mgt[i, .]− hgt[j, .]‖2 (5)

Where Mgt[i, .],hgt[j, .] ∈ R
3 are row vectors. A prop-

erty of Dgt is that points which are close enough will have

a small distance value whilst points which do not have a

match (i.e. are in a non-overlapping region) will have a

large distance. This can be exploited in a way which will

amplify both matching and non-matching cases, where a

probability ‘1’ is assigned to matches and a ‘0’ to non-

matches. Similar to Eq. 3, we reformulate matrix Dgt:

Lgt[i, j] =
e−τDgt[i,j]

∑Nrb

i′=1 e
−τDgt[i′,j]

(6)

The temperature coefficient τ controls the amplification of

distance correspondences and is a hyper-parameter. Finally,
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we note the operations discussed in this section are naturally

parallelised and can be computed efficiently using modern

GPU architectures.

3.4. Best­fitting of Weighted Correspondences

In the previous sections, we formulated a loss which op-

timises the embeddings hf to follow the 3D closest point

criteria. This allows for the recovery of a matrix Lf , which

contains confidence values between a point in hc and Mc.

These confidence values represent weights that can be used

for applying a weighted best-fit algorithm. The weights are

obtained as follows:

ω[j] = max
i′

Lf [i
′, j] (7)

and respectively, the point index in Mc corresponding to

point hc[j, .]:

c[j] = argmax
i′

Lf [i
′, j] (8)

Where c ∈ R
Nr is the indexing vector for aligning the

correspondences in Mc to those in hc. The weights in

vector ω ∈ R
Nr are the respective confidences for those

matches. Computing the relative-pose between the point

cloud hc in egocentric coordinates and the points in Mc,

with its respective coordinate frame, can be estimated using

a weighted best-fit approach.

Weighted Best-fitting Given two sets of point clouds p ∈
R

M×3, their correspondences q ∈ R
M×3 and weight vector

ω ∈ R
M . The rigid-transform can be computed in a closed

form and is optimal in a weighted least-squares sense (proof

in [15]). Formally, we solve:

R, t = argmin
R∈SO(3),t∈R3

M
∑

ℓ=1

ω[ℓ] ‖q[ℓ, .]− (Rp[ℓ, .]− t)‖2

(9)

For obtaining R, t we initially compute:

p̄ =

∑M

ℓ=1 ω[ℓ]p[ℓ, .]
∑M

ℓ=1 ω[ℓ]
, q̄ =

∑M

ℓ=1 ω[ℓ]q[ℓ, .]
∑M

ℓ=1 ω[ℓ]
(10)

With p̄, q̄ ∈ R
3 being the weighted average centroids of p, q

respectively. By subtracting each weighted centroid from its

respective point cloud we get:

p̂[ℓ, .] = p[ℓ, .]− p̄, q̂[ℓ, .] = q[ℓ, .]− q̄ (11)

Finally, by defining Ω = diag(ω) and applying SVD de-

composition such that: UΣV ⊤ = p̂⊤Ωq̂ , the rotation ma-

trix R is computed as:

R = V diag(1, 1, det(V U⊤))U⊤ (12)

and the translation vector t:

t = q̄−Rp̄ (13)

By performing the weighted best-fit procedure outlined

above, we obtain the relative pose T between hc in egocen-

tric coordinate frame and Mc in its respective coordinate

frame. In the last step of our framework, hc is transformed

using the estimated pose yielding h
′

c = Th⊤
c , where

populating Mc with h
′

c and Mf with hf need not be in a

particular order, as both are unstructured.

A straight-forward extension to this approach is impos-

ing pose regularisation on the loss developed in Section 3.3.

This is achieved through projecting Mc onto the confidence

matrix Lf :

M̄c = L⊤
f Mc (14)

with M̄c ∈ R
Nr×3 being the correspondences of hc. The

best-fit approach (without weights ω) from Eq. 9 is applied

to obtain the rotation matrix R and translation vector t. This

alternative formulation also makes our method fully dif-

ferentiable. Finally, we modify the loss given in Eq. 4 by

adding two regularisation terms:

Loss = lossc + λRlossR + λtlosst (15)

both lossR and losst are formulated as in [23]. In summary,

both approaches formulated differ by how the confidence

matrix Lf is used to compute the pose (Eq. 4 and Eq. 15).

