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Abstract

In this paper we present an end-to-end framework for

grounding of phrases in images. In contrast to previous

works, our model, which we call G3
RAPHGROUND, uses

graphs to formulate more complex, non-sequential depen-

dencies among proposal image regions and phrases. We

capture intra-modal dependencies using a separate graph

neural network for each modality (visual and lingual), and

then use conditional message-passing in another graph

neural network to fuse their outputs and capture cross-

modal relationships. This final representation results in

grounding decisions. The framework supports many-to-

many matching and is able to ground single phrase to mul-

tiple image regions and vice versa. We validate our de-

sign choices through a series of ablation studies and illus-

trate state-of-the-art performance on Flickr30k and ReferIt

Game benchmark datasets.

1. Introduction

Over the last couple of years, phrase (or more generally

language) grounding has emerged as a fundamental task in

computer vision. Phrase grounding is a generalization of

the more traditional computer vision tasks, such as object

detection [11] and semantic segmentation [27]. Grounding

requires spatial localization of free-form linguistic phrases

in images. The core challenge is that the space of natural

phrases is exponentially large, as compared to, for exam-

ple, object detection or segmentation where the label sets

are typically much more limited (e.g., 80 categories in MS

COCO [18]). This exponential expressivity of the label set

necessitates amortized learning, which is typically formu-

lated using continuous embeddings of visual and lingual

data. Despite challenges, phrase grounding emerged as the

core problem in vision due to the breadth of applications

that span image captioning [19], visual question answering

[2, 40] and referential expression recognition [20] (which is

at the core of many HCI and HRI systems).

Significant progress has been made on the task in the

Figure 1. Illustration of G3
RAPHGROUND. Two separate graphs

are formed for phrases and image regions respectively, and are

then fused together to make final grounding predictions. The col-

ored bounding-boxes correspond to the phrases in same color.

last couple of years, fueled by large scale datasets (e.g.,

Flickr30k [24] and ReferIt Game [14]) and neural architec-

tures of various forms. Most approaches treat the problem

as one of learning an embedding where class-agnostic re-

gion proposals [25] or attended images [8, 34] are embed-

ded close to the corresponding phrases. A variety of embed-

ding models, conditional [22] and unconditional [13, 29],

have been proposed for this task. Recently, the use of con-

textual relationships among the regions and phrases have

started to be explored and shown to substantially improve

the performance. Specifically, [9] and [6] encode the con-

text of previous decisions by processing multiple phrases

sequentially, and/or contextualizing each decision by con-

sidering other phrases and regions [9]. Non-differentiable

process using policy gradient is utilized in [6], while [9]

uses an end-to-end differentiable formulation using LSTMs.

In both cases, the contextual information is modeled using

sequential propagation (e.g., using LSTMs [6, 9]).
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In reality, contextual information in the image, e.g.,

among the proposed regions, can hardly be regarded as se-

quential. Same can be argued for phrases, particularly in

cases where they do not come from an underlying structured

source like a sentence (which is explicitly stated as an as-

sumption and limitation of [9]). In essence, previous meth-

ods impose sequential serialization of fundamentally non-

sequential data for convenience. We posit that addressing

this limitation explicitly can lead to both better performance

and more sensibly structured model. Capitalizing on the re-

cent advances in object detection, that have addressed con-

ceptually similar limitations with the use of transitive rea-

soning in graphs (e.g., using convolutional graph neural net-

works [15, 17, 36]), we propose a new graph-based frame-

work for phrase grounding. Markedly, this formulation al-

lows us to take into account more complex, non-sequential

dependencies among both proposal image regions and the

linguistic phrases that require grounding.

