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Abstract

Adversarial perturbations of clean images are usually

imperceptible for human eyes, but can confidently fool deep

neural networks (DNNs) to make incorrect predictions.

Such vulnerability of DNNs raises serious security con-

cerns about their practicability in security-sensitive appli-

cations. To defend against such adversarial perturbations,

recently developed PixelDefend purifies a perturbed image

based on PixelCNN in a raster scan order (row/column by

row/column). However, such scan mode insufficiently ex-

ploits the correlations between pixels, which further limits

its robustness performance. Therefore, we propose a more

advanced Hilbert curve scan order to model the pixel de-

pendencies in this paper. Hilbert curve could well preserve

local consistency when mapping from 2-D image to 1-D

vector, thus the local features in neighboring pixels can be

more effectively modeled. Moreover, the defensive power

can be further improved via ensembles of Hilbert curve with

different orientations. Experimental results demonstrate the

superiority of our method over the state-of-the-art defenses

against various adversarial attacks.

1. Introduction

Recent work has shown that the input images with small

and carefully designed perturbations (a.k.a., adversarial ex-

amples) can cause deep neural network classifier to produce

confidently wrong predictions [28, 8]. Since the differences

between adversarial examples and corresponding clean im-

ages are usually imperceptible, the existence of DNN vul-

nerability to such adversarial examples exposes a serious

concern about their great popularity and widespread appli-

cations [9, 6, 17]. Thus, it is highly demanded to defend

against such adversarial examples.

∗Equal contribution.
†Correspondence to: Yisen Wang and Yong Jiang.

(a) Raster scan (b) Hilbert scan

Figure 1: The scan order of (a) Raster scan (row by row and

column by column), and (b) Hilbert scan.
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(a) PixelDefend (Raster scan)
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(b) PixelDefend (Hilbert scan)

Figure 2: The defend performance of PixelDefend with (a)

Raster scan, and (b) Hilbert scan. The top images are ad-

versarial example while the bottom images are heatmaps

of the purified images by PixelDefend. The Hilbert-based

method classifies the ”truck” adversarial example correctly

while Raster-based one fails to do that.

There already exist some works to defend against ad-

versarial examples, including pre-processing the inputs

[10], gradient regularization [22], and adversarial training

[18, 31]. Among them, pre-processing the inputs directly

may be more practical due to its model- and attack-annostic

property, such as Defense-GAN [25], PixelDefend [27] and
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other traditional image transformation methods [5, 10]. Pix-

elDefend and Defense-GAN are similarly based on genera-

tive models to purify the input images. The differences are

that the former focuses on low-level (pixel-level) explicit

density while the latter focuses on high-level implicit den-

sity. As the perturbations are often restricted by Lp norm,

pixel-level method implies much more potential to be an

effective defense, which is the main focus in this paper.

Although PixelDefend has obtained impressive perfor-

mance, there still exist some drawbacks. For example, the

pixel dependencies have not been fully exploited, since the

core of PixelDefend is PixelCNN [30, 24] which exploits

pixel dependencies in a raster scan order (Figure 1a, row by

row or column by column). However, raster scan cannot al-

ways preserve local consistency, thus failing to model local

features well. For example, the pixel (4) and pixel (5) in

Figure 1a are nearby pixels in raster curve, but are far away

in spatial domain.

In order to better model pixel dependencies and preserve

local consistency, we propose a Hilbert-based PixelDefend

(HPD) by scanning pixels along Hilbert curves [33, 12].

Compared with the raster scan, Hilbert scan has the property

of spatial proximity, i.e., two close pixels in 1-D domain are

also close in 2-D domain, which improves the characteri-

zation of mutual dependency between pixels. The spatial

proximity also performs better in modeling the local fea-

tures of an image. As a preview of this, we compare the

defense results of PixelDefend with different pixel scan or-

der in Figure 2, which demonstrates Hilbert-based PixelDe-

fend can better keep the local features and find the right

active area in a heatmap [34], thus getting the correct clas-

sification distribution. Moreover, Hilbert scan can exploit

self similarity, i.e., each quadrant can be divided into small

quadrants similar to itself. The self similarity can be used

to develop a natural ensemble model with various Hilbert

orientations, further boosting the defense performance. The

main contributions are summarized as follows:

• We propose to use Hilbert scan in place of traditional

raster scan to model the pixel dependencies for better

utilizing local features.