4. Experiments

To compare our models qualitatively and quantitatively,

we perform experiments on two challenging benchmarks: a

synthetic environment (VIZDoom [22]) and a real world in-

door environment (Active Vision Dataset [1]). We evaluate

two variants of our model: EMP-Net which optimises Eq. 4

and EMP-Net-Pose which optimises Eq. 15. For the Doom

dataset, we compared our framework against DeepVO [39]

and MapNet [19], both which maintain an internal repre-

sentation of previously seen observations. Additionally,

we compared our models against a recent state-of-the-art

frame-to-frame approach ENG [11]. For the AVD dataset,

we also compare with a mature classic SLAM baseline, an

RGB-D implementation of ORB-SLAM2 [29].

Network Architecture For extracting feature embed-

dings, we employ a U-Net architecture [35]. We initialised

our network weights using the initialisation scheme detailed

in [17]. The U-Net uses an encoder-decoder setup where

the encoder consists of three encoder blocks separated by

max pooling layers and the decoder consists of two decoder

blocks. Each block in the encoder consists of two sequences
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of convolution layers comprising of 3 × 3 filters, followed

by Batch Normalisation [21] and ReLU Activation [30].

Each block in the decoder consists of a transposed convo-

lution layer followed by Batch Normalisation [21], ReLU

Activation [30] followed by a convolution layer. The trans-

posed convolution layer upsamples the input using a stride

2 deconvolution, the output of which is concatenated to its

matching output from the encoder block.

Training Settings For both synthetic and real experi-

ments, our EMP-Net model is trained with a batch size

of 16, where every instance within a batch is a sequence

of 5 consecutive frames resized to 120 × 160. The RGB

and depth data were scaled to between [0, 1]. The buffer

size of the SSMM is b = 4 and the number of extracted

point-embeddings is Nr = 4800. The temperature param-

eter was tested with values between τ = [103, 106], where

we found the model to be fairly invariant to this value. In

all of the experiments shown τ = 105. The embedding dis-

tance function is defined as the L2 distance, dφ = ‖a− b‖2.

λt = 0.02 and λR = 5 are chosen to maintain the same ra-

tio as in [23]. We use the ADAM optimiser [24], using the

default first and second moment terms of 0.9 and 0.999 val-

ues respectively. We use a learning rate of 10−3 and train

for 10 epochs.

Error Metrics Across both datasets, we quantitatively

benchmark against baselines using two error metrics. We

measure the Average Position Error (APE), which denotes

the average Euclidean distance between predicted position

of the agent and a corresponding ground-truth position. Ad-

ditionally, we inspect the Average Trajectory Error (ATE)

which describes the minimum RMS error in position be-

tween a translated and rotated predicted trajectory w.r.t a

ground-truth trajectory. Thus, for longer sequences the APE

will naturally be worse as it does not correct for drifts occur-

ring over time. Similar to [19], we measure both short-term

APE over 5 observation frames (APE-5) as well as long

term APE (APE-50) and ATE (ATE-50) over 50 observa-

tion frames.

4.1. Synthetic 3D Data

We used VIZDoom to record human players performing

4 speed-runs of the game with in-game sprites and enemies

turned off. Despite VIZDoom being a synthetic environ-

ment it provides rich and complex visual scenarios that em-

ulate the difficulties encountered in real world settings. The

captured recordings include RGB-D and camera pose data,

which correspond to 120k sequences. Training sequences

are composed of 5 frames, sampled every second frame of

recorded video. For testing, we randomly select sequences

of 50 consecutive frames and remove those from the train-

ing set construction.

0 10 20 30 40 50

Frame in sequence

0

50

100

150

200

250

300

A
P
E

DeepVO

MapNet

ENG

EMP-Net

EMP-Net+Pose

Figure 4: Average Positional Error (APE) over different se-

quence lengths (5-50 frames) on the Doom dataset

Doom data [22] APE-5 APE-50 ATE-50

DeepVO [39] 19.56 277.4 111

MapNet [19] 21.98 206.6 76

ENG [11] 23.71 225.9 105

EMP-Net (Ours) 10.10 168.3 68

EMP-Net-Pose (Ours) 10.45 160.9 59

Table 1: Average Position Error (APE) and Absolute Tra-

jectory Error (ATE) on VIZDoom dataset.