Specifically, as illustrated in Figure 1, region propos-

als are first extracted from the image and encoded, using

CNN and bounding-box coordinates, into node features of

the visual graph. The phrases are similarly encoded, us-

ing bi-directional RNN, into node features of the phrase

graph. The strength of connections (edge weights) be-

tween the nodes in both graphs are predicted based on the

corresponding node features and the global image/caption

context. Gated Graph Neural Networks (GG-NNs) [17]

are used to refine the two feature representations through

a series of message-passing iterations. The refined rep-

resentations are then used to construct the fusion graph

for each phrase by fusing the visual graph with the se-

lected phrase. Again the fused features are refined using

message-passing in GG-NN. Finally, the fused features for

each node, that corresponds to the encoding of <phrasei,

image regionj> tuples, are used to predict the proba-

bility of grounding phrasei to image regionj . These

results are further refined by simple scheme that does non-

maxima suppression (NMS), and predicts whether a given

phrase should be grounded to one or more regions. The

final model, we call G3
RAPHGROUND, is end-to-end dif-

ferentiable and is shown to produce state-of-the-art results.

While we clearly designed our architecture with phrase

grounding in mind, we want to highlight that it is much

more general and would be useful for any multi-modal as-

signment problem where some contextual relations between

elements in each modality exist. For example, text-to-

clip [35] / caption-image [16, 39] retrieval or more general

cross-modal retrieval and localization [3].

Contributions: Our contributions are multifold. First, we

propose novel graph-based grounding architecture which

consists of three connected sub-networks (visual, phrase

and fusion) implemented using Gated Graph Neural Net-

works. Our design is modular and can model rich context

both within a given modality and across modalities, with-

out making strong assumptions on sequential nature of data.

Second, we show how this architecture could be learned in

an end-to-end manner effectively. Third, we propose a sim-

ple but very effective refinement scheme that in addition to

NMS helps to resolve one-to-many groundings. Finally, we

validate our design choices through a series of ablation stud-

ies; and illustrate up to 5.33% and 10.21% better than state-

of-the-art performance on Flickr30k [24] and ReferIt Game

[14] datasets.

2. Related Work

Our task of language (phrase) grounding is related to rich

literature on vision and language; with architectural design

building on recent advances in Graph Neural Networks. We

review the most relevant literature and point the reader to

recent surveys [1, 4] and [33, 41] for added context.

Phrase Grounding. Prior works, such as Karpathy et al.

[13], propose to align sentence fragments and image regions

in a subspace. Similarly, Wang et al. [30] propose a struc-

tured matching approach that encourages the semantic re-

lations between phrases to agree with the visual relations

between regions. In [29], Wang et al. propose to learn a

joint visual-text embedding with symmetric distance where

a given phrase is grounded to the closest bounding-box. The

idea is further extended by similarity network proposed in

[28] that uses a single vector for representing multi-modal

features instead of an explicit embedding space. Plummer

et al. [22] build on this idea and propose a concept weight

branch to automatically assign the phrases to embeddings.

It has been shown that both textual and visual context

information can aid phrase grounding. Plummer et al. [23]

perform global inference using a wide range of visual-text

constraints from attributes, verbs, prepositions, and pro-

nouns. Chen et al. [6] try to leverage the semantic and spa-

tial relationships between the phrases and corresponding vi-

sual regions by proposing a context policy network that ac-

counts for the predictions made for other phrases when lo-

calizing a given phrase. They also propose and finetune the

query guided regression network to boost the performance

by better proposals and features. SeqGROUND [9] uses the

full image and sentence as the global context while formu-

lating the task as a sequential and contextual process that

conditions the grounding decision of a given phrase on pre-

viously grounded phrases.Wang et al. [31] uses a graph to

model the relationships between image-regions and local-

izes only one referring expression at a time.

Graph Neural Networks (GNNs). Graph Convolution

Networks (GCNs) were first introduced in [15] for semi-

supervised classification. Each layer of GCN can perform

localized computations involving neighbourhood nodes.
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These layers can be further stacked to form a deeper net-

work that is capable of performing complex computations

on graph data. In vision, Yang et al. [37] enhanced GCNs

with attention and found them to be effective for scene

graph generation; [32] deploy GCNs to model videos as

space-time graphs and get impressive results for video clas-

sification task. Visual reasoning among image regions for

object detection, using GCNs, was shown in [7] and served

as conceptual motivation for our visual graph sub-network.