• We propose a Hilbert-based Generative Defense,

named Hilbert-based PixelDefend (HPD), against ad-

versarial examples via purifying the input images.

Moreover, we explore a natural model ensemble

through various Hilbert orientations.

• Experimental results show that HPD obtains consis-

tently better performance than the original PixelDe-

fend. Besides, our ensemble version achieves ro-

bustness gain from 0.15 to 0.52 on CIFAR-10 with

ResNet50 attacked by Obfuscated Gradient attack [2].

2. Related Work

In this section, we make a brief review on several com-

mon adversarial attacks and defense.

2.1. Adversarial Attack

Given a normal example X , ǫ ball around X limits the

perturbation strength of adversarial example X ′. The sym-

bol ℓ represents a loss function, F is the output from soft-

max layer, Z is the output from logit layer, and T is the

target label (if targeted attack, else T is the original label).

A wide range of attacking methods have been proposed for

the crafting of adversarial examples.

Fast Gradient Sign Method (FGSM) [9]. FGSM gener-

ates adversarial examples by linearly approximating a neu-

ral network model and maximizing the loss along the gradi-

ent direction:

X
′

= X + ǫ · sign(∇ℓF,T (X)) . (1)

Projected Gradient Descent (PGD) [13]. PGD is a multi-

step attack. It replaces ǫ with α to take a small step in each

iteration. After each step, PGD projects the adversarial ex-

ample back onto the ǫ-ball:

X
′

i = X
′

i−1 + clipǫ(α ∗ sign(∇ℓF,T (X
′

i−1))) . (2)

C&W [4]. Carlini and Wagner proposed an optimization

based attack. Assuming κ as the confidence of one classifi-

cation result, c as a hyperparameter, and Z(X)i as the logit

output of X labeling to i, C&W tries to minimize:

‖X ′ −X‖
∞

+ c · f (X ′) with (3)

f (X ′) = max(max {Z(X ′)i : i 6= T} − Z(X ′)T ,−κ) .

Obfuscated Gradient [2]. Obfuscated Gradient method

attacks defense methods by Backward Pass Differentiable

Approximation (BPDA) when gradients are not available.

It has been shown to successfully break many defense mod-

els including PixelDefend.

2.2. Adversarial Defense

A number of defense models have been developed in-

cluding defensive distillation [23], adversarial training [18],

dynamic adversarial training [31], feature squeezing [15],

Defense-GAN [25] and so on.

Adversarial Training [18]. Adversarial Training is pro-

posed to retrain a network with adversarial examples. It per-

forms well in defending overfitting adversarial examples,

but cannot defend adversarial examples caused by the lin-

earity of networks. Ensemble one [29] can get better results

with adversarial examples generated by different attacks.

Feature Squeezing [15]. Feature Squeezing detects adver-

sarial examples by comparing classification results of origi-

nal images and squeezed images. The squeezed images are
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generated by reducing the color bit depth of each pixel and

performing spatial smoothing later. If a large difference is

found between the classification results, the image is con-

sidered to be adversarial.

Defense-GAN [25]. Defense-GAN is based on WGAN

[1, 7] and the loss function follows WGAN’s loss design.

The classifier is trained on the same real data set. If the

GAN is well trained and can represent the original data dis-

tribution, there should be no significant difference between

the original image and their reconstruction. Defense-GAN

attempts to remove noises from the perturbed inputs and

thus defends against any form of attack.