Quantitative Results We measure APE across the test se-

quences on all the above mentioned models (Fig. 4). In-

creasing the sequence length beyond a sequence length of 5

examines its ability to generalise beyond the length of the

training sequences. Both DeepVO [39] and ENG [11] lack

an internal map representation to localise against and sim-

ilarly both methods suffer from a larger accumulated drift

towards the end of the sequence. MapNet [19] fairs bet-

ter, although suffers from inaccuracies due to cell quanti-

sation and false pose modalities which appear over longer

periods of time. We note that both our non-regularised and

regularised methods (EMP-Net and EMP-Net-Pose) signif-

icantly outperform the compared baselines across all se-

quence lengths. The two variants are similar in their per-

formance, with a marginal improvement that is gained by

the additional pose regularisation. This minor improvement

is explained from the nature of the data. VIZDoom provides

noiseless depth and pose information which correspond per-

fectly to each other, as both are obtained directly from the

game engine. In other words, the provided ground-truth

labels for regressing the confidence matrix contain all the

necessary information regarding the pose. In Table 1, we

show the APE across observation sequences of 5 frames and

50 frames, as well as the ATE across a 50 observation se-

quence.
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Observations corresponding to fixed memory

(a)

Low confidence High confidence

Observations at varying camera displacements

(b)

Figure 5: Qualitative results of Section 4.2. (a): Observa-

tions corresponding to the embedded memory points stored

in EMP-Net’s memory module. (b): Incoming observations

which are processed and localised against the stored em-

bedded memory. For distinguishable landmarks (i.e. stairs

and corridor entrance) confidence values are higher. In later

frames, areas that are not visible in the past observations are

correctly receiving near zero confidence.

4.2. Confidence Matrix Interpretation

In this section, we provide additional insight about the

inferred confidence matrix in EMP-Net. We run an exper-

iment which allows the system to process test sequences

and store point-embeddings up to the size of the buffer

(i.e four observation frames). Beyond this point, we dis-

continue storing point embeddings but continue to process

the sequence by localising against the existing embeddings

within the SSMM. This allows for simulation of large cam-

era motions and assesses the robustness of the estimated

confidence matrix across increasingly larger camera mo-

tions. The top figure in Fig. 6 shows the APE of EMP-Net

as the camera baseline grows. For reference, we plot the

APE for a standard ICP [15] point-to-point implementation.

Note that while the APE value increases as we shift further

away from the baseline, EMP-Net is demonstrably more ro-
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Figure 6: Top: APE measured over increasing camera base-

lines on the Doom dataset. For reference we compare to

traditional ICP algorithm [15]. Bottom: Percentage of low

confidence matches over increasing baselines. In this case,

low confidence indicates a confidence of less than 0.05. As

the baseline increases, the agent becomes increasingly less

confident.

bust to larger shifts in the camera baseline. The reduced

performance on APE correlates with lower confidence of

the system as evidenced by the bottom figure in Fig. 6.

In Fig. 5b, we show confidence heat maps along with

their corresponding observation frames computed against a

fixed memory from observations in Fig. 5a. These confi-

dence heat maps are obtained by reshaping the confidence

weight vector ω to the size of the downsampled observation

frame (60×80). Note that higher confidence is assigned to-

wards landmarks with distinguishable features (e.g. stairs,

corridor entrance, etc.), whilst lower confidence is assigned

to low texture landmarks (e.g. walls and floor). For frames

with little overlap, the system assigns high confidence to

landmarks that it is able to locate in its memory buffer (i.e.

visible in “fixed memory” frames). At times, these confi-

dences may be overestimated due to a lack of better corre-

spondences from its memory.

4.3. Real World Data

For our real world data experiments, we use the Active

Vision Dataset (AVD) [1]. This dataset consists of RGB-

D images across 19 indoor scenes. Images are captured by

a robotic platform which traverses a 2D grid with transla-

tion steps size of 30cm and 30◦ in rotation. For generat-

ing robot navigation trajectories, the captured images can

be arbitrarily combined. Similar to [19], for training, we

sampled 200,000 random trajectories, each consisting of 5
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Figure 7: Inspecting the point embedding values provides insight of the underlying operation of EMP-Net. Left: The ground-

truth alignment of a sequence of 5 frames. Right: The corresponding downsampled point cloud in the SSMM. The colors

define cluster centers of the embeddings. We observe a mixture of spatial and semantic segmentation that is learned without

explicit supervision.

frames, where the trajectory was chosen using the shortest

path between 2 randomly selected locations from 18 out of

the 19 provided scenes. For testing, we sampled 50 random

trajectories, each consisting of 50 frames, where the trajec-

tory was chosen from the unseen test scene.

Quantitative and Qualitative Results We measure APE

across the test sequences and show results in Fig. 8. Once

again, we increase the sequence length for testing to se-

quences beyond 5 observation frames to evaluate the abil-

ity to generalise beyond training sequence length. Both the

non-regularised and regularised methods of EMP-Net sig-

nificantly outperform the compared baselines across all se-

quence lengths. In this case, unlike the VIZDoom environ-

ment, the use of real world data is accompanied with noisy

sensory measurements. Consequently, EMP-Net-Pose is

observably more robust than its non-regularised version. In

Table 2, we show the APE across observation sequences of

5 frames and 50 frames, as well as the ATE across a 50 ob-

servation sequence for the test AVD dataset.