Recently, [36] present a theoretical framework for ana-

lyzing the expressive power of GNNs to capture different

graph structures. They mention that message-passing in

GNNs can be described by two fuctions: AGGREGATE

and COMBINE. The AGGREGATE function aggregates

the messages from the neighbourhood nodes and the COM-

BINE function updates the state of each node by combin-

ing the aggregated message and the previous state of each

node. They prove that choice of these functions is crucial to

the expressive power of GNNs. Li et al. [17] propose Gated

Graph Neural Networks (GG-NNs) that use Gated Recur-

rent Units (GRUs) for the gating in the COMBINE step.

Our model is inspired by these works. We use one GG-

NN to model the spatial relationships between the image

regions and another to capture the semantic relationships

between the phrases. We finally use the third GG-NN for

the fusion of the text and visual embeddings obtained from

the corresponding graphs. Output of the fusion network is

used to predict if a given phrase should be grounded to a

specific image region or not.

3. Approach

Phrase grounding is a challenging many-to-many match-

ing problem where a single phrase can, in general, be

grounded to multiple regions, or multiple phrases can be

grounded to a single image region. The G3
RAPHGROUND

framework uses graph networks to capture rich intra-modal

and cross-modal relationships between the phrases and the

image regions. We illustrate the architecture in Figure 2.

We assume that the phrases are available, e.g. parsed from

an image caption (Flickr30k [24] dataset) or exist indepen-

dently for a single image (ReferIt Game [14] dataset).

We encode these phrases using a bi-directional RNN that

we call phrase encoder. These encodings are then used to

initialize the nodes of the phrase graph that is built to cap-

ture the relationships between the phrases. Similarly, we

form the visual graph that models the relationships between

the image regions that are extracted from the image using

RPN and then encoded using the visual encoder. Caption

and full image provide additional context information that

we use to learn the edge-weights for both graphs. Message-

passing is independently done for these graphs to update the

respective node features. This allows each phrase/image re-

gion to be aware of other contextual phrases/image regions.

We finally fuse the outputs of these two graphs by instan-

tiating one fusion graph for each phrase. We concatenate

the features of all nodes of the visual graph with the feature

vector of a given node of the phrase graph to condition the

message-passing in this new fusion graph.

The final state of each node of the fusion graph, that

corresponds to a pair <phrasei, image regionj>,

is fed to a fully connected prediction network to make

a binary decision if phrasei should be grounded to

image regionj . Note that all predictions are implicitly

inter-dependent due to series of message-passing iterations

in three graphs. We also predict if the phrase should be

grounded to a single or multiple regions and use this infor-

mation for post processing to refine our predictions.

3.1. Text and Visual Encoders

Phrase Encoder. We assume one or more phrases are avail-

able and need to be grounded. Each phrase consists of a

word or a sequence of words. We encode each word using

its GLoVe [21] embedding and then encode the complete

phrase using the last hidden state of a bi-directional RNN.

Finally, we obtain phrase encodings p1,. . . ,pn for the cor-

responding n input phrases P1 ... Pn.

Caption Encoder. We use another bi-directional RNN to

encode the complete input caption C and obtain the caption

encoding cenc. This is useful as it provides global context

information missing in the encodings of individual phrases.

Visual Encoder. We use a region proposal network (RPN)

to extract region proposals R1 ... Rm from an image. Each

region proposal Ri is fed to the pre-trained VGG-16 net-

work to extract 4096-dimensional vector from the first fully-

connected layer. We transform this vector to 300 dimen-

sional vector ri by passing it through a network with three

fully-connected layers with ReLU activations and a batch

normalization layer at the end.

Image Encoder. We use same architecture as the visual

encoder to also encode the full image into the correspond-

ing 300 dimensional vector ienc that serves as global image

context for the grounding network.

3.2. G3
RAPHGROUND Network

Phrase Graph. To model relationships between the

phrases, we construct the phrase graph GP where nodes of

the graph correspond to the phrase encodings and the edges

correspond to the context among them. The core idea is to

make grounding decision for each phrase dependent upon

other phrases present in the caption. This provides with

the important context for the grounding of the given phrase.