3. The Proposed Generative Defense

3.1. Preliminary

PixelDefend purifies an image based on PixelCNN (Pix-

elRNN) [30, 24] whose core idea is a chain rule to decom-

pose the likelihood of an image X with size n×n into prod-

uct of a 1-D sequence following raster scan order. The joint

distribution p(X) is denoted as the product of conditional

distributions over pixels:

p(X) =

n2∏

i=1

p(xi | x1, ..., xi−1) . (4)

The purifying process is repeated from the first pixel to the

last pixel according to the 1-D sequence, i.e., from the top

left corner to the bottom right corner by raster scan.

Despite that PixelDefend shows great potential in de-

fense by purifying adversarial examples, the dependency

among pixels is modeled in conditional probability accord-

ing to raster scan order. As closer pixels in 2-D domain

are more likely to contain related information and local fea-

tures, they are expected to be closer in 1-D. So scan order is

important when mapping pixels from 2-D to 1-D.

3.2. Strengths of Hilbert Scan

Different from the common row by row and column by

column manner of raster scan, Hilbert scan generates 1-D

sequence along Hilbert curves [19] that can be constructed

as Figure 3. We have compared several space filling curves

including Raster-order, Z-order and Hilbert-order in Figure

4, we can see that Hilbert curves and their approximations

are more likely to cluster pixels. Cluster is defined as a

group of pixels consecutively connected by a mapping (or

a curve), which is supposed to keep local features [20]. As

shown in Figure 4, in the same chosen area, Raster-order

has 3 clusters, Z-order has 2 clusters, while Hilbert-order

has 1 cluster. Naturally nearby pixels clustered together

help to keep local features. To illustrate this, we present

the image generation process of PixelCNN using different

scan methods in Figure 5. Raster scan make PixelCNN gen-

erate the image in a row by row manner (Figure 5a), while

(a) Start (b) 1 iteration (c) 2 iterations

Figure 3: The construction of Hilbert curves.

(a) Raster Scan (b) Z Scan (c) Hilbert Scan

Figure 4: The comparison of space filling curves. In the

same chosen area, Raster-order has 3 clusters, Z-order has

2 clusters, while Hilbert-order has 1 cluster, implying local

features are kept better in Hilbert-order.

Hilbert scan make PixelCNN generate the image in a block

by block way (Figure 5b) because pixels are well clustered

by Hilbert scan. The block by block generation mode is

more likely to extract the local features of an image, which

helps a lot in classification and defense.

In addition, the construction of Hilbert curves in Figure

3 implies its another good property, that is self similarity

(a self-similar object is exactly or approximately similar to

a part of itself). In other words, each quadrant can be di-

vided to small quadrants in the same way and scanned by

the U-shape curve. The self similarity property of Hilbert

curves indicates that itself owns a certain of intrinsic diver-

sity, which are naturally useful for the Hilbert scan based

ensemble defense.

Hilbert scan also shows great superiority in the pixel de-

pendencies due to its spatial proximity. The ratios of pixel

pairs’ 2-D distances over 1-D distances by raster scan and

Hilbert scan are compared in Figure 6. As can be seen,

Hilbert scan better keeps local consistency of 2-D and 1-D

domain on images with different sizes, as the ratios are con-

sistently flat and small. We also find the neighboring pixels

are more related in Hilbert 1-D sequence, which is shown

in Figure 7. Neighboring pixel pairs from Hilbert curve are

more related as the curve is more close to y = x.

From above observations, we can conclude that better

modeling of the pixel dependencies helps to learn local fea-

tures. While local features are of great importance in clas-

sification task [3]. Existing defense methods using SIFT

[16] and other transformations also show that keeping local

features is essential in adversarial defense [32]. Therefore,

Hilbert scan could be a promising and effective method in
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(a) Images generated by PixelCNN in Raster order

(b) Images generated by PixelCNN in Hilbert order

Figure 5: The images generated by PixelCNN in (a) Raster

order and (b) Hilbert order. These two series of images

clearly show the different generation order in pixels, i.e.,

row by row in (a) and block by block in (b).
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Figure 6: The ratios of 2-D and 1-D distances by Hilbert

scan (blue line) and Raster scan (green line). x-axis is the

order of Hilbert curve, as 2n is the width of a square image.

y-axis is the average ratios of pixel pairs’ 2-D distances over

1-D. Smaller y value means the 1-D sequence can better

describe the actual distances of 2-D.

place of raster scan in adversarial defense community.