In Fig. 7 we provide additional insight on interpreting the

information contained in the learned embeddings of EMP-

Net. A snapshot of the SSMM can be seen in Fig. 7 (Right),

where we show a downsampled point cloud stored in the

SSMM with the inferred aligning. Each point in the SSMM

has a corresponding embedding vector. The colour assigned

to each point is a cluster centroid colour code that was ob-

tained by performing a k-means clustering over the embed-

dings. A mixture of spatial and semantic segmentation can

be observed. For reference, Fig. 7 (Left) is the ground-truth

alignment of the point clouds obtained at the original reso-

lution with their corresponding RGB values. For additional

qualitative results on the AVD dataset, please refer to our

supplementary video material.

5. Future Work

In future work, we look towards extending EMP-Net to

larger navigation problems by addressing the linear com-
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Figure 8: Average Positonal Error (APE) over different se-

quence lengths (5-50 frames) on the Active Vision Dataset

AVD data [1] APE-5 APE-50 ATE-50

ORB-SLAM2 (RGB-D) [29] 432 3090 794

DeepVO [39] 220.0 1690 741

MapNet [19] 312.3 1680 601

ENG [11] 234.3 1582 757

EMP-Net (Ours) 181.6 1201 381

EMP-Net-Pose (Ours) 171.8 1150 360

Table 2: Average Position Error (APE) and Absolute Tra-

jectory Error (ATE) on the Active Vision Dataset.

plexity growth of computing the correspondence matrix (i.e.

large buffer sizes). Extensions worth pursuing for reduc-

ing this complexity are non-dense methods for generating

correspondences by using approximate nearest neighbour

search like methods or formulating the vocabulary tree [32]

so it can be integrated within modern deep learning frame-

works.
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Košecká, and Alexander C Berg. A dataset for develop-

ing and benchmarking active vision. In 2017 IEEE Inter-

national Conference on Robotics and Automation (ICRA),

pages 1378–1385. IEEE, 2017. 5, 7, 8

[2] K Somani Arun, Thomas S Huang, and Steven D Blostein.

Least-squares fitting of two 3-d point sets. IEEE Transac-

tions on pattern analysis and machine intelligence, (5):698–

700, 1987. 4

[3] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan

Leutenegger, and Andrew J Davison. Codeslamlearning a

compact, optimisable representation for dense visual slam.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2560–2568, 2018. 2

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2018. 1

[5] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni,

and Hongkai Wen. Vidloc: A deep spatio-temporal model

for 6-dof video-clip relocalization. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 6856–6864, 2017. 2

[6] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham,

and Niki Trigoni. Vinet: Visual-inertial odometry as a

sequence-to-sequence learning problem. In Thirty-First

AAAI Conference on Artificial Intelligence, 2017. 2

[7] Peter I Corke. Visual control of robot manipulators–a review.

In Visual Servoing: Real-Time Control of Robot Manipula-

tors Based on Visual Sensory Feedback, pages 1–31. World

Scientific, 1993. 1

[8] Gabriele Costante, Michele Mancini, Paolo Valigi, and

Thomas A Ciarfuglia. Exploring representation learning

with cnns for frame-to-frame ego-motion estimation. IEEE

robotics and automation letters, 1(1):18–25, 2016. 2

[9] Andrew J Davison. Real-time simultaneous localisation and

mapping with a single camera. In null, page 1403. IEEE,

2003. 1, 2

[10] Andrew J Davison, Ian D Reid, Nicholas D Molton, and

Olivier Stasse. Monoslam: Real-time single camera slam.

IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, (6):1052–1067, 2007. 1

[11] Thanuja Dharmasiri, Andrew Spek, and Tom Drummond.

Eng: End-to-end neural geometry for robust depth and pose

estimation using cnns. arXiv preprint arXiv:1807.05705,

2018. 2, 5, 6, 8

[12] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in neural information processing systems,

pages 2366–2374, 2014. 1

[13] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 1

[14] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and plan-

ning for visual navigation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2616–2625, 2017. 1, 2, 3

[15] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge university press,

2003. 2, 5, 7

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 1

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015. 5

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1

[19] Joao F Henriques and Andrea Vedaldi. Mapnet: An allocen-

tric spatial memory for mapping environments. In proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 8476–8484, 2018. 1, 3, 5, 6, 7, 8

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 2

[21] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 6

[22] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub
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