Formally, GP = (VP , EP ) where VP are the nodes corre-

sponding to the phrases and EP are the edges connecting

these nodes. We model this using Gated Graph Neural Net-

work where AGGREGATE step of the message-passing for
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Figure 2. G3
RAPHGROUND Architecture. The phrases are encoded into the phrase graph while image regions are extracted and encoded

into the visual graph. The fusion graph is formed by independently conditioning the visual graph on each node of the phrase graph. The

output state of each node of the fusion graph after message-passing is fed to the prediction network to get the final grounding decision.

each node v ∈ VP can be described as

aPv (t) = AGGREGATE({hP
u (t− 1) : u ∈ N (v)})

=
∑

u∈N (v)

{AP
u,v(W

P
k · hP

u (t− 1))}, (1)

where aPv (t) is the aggregated message received by node v

from its neighbourhood N during tth iteration of message-

passing, hP
u (t − 1) is a d-dimensional feature vector of

phrase-node u before tth iteration of message-passing,

WP
k ∈ R

d×d is a learnable d× d dimensional graph kernel

matrix, and AP
u,v corresponds to the scalar entry of learn-

able adjacency-matrix that denotes the weight of the edge

connecting the nodes u and v.

We initialize hP
u (0) with the corresponding phrase en-

coding pu ∈ R
d produced by the phrase encoder. To obtain

each entry of the adjacency-matrix AP
u,v , we concatenate

the caption embedding (cenc), the full image embedding

(ienc) and the sum of corresponding phrase embeddings: pu

and pv . The concatenated feature is passed through a two

layer fully-connected network fadj followed by sigmoid:

AP
u,v = AP

v,u = σ(fadj(Concat(pu + pv, cenc, ienc))).
(2)

Aggregated message aPv (t) received by node v is used to

update the state of node v during tth iteration:

hP
v (t) = COMBINE({hP

v (t− 1), aPv (t)}) (3)

We use GRU gating in the COMBINE step as proposed by

[17]. After k (k = 2 for all experiments) stages of message-

passing on this graph-network, we obtain hP
v (k) that en-

codes the final state for the phrase node v ∈ VP of the

phrase graph; these final states are then used in the fusion.

Visual Graph. Similarly, we instantiate another GG-NN to

model the visual graph GV that models the spatial relation-

ships between the image regions present in the image. Each

node of the graph corresponds to an image region extracted

from RPN. To initialize the states of these nodes, we use

the encoded features of the image regions produced by vi-

sual encoder, and concatenate them with the position of the

corresponding image region in the image denoted by four

normalized coordinates. VV denotes the nodes of the visual

graph GV . The AGGREGATE step of message-passing on

this network for each node v ∈ V V can be described as:

aVv (t) =
∑

u∈N (v)

{αu(W
V
k · hV

u (t− 1))},
(4)

where we initialize hV
u (0) with the vector

[ru, xmin
u , ymin

u , xmax
u , ymax

u ] which is obtained

after concatenating the visual encoding (ru) of the uth

image region and its normalized position, αu represents the

attention weight given to the node u during the message-

passing. To obtain αu, we concatenate the visual encoding

ru of that node with the caption encoding cenc and the full

image encoding ienc, and then pass this vector through a
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fully-connected network fattn followed by sigmoid:

αu = σ(fattn(Concat(ru, cenc, ienc))). (5)

This is similar to AGGREGATE step of message-passing

on the phrase graph except we do not learn the complete

adjacency matrix for this graph. We note that it is com-

putationally expensive to learn this matrix as number of

entries in adjacency matrix increase quadratically with the

increase in number of the image regions. Instead we use

unsupervised-attention α over the nodes of the visual graph

to decide the edge-weights. All edges that originate from

the node u are weighted αu where αu ∈ [0, 1].
Similar to phrase graph, we use GRU mechanism [17]

for the COMBINE step of message-passing on this graph.

After k stages of message-passing on this graph-network we

obtain hV
v (k) that encodes the final state for the image re-

gion node v ∈ V V of the visual graph. The updated visual

graph is conditioned on each node of the phrase graph in

the fusion step that we explain next.