3.3. Hilbertbased PixelDefend (HPD)

Based on the above analysis, we propose Hilbert-based

PixelDefend by applying Hilbert scan to PixelDefend.

Hilbert-based PixelDefend purifies pixels along the Hilbert

curve based on the Hilbert-based PixelCNN, which re-

aligns image pixels and models pixel dependencies using

Hilbert scan. The pseudo code of our proposed Hilbert-

based PixelDefend (HPD) approach is shown in Algorithm

1.

Moreover, we provide a theoretical guarantee on the pos-
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(a) Raster scan
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(b) Hilbert scan

Figure 7: The neighboring pixel values’ dependencies of

Raster scan and Hilbert scan. x-axis represents the former

pixel value and y-axis represents the present pixel value in

1-D curve. Neighboring pixel pairs by Hilbert scan show

stronger correlation.

Algorithm 1 Hilbert-based PixelDefend (HPD).

Input: X
′

: Adversarial Example; ǫdefend: Defense pa-

rameter; HPixelCNN: Pre-trained Hilbert-based PixelCNN

model.

Output: Xpurified: Purified image

1: Realign an image into Hilbert-ordered.

X
′

Hilbert ⇐ Hilbert scan(X
′

)

2: For each pixel value (row i, column j, channel k).

x ⇐ X
′

Hilbert[i, j, k]

3: Set defense range.

R ⇐ [x− ǫdefend, x+ ǫdefend]

4: Compute the 256-way softmax HPixelCNN (X
′

Hilbert)

5: Update

XHilbert[i, j, k] ⇐ argmaxz∈RHPixelCNN[i, j, k, z]

6: Realign XHilbert into originally ordered 2-D image.

Xpurified ⇐ ReHilbert scan(XHilbert)

7: return Xpurified

sibility of finding the optimal clean image around perturbed

one for our method.

Theorem 1. The optimal clean image could be found by the

proposed greedy search algorithm iff the first pixel is accu-

rate (x̂1 = µ1). Given the perturbation constrain ǫattack,

then |x̂1 − µ1| ≤ ǫattack. The clean image could be found

with the probability of at least 1
2ǫattack

.

Proof. Assume input image X = (x1, x2, · · · , xn2) ∼
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N(µ,Σ) and denote Σi(i = 1, 2, · · · , n2 − 1) as the i-
th order principal minor determinant of Σ, X̂ as the optimal

estimation of purified image obtained by greedy search al-

gorithm, and Xopt as the corresponding clean image (Xopt =

argmax p(X) = (µ1, µ2, · · · , µn2)). According to the prop-

erty of multivariate Gaussian distribution, if |x̂1 − µ1| = 0,

we have

x̂2 = argmax p(x2|x̂1)

= µ2 + k̃1Σ
−1
1 x̃T

1

= µ2 + cov(x2, x1)cov(x1, x1)
−1(x̂1 − µ1)

= µ2.
· · ·

x̂n2 = argmax p(xn2 |x̂1, · · · , x̂n2−1)

= µn2 + k̃n2−1Σ
−1
n2−1x̃

T
n2−1

= µn2 + k̃n2−1Σ
−1
n2−1[x̂1 − µ1, · · · , x̂n2−1 − µn2−1]

T

= µn2−1,

where k̃i−1 = [cov(xi, x1), · · · , cov(xi, xi−1)], x̃i−1 =
[x̂1−µ1, · · · , x̂i−1−µi−1], i = 1, 2, · · · , n2−1. Therefore,

X̂ = [µ1, µ2, · · · , µn2 ] = Xopt

3.4. Ensemble Hilbertbased PixelDefend (EHPD)

Apart from the spatial proximity to improve defense per-

formance, Hilbert curve has another good property of self

similarity, as shown in Figure 3. Self-similarity means that

each local component of an image is similar to the global

one. Naturally it can be considered as one kind of data aug-

mentation. Hilbert scan follows such a self-similar pattern

with different scan orientations, and is more suitable for en-

sembling than raster scan.