Fusion Graph. As we have phrase embeddings and image

region embeddings from the phrase graph and the visual

graph respectively, the fusion graph is designed to merge

these embeddings before grounding decisions are made.

One fusion graph is instantiated for each phrase. This in-

stantiation is achieved by concatenating the features of all

the nodes of the visual graph with the node features of the

selected phrase node from the phrase graph. That is to say,

the fusion graph has properties: 1) it has the same structure

(i.e., the number of nodes as well as the adjacency matrix)

as the visual graph; 2) the number of fusion graphs instanti-

ated is the same as the number of nodes in the phrase graph.

We can also characterize this graph as visual graph condi-

tioned on a node from the phrase graph.

After k iterations of message-passing in the fusion

graph, we use the final state of each node to predict the

grounding decision for the corresponding image region

with respect to the phrase on which the corresponding

fusion graph was conditioned. This is independently re-

peated for all of the phrases by instantiating a new fusion

graph from the visual graph for each phrase, and condition-

ing the message-passing in this new graph on the selected

phrase node of the phrase graph. Note that it may seem

that message-passing in the fusion graphs occur indepen-

dently for each phrase but it’s not true. Each phrase embed-

ding that is used to condition message-passing in the fusion

graph is output of the phrase graph, and hence, is aware of

other phrases present in the caption.

Let GFi denote the fusion graph obtained by condition-

ing the visual graph on node i of the phrase graph. The

initialization of node j in this fusion graph can be described

as:

hFi

j (0) = Concat(hP
i (k),h

V
j (k)), ∀j ∈ VV (6)

where hV
j (k) corresponds to the final feature vector of node

j in the visual graph and hP
i (k) is the final feature vector

of the selected node i in the phase graph.

The AGGREGATE and COMBINE steps of message-

passing on each fusion graph remain same as described for

the visual graph in Eqs. (4) and (3).

Prediction Network. While grounding, we predict a scalar

d̂ij for each phrase-region pair that denotes the probability

whether the phrase Pi is grounded to the image region Rj .

The probability of this decision conditioned on the given

image and caption can be approximated from the fused-

embedding of that image region conditioned on the given

phrase. We pass the fused-embedding of the node j of

the fusion graph GFi through the prediction network fpred
which consists of three fully-connected layers with inter-

leaved ReLU activations and a sigmoid function at the end.

P (d̂ij = 1|hFi

j (k)) = σ(fpred(h
Fi

j (k))) (7)

Post Processing. Note that a given phrase may be grounded

to a single or multiple regions. We find that the model’s per-

formance can be significantly boosted if we post process the

grounding predictions for two cases separately. Hence, we

predict a scalar β̂v for each phrase v ∈ VP which denotes

the probability of the phrase to be grounded to more than

one image region. We pass the updated phrase-embedding

hP
v (k) of node v obtained from the phrase graph through a

2-layered fully-connected network fcount:

β̂v = σ(fcount(h
P
v (k))), (8)

If β̂v is greater than 0.5, we select those image regions for

which the output of the prediction network are above a fixed

threshold and then apply non-maximum suppression (NMS)

as a final step. Otherwise, we simply ground the phrase to

the image region with the maximum decision probability

output from the prediction network.

Training. We pre-train the encoders to provide them with

good initialization for end-to-end learning. First, we pre-

train the phrase encoder in autoencoder format, and then

keeping it fixed, we pre-train the visual encoder using a

ranking loss. The loss enforces the cosine similarity Sc(.)
between the phrase-encoding and the visual-encoding for

ground-truth pair (pi, rj) to be more than that of a con-

trastive pair by least the margin γ:

L =
∑

(Ep̃ 6=pi
max{0, γ − SC(pi, rj) + SC(p̃, rj)}

+Er̃ 6=rj
max{0, γ − SC(pi, rj) + SC(pi, r̃)})

(9)

where r̃ and p̃ denote randomly sampled constrastive image

region and phrase respectively. The caption encoder and the
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Method Accuracy

SMPL [30] 42.08

NonlinearSP [29] 43.89

GroundeR [26] 47.81

MCB [10] 48.69

RtP [24] 50.89

Similarity Network [28] 51.05

IGOP [38] 53.97

SPC+PPC [23] 55.49

SS+QRN (VGGdet) [6] 55.99

CITE [22] 59.27

SeqGROUND [9] 61.60

CITE [22] (finetuned) 61.89

QRC Net [6] (finetuned) 65.14

G3
RAPHGROUND++ 66.93

Table 1. State-of-the-art comparison on Flickr30k. Phrase

grounding accuracy on the test set reported in percentages.

image encoder are pre-trained in similar fashion. After pre-

training the encoders, we jointly train the model end-to-end.

For end-to-end training, we formulate this as a binary-

classification task where the model predicts grounding deci-

sion for each phrase-region pair. We minimize binary cross-

entropy loss BCE(·) between the model prediction and the

ground-truth label. We also jointly train fcount and apply

binary cross-entropy loss for the binary-classification task

of predicting if a phrase should be grounded to a single re-

gion or multiple regions. The total training loss is described

as:

Ltrain = BCE(d̂i,j , di,j) + λBCE(β̂i, βi), (10)

where d̂i,j and di,j are the prediction and ground-truth

grounding decision for ith phrase and jth region respec-

tively, meanwhile, β̂i and βi are the prediction and ground-

truth on whether ith phrase is grounded to multiple regions

or not; λ is a hyperparameter that is tuned using grid search.

4. Experiments

4.1. Setup and Inference

We use Faster R-CNN [25] with VGG-16 backbone as

a mechanism for extracting proposal regions from the im-

ages. We treat those image regions (i.e., bounding-boxes)

proposed by RPN as positive labels during training which

have IoU of more than 0.7 with the ground-truth boxes an-

notations of the dataset. For phrases where no such box

exists, we reduce the threshold to 0.5. We sample three neg-

ative boxes for every positive during training. This ensures

that the learned model is not biased towards negatives.

During inference, we feed all the proposal image regions

to the model and make two predictions. The first prediction

Method Accuracy

SCRC [12] 17.93

MCB + Reg + Spatial [5] 26.54

GroundeR + Spatial [26] 26.93

Similarity Network + Spatial [28] 31.26

CGRE [20] 31.85

MNN + Reg + Spatial [5] 32.21

EB+QRN (VGGcls-SPAT) [6] 32.21

CITE [22] 34.13

IGOP [38] 34.70

QRC Net [6] (finetuned) 44.07

G3
RAPHGROUND++ 44.91

Table 2. State-of-the-art comparison on ReferIt Game. Phrase

grounding accuracy on the test set reported in percentages.

is for each phrase, to determine whether the phrase should

be grounded to a single or multiple image regions. The sec-

ond prediction is for each phrase-region pair, to determine

the probability of grounding the given phrase to the given

image region. Based on the first prediction, results of the

second prediction are accordingly post processed, and the

phrase is grounded to a single or multiple image regions.

4.2. Datasets and Evaluation

We validate our model on Flickr30k [24] and Referit

Game [14] datasets. Flickr30k contains 31,783 images

where each image is annotated with five captions/sentences.

Each caption is further parsed into phrases, and the cor-

responding bounding-box annotations are available. A

phrase may be annotated with more than one ground-truth

bounding-box, and a bounding-box may be annotated to

more than one phrase. We use the same dataset split as pre-

vious works [22, 24] which use 29,783 images for training,

1000 for validation, and 1000 for testing.

Referit Game dataset contains 20,000 images and we use

same split as used in [12, 22] where we use 10,000 images

for training and validation while other 10,000 for testing.

Each image is annotated with multiple referring expressions

(phrases) and corresponding bounding-boxes. We note that

the phrases corresponding to a given image of this dataset

do not come from a sentence but exist independently.

Consistent with the prior work [26], we use grounding

accuracy as the evaluation metric which is the ratio of cor-

rectly grounded phrases to total number of phrases in the

test set. If a phrase is grounded to multiple boxes, we first

take the union of the predicted boxes over the image plane.

The phrase is correctly grounded if the predicted region has

IoU of more than 0.5 with the ground-truth.