Figure 8: The ensemble Hilbert curves.

There are 4 typical kinds of 1-D sequences generated by

rotating the original image before Hilbert scan. While an-

other 4 are generated by inverting the original image before

rotating and scanning, as is shown in the bottom row of Fig-

ure 8. Differently ordered 1-D sequences can provide dif-

ferent former pixels information which brings a certain of

diversity, thus it is reasonable to gain better defense results,

especially when defending against Obfuscated Gradient at-

tack, which is claimed to break many defense models effec-

tively. In fact, HPD can be regarded as a specific case of

EHPD, where it only uses one Hilbert curve. The pseudo

code of our proposed Ensemble Hilbert-based PixelDefend

(EHPD) approach is shown in Algorithm 2.

Algorithm 2 Ensemble Hilbert-based PixelDefend

(EHPD).

Input: X
′

: Adversarial Example

Output: Xfinal: Purified image

1: Realign the image along the predefined Hilbert curves

in Figure 8 into 8 independent Hilbert-ordered images.

Xi
Hilbert ⇐ Hilbert scani(X

′

), i ∈ [1, 8]

2: Purify each of them with the proposed HPD in Algo-

rithm 1.

Xi
purified ⇐ HPD(Xi

Hilbert)

3: For each purified images, predict its one-hot classifica-

tion with pre-trained CNN , N represents the number

of classes.

Yi[1, ..., N ] ⇐ CNN(Xi
purified)

4: Assign ensembled prediction Yensemble with the class

that has the highest frequency in Yi.

Yensemble ⇐ argmaxc∈[1,N ](
∑

i∈[1,8]

Yi[1, ..., N ])

5: Choose the purified image whose prediction is closest

to Yensemble.

idx ⇐ argmax(cross entropy(Yi, Yensemble))

Xfinal ⇐ Xidx
purified

6: return Xfinal

4. Experiments

In this section, we evaluate the robustness of our pro-

posed methods, HPD and EHPD, compared with several

state-of-the-art defense models against white-box attacks

and black-box attacks. The former white-box attack has the

complete knowledge of the target model and full access of

the model parameters, while the latter black-box attack can

only query the model to get outputs and have no access to

model parameters.

Baselines. The baseline defense models we use include

1) Adversarial Training (AT): Training with various adver-
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Table 1: White-box robustness of different defense methods

on ResNet50 (attack strengths ǫ=2/8/16, defense strength

ǫdefend=16, with pixel values clipped in [0,255]).

CLEAN FGSM PGD CW

ǫ=2

Normal ResNet 0.90 0.32 0.07 0.04

AT [18] 0.88 0.79 0.73 0.76

FS [15] 0.90 0.84 0.81 0.04

DG [25] 0.51 0.52 0.49 0.47

PD [27] 0.90 0.82 0.82 0.82

HPD 0.90 0.84 0.82 0.86

ǫ=8

Normal ResNet 0.90 0.14 0.00 0.00

AT [18] 0.88 0.51 0.29 0.39

FS [15] 0.90 0.49 0.51 0.00

DG [25] 0.51 0.47 0.47 0.50

PD [27] 0.90 0.79 0.73 0.82

HPD 0.90 0.78 0.75 0.86

ǫ=16

Normal ResNet 0.90 0.08 0.00 0.00

AT [18] 0.88 0.34 0.06 0.09

FS [15] 0.90 0.26 0.34 0.00

DG [25] 0.51 0.46 0.44 0.50

PD [27] 0.90 0.53 0.56 0.82

HPD 0.90 0.60 0.64 0.86

sarial examples generated by different attack methods; 2)

Feature Squeezing (FS): using the traditional image pro-

cessing to restore important features of a perturbed image;

3) Defense-GAN (DG): using GAN to restore an adversar-

ial example; and 4) PixelDefend (PD): using another gener-

ative model PixelCNN to purify an adversarial example.