4.3. Results and Comparison

Flickr30k. We test our model on Flickr30k dataset

and report our results in Table 1. Our full model
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Method Flickr30k ReferIt Game

GG - PhraseG 60.82 38.12

GG - VisualG 62.23 38.82

GG - FusionG 59.13 36.54

GG - VisualG - FusionG 56.32 32.89

GG - ImageContext 62.32 40.92

GG - CaptionContext 62.73 41.79

GGFusionBase 60.41 38.65

G3
RAPHGROUND (GG) 63.87 41.79

G3
RAPHGROUND++ 66.93 44.91

Table 3. Ablation results. Flickr30k and ReferIt Game datasets.

G3
RAPHGROUND++ surpasses all other works by achiev-

ing the best accuracy of 66.93%. The model achieves 5.33%

increase in the grounding accuracy over the state-of-the-art

performance of SeqGROUND [9]. Most methods, as do we,

do not finetune the features on the target dataset. Exceptions

include CITE [22] and QRC Net [6] designated as (fine-

tuned) in the table. We highlight that comparison to those

methods isn’t strictly fair as they use Flickr30k dataset itself

to finetune feature extractors. Despite this, we outperform

them, by 5% and 1.8% respectively, without utilizing spe-

cialized feature extractors. When compared to the versions

of these models (CITE and SS+QRN (VGGdet)) that are not

finetuned, our model outperform them by 7.7% and 10.9%

respectively. This highlights the power of our contextual

reasoning in G3
RAPHGROUND. Finetuning of features is

likely to lead to additional improvements.

Table 4 shows the phrase grounding performance of the

models for different coarse categories in Flickr30k dataset.

we observe that G3
RAPHGROUND++ achieves consistent

increase in accuracy compared to other methods in all of the

categories except for the “instruments”; in fact our model

performs best in six out of eight categories even when com-

pared with the finetuned methods like [6, 22]. Improvement

in the accuracy for “clothing” and “body parts” categories

is more than 8% and 9% respectively.

We also consider a stricter metric for the box-level accu-

racy. We call the phrase correctly grounded if: 1) every box

in the ground truth for the phrase has an IOU > 0.5 with

at least one box among those that are matched to the phrase

by the model; and 2) Every box among those matched to the

phrase by the model has an IOU > 0.5 with at least one box

from the ground truth for the phrase. We report this metric

for phrases with single (n = 1) and multiple (n > 1) ground

truth annotations below. We also consider Top1 version of

our model that grounds every phrase to one max score box.

Method Acc (n = 1) Acc (n > 1) mean Acc

G3
RAPHGROUND (Top1) 69.03 4.80 56.12

G3
RAPHGROUND (GG) 53.17 25.78 48.08

G3
RAPHGROUND++ 67.46 25.61 59.07

Figure 3. Sample attention results for visual graph. Aggregated

attention over each image region projected in an image.

ReferIt Game. We report results of our model on ReferIt

Game dataset in Table 2. G3
RAPHGROUND++ clearly out-

performs all other state-of-the-art techniques and achieves

the best accuracy of 44.91%. Our model improves the

grounding accuracy by 10.21% over the state-of-the-art

IGOP [38] model that uses similar features.

4.4. Qualitative Results

In Figure 3 we visualize the attention (α) on the nodes

(image regions) of the visual graph (image). We find that

the model is able to differentiate the important image re-

gions from the rest, for example, in (a), the model assigns

higher attention weights to important foreground objects

such as child and man than the background objects like wall

and pillar. Similarly in (d), woman and car get more atten-

tion than any other region in the image.

We also visualize some phrase grounding results in Fig-

ure 4. We find that our model is successful in grounding

phrases for challenging scenarios. In (f) the model is able to

distinguish two women from other women and is also able

to infer that colorful clothing corresponds to the dress of

two women not other women. In (b), (d) and (f) our model

is able to ground single phrase to multiple corresponding

bounding-boxes. Also note correct grounding of hand in (i)

despite the presence of other hand candidate. We also point

out few mistakes, for example in (i), blue Bic pen is incor-

rectly grounded to a bracelet which is spatially close. In (h),

curly hair is grounded to a larger bounding-box.