Defense Settings. For CIFAR-10, our proposed defense

methods, HPD and EHPD, are set with defense parameter

ǫ=16 (pixel values clipped in [0,255] as default), as well as

PixelDefend. Evaluated by test negative log-likelihood, the

PixelCNN models are trained to 3.4 bit/dim in our Hilbert-

based PixelCNN and 2.92 bit/dim in PixelCNN from pre-

trained OpenAI PixelCNN++ [24].

For the attack methods, FGSM, PGD, and C&W (L∞)

are all set with ǫ=2/8/16. PGD is set with step size 1 and

max attack steps 3/10/20. C&W is set with step size 1.275

and max attack epoch 100, hyperparameter c = 100. Ob-

fuscated Gradient attack is set with maximum attack epoch

20 and step size 0.5. For the defense methods, adversarial

training is retrained with adversarial examples generated by

PGD attack with ǫ=8 and maximum attack step 10. Feature

squeezing is set with color depth reduction as 25. Defense-

GAN is trained with 30000 iterations and batch size 32.

Table 2: Test accuracies of PD, HPD and EHPD against

PGD. HiPD represents using the ith curve among all 8

different hilbert curves when generating purified images.

EHPD8 represents ensembling 8 different curves.

CLEAN PGD(ǫ=2) PGD(ǫ=8) PGD(ǫ=16)

PD 0.90 0.82 0.73 0.56

EPD8 0.90 0.82 0.74 0.59

H0PD 0.90 0.82 0.75 0.64

H1PD 0.90 0.83 0.76 0.64

H2PD 0.90 0.82 0.75 0.64

H3PD 0.90 0.82 0.76 0.65

H4PD 0.90 0.83 0.75 0.65

H5PD 0.90 0.82 0.75 0.64

H6PD 0.90 0.82 0.75 0.64

H7PD 0.90 0.82 0.75 0.64

EHPD8 0.90 0.82 0.77 0.66

4.1. Whitebox Robustness Evaluation

We test the white-box robustness on CIFAR-10 with

ResNet50 [11]. The results are shown in Table 1. We can

see that accuracies on normal networks decrease sharply un-

der white-box attacks, especially with larger perturbations.

Networks with defense methods demonstrate more robust

results. The proposed HPD almost achieves the best robust-

ness among all the defense methods. The effectiveness of

feature squeezing defense provides a strong evidence that

local features are important in adversarial defense. It is thus

reasonable that Hilbert-based PixelDefend achieves better

defense performance, as Hilbert scan has spatial proxim-

ity and keep the local features better. As ǫ grows larger,

the defense superiority of HPD becomes more and more

significant, for example, the robustness against PGD with

ǫ=16 is promoted from 0.56 to 0.64 compared with PD.

When compared with other methods, the improvements are

larger. These improvements imply that HPD still can model

pixel dependencies and keep local features well, and shows

a strong defensive ability, even images are perturbed by a

large extent.

Moreover, we compare Ensemble PixelDefend and En-

semble Hilbert-based PixelDefend with 8 curves, named by

EPD8 and EHPD8. The underlying number represents the

number of curves used to ensemble. For EHPD, we first test

the defense results of HPD with 8 different Hilbert curves

independently. Then we do further explorations on the en-

semble method EHPD. The results of EHPD8 with HPD se-

ries against PGD with attack perturbations ǫ=2/8/16 in Lp

norm are shown in Table 2. We find HPD series achieve

comparable results, while EHPD8 performs better against
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white-box attacks. Especially when the attack strengths in-

crease, the robustness is improved from 0.75 to 0.77 with

ǫ=8 and 0.64 to 0.66 with ǫ=16. Although the 8 HPD mod-

els achieve similar accuracy independently, the predictions

may vary in specific images because of their different scan

orders. The self similarity of Hilbert curves suggests var-

ious differently ordered Hilbert curves could be generated

from one image naturally. EHPD ensembles these models

effectively, thus achieving even better results.

4.2. Defense for Obfuscated Gradient Attack

Obfuscated Gradient attack is a kind of defense-guided

attack which could effectively bypass specific defense

methods. It estimates the hidden gradients of a defense

method by sampling the output, thus defense methods with

certain boundaries could be broken with a high possibility,

including PixelDefend [27]. However, our proposed HPD

can be expanded to a series of defense models, brought by

the diversity of Hilbert curves. Although some of the ben-

efits are already exploited in EHPD, we conduct a series of

experiments especially against Obfuscated Gradient attack,

to further explore the benefits of Hilbert scan.

We compare the performances of PD, HPD and EHPD

against Obfuscated Gradient attack, and show the accura-

cies in Table 3 (with attack parameter ǫ=8/16 in L∞ norm).

The results show that the basic HPD method already out-

performs PD by a large margin, from 0.15 to 0.39. It re-

sults from the outstanding performance of HPD in model-

ing pixel dependencies. HPD could return a more qualified

image in each purifying iteration, thus more robust against

Obfuscated Gradient attack. On top of that, the robustness

increases when more HPD models with different Hilbert

curves are ensembled. Considering HPD as a special case of

EHPD (with only 1 Hilbert curve to ensemble), we find the

accuracies increase from 0.39, to 0.49, 0.52, when ensem-

bling 1 Hilbert curve, 4 Hilbert curves and 8 Hilbert curves.

It also shows potential to a further improvement with more

Hilbert curves to ensemble.

We also compare the average epochs needed to break

a defense by Obfuscated Gradient attack. The results are

shown in Table 4. As we limit the max epoch of Obfus-

cated Gradient attack to 20, the attack epoch of images still

classified correctly after 20-epoch attack is recorded as 20.

We find the average attack epoch increases with more en-

semble Hilbert curves. EHPD8 improves the result from

11 to 17 compared with PD. The trend shows the aver-

age attack epoch is gradually close to the limited maximum

epoch number 20, implying the performance in average at-

tack epoch is still limited by our setting. The difference

could be larger with a loosed maximum attack epoch.

Table 3: Test accuracy of defense methods against Obfus-

cated Gradient attack.

Defense Method PD H0PD EHPD4 EHPD8

Obfuscated Gradient 0.15 0.39 0.49 0.52

Table 4: Average Epochs needed for a defense method to be

broken by Obfuscated Gradient attack. Larger epochs mean

the method is more robust against the attack.

Defense Method PD H0PD EHPD4 EHPD8

Average Epochs 11 14 16 17

4.3. Blackbox Robustness Evaluation

The classification model applied in our black-box exper-

iments is a normal VGG [26] with 0.90 accuracy (target

model), while adversarial examples are generated on the

normal ResNet50 with 0.90 accuracy (source model). That

is, there is no information from the classification model dur-

ing the generation of adversarial examples. We test the per-

formance against adversarial attack FGSM and PGD with

ǫ=8/16. As PD has already shown good performance on

defense results, we mainly compare HPD with PD. The de-

fense parameters are set to ǫdefend=16 in both PD and HPD

methods.

The results of PD and HPD against black-box attack

are demonstrated in Table 5. We find that even though

VGG shows strong classification ability, it is vulnerable to

adversarial examples. Adversarial examples generated on

ResNet50 could effectively mislead a well-trained normal

VGG model. This is explained as the transferability of ad-

versarial examples [14] [21]. With defense methods, VGG

could be much more robust. For example, the accuracy im-

proves from 0.29 to 0.66 against FGSM adversarial exam-

ples with ǫ=16 on ResNet50 defended by PD. Our proposed

HPD shows a clear better robustness performance, improv-

ing the accuracy by 0.02-0.03 in almost all black-box de-

fense cases. The results show that HPD is more effective to

defend against black-box attack. The superiority also arises

from spatial proximity of Hilbert curve, as it helps HPD bet-

ter preserve local feature in the generated images, which is

essential in classification tasks for almost all DNN models.