4.5. Ablation

We conduct ablation studies on our model to clearly un-

derstand the benefits of each component. Table 3 shows the

results on both datasets. G3
RAPHGROUND++ is our full

model which achieves the best accuracy. G3
RAPHGROUND

lacks the separate count prediction branch, and therefore

post processes all the predictions of the network using
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Method people clothing body parts animals vehicles instruments scene other

SMPL [30] 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23

GroundeR [26] 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08

RtP [24] 64.73 46.88 17.21 65.83 68.72 37.65 51.39 31.77

IGOP [38] 68.71 56.83 19.50 70.07 73.75 39.50 60.38 32.45

SPC+PPC [23] 71.69 50.95 25.24 76.23 66.50 35.80 51.51 35.98

SeqGROUND [9] 76.02 56.94 26.18 75.56 66.00 39.36 68.69 40.60

CITE [22] (finetuned) 75.95 58.50 30.78 77.03 79.25 48.15 58.78 43.24

QRC Net [6] (finetuned) 76.32 59.58 25.24 80.50 78.25 50.62 67.12 43.60

G3
RAPHGROUND++ 78.86 68.34 39.80 81.38 76.58 42.35 68.82 45.08

Table 4. Phrase grounding accuracy comparison over coarse categories on Flickr30k dataset.

Figure 4. Sample results obtained by G3
RAPHGROUND .The colored bounding-boxes correspond to the phrases in same color.

the threshold mechanism. The model GG-PhraseG lacks

the phrase graph to share information across the phrases,

and directly uses the output of the phrase encoder dur-

ing the fusion step. In a similar approach, the model

GG-VisualG lacks the visual graph, i.e., there occurs no

message-passing among proposal image regions. The out-

put of the visual encoder is directly used during the fu-

sion. The model GG-FusionG lacks the fusion graph, i.e.,

the prediction network makes the predictions directly from

the output of the visual graph concatenated with the out-

put of the phrase graph. GG-VisualG-FusionG is miss-

ing both the visual graph and the fusion graph. GG-

ImageContext and GG-CaptionContext do not use the full

image and caption embedding respectively in the context

information. We design another strong baseline GGFusion-

Base for G3
RAPHGROUND to validate our fusion graph. In

this method we do not instantiate one fusion graph on each

phrase for conditional massage-passing, but instead perform

fusion through message-passing on a single big graph that

consists of the updated nodes of both, the phrase graph and

the visual graph, such that each phrase node is connected

to each image region node with an edge of unit weight; no

edges between the nodes of the same modality exist.

We find that the results show consistent patterns in both

of the datasets. The worse performance of GG-PhraseG

and GG-VisualG as compared to G3
RAPHGROUND con-

firms the importance of capturing intra-modal relation-

ships. GG-VisualG-FusionG performs worst for both of

the datasets. Even when either one of the visual graph

or the fusion graph is present, accuracy is significantly

boosted. However, the fusion graph is the most critical

individual component of our model as its absence causes

the maximum drop in accuracy. GGFusionBase is slightly

better than GG-FusionG but still significantly worse than

G3
RAPHGROUND . This is strong proof of the efficacy of

our fusion graph. The role of our post processing tech-

nique is also evident from the performance gap between

G3
RAPHGROUND and G3

RAPHGROUND++. Since each

ablated model performs significantly worse than the com-

bined model, we conclude that each module is important.

Conclusion. In this paper, we proposed G3
RAPHGROUND

framework that deploys GG-NNs to capture intra-modal

and cross-modal relationships between the phrases and the

image regions to perform the task of language ground-

ing. G3
RAPHGROUND encodes the phrases into the phrase

graph and image regions into the visual graph to finally

fuse them into the fusion graph using conditional message-

passing. This allows the model to jointly make predictions

for all phrase-region pairs without making any assumption

about the underlying structure of the data. The effective-

ness of our approach is demonstrated on two benchmark

datasets, with up to 10% improvement on state-of-the-art.
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