4.4. Analysis and Discussion

From above experiments, we find EHPD performs much

better than original PD method. As for the reason, we con-

jecture that the diversities brought by Hilbert curves itself

contribute most in the defense. Therefore, we test a random
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Table 5: Black-box robustness from source model ResNet

50 to target VGG model (with attack strengths ǫ=8/16

and defense strength ǫdefend=16, pixel values clipped in

[0,255]).

CLEAN
FGSM PGD

ǫ=8 ǫ=16 ǫ=8 ǫ=16

Normal VGG 0.90 0.54 0.29 0.61 0.39

PD 0.90 0.76 0.66 0.77 0.70

HPD 0.90 0.78 0.68 0.80 0.72

model of HPD instead of the ensemble model. To be spe-

cific, in each iteration, we randomly pick one model from

all HPD models with different Hilbert scan orders. For sim-

plicity, we use RHPD to represent this random model.

Apart from accuracy on a data set with a number of test

images, the cross entropy loss of classification network for

a single image can also be used to evaluate and analyze the

defense ability. A wrong classification always comes along

with a large cross entropy loss, and vice verse. So when a

sharp increase of cross entropy loss occurs, the classifica-

tion is almost certain to be wrong.

We illustrate the loss trend of one image in Figure 9 to

further exploit the benefits of randomness. The image is at-

tacked by Obfuscated Gradient and defended by PD, HPD

and RHPD respectively. Figure 9 shows that HPD can de-

lay the sharp increase by 6-7 epochs compared with PD, but

they are all in an overall increasing trend. On the other hand,

RHPD could decrease the loss during defense. It indicates

that the diversity of Hilbert curves is essential in adversarial

defense, as differently ordered sequences could offer differ-

ent pixel information. The diversity and randomness could

help to decrease the cross entropy loss during purifying and

thus improve robustness.

In summary, our experiments show that the scan order is

an important factor for PixelDefend (as well as PixelCNN).

Hilbert scan improves the performance of PixelDefend due

to the spatial proximity and self similarity. The spatial prox-

imity helps provide a pixel with more related information

from closer pixels, thus well keeps local features and im-

proves the defense performance. The self similarity brings

a lot of diversities, thus the defense method can be more

robust against white-box and black-box attacks, especially

against Obfuscated Gradient attack.

Lastly, there is one point we want to mention is that

Hilbert scan requires the width and height of an image to be

2n. When it comes to images with free shape, we need to do

some basic upsampling, downsampling or padding manipu-

lations in advance so as to resize an image into a normalized

2n shape.
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Figure 9: The top row is one randomly picked image from

the test set, used as an example to analysis the property of

defense methods (PD, HPD and RHPD). The bottom is the

cross entropy loss curves of the top image, defended by PD,

HPD and RHPD to against Obfuscated Gradient attack.

5. Conclusion

In this paper, we proposed to use Hilbert scan instead

of the widely used raster scan to precisely characterize the

dependencies of pixels. Further, we propose a Hilbert scan

based generative defense model, named Hilbert-based Pix-

elDefend (HPD), against adversarial examples by purifying

the perturbed images pixel by pixel. Due to the self similar-

ity of Hilbert curves, HPD can be naturally extended to the

ensemble model, called Ensemble Hilbert-based PixelDe-

fend (EHPD), using different Hilbert curves. Experiments

on benchmark dataset demonstrate that our proposed HPD

and EHPD methods outperform the state-of-the-art defenses

against white-box attacks, black-box attacks, particularly

the Obfuscated Gradient attack. The spatial proximity and

self similarity properties of Hilbert curves contribute most

to the superiority of our proposed HPD and EHPD method.
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