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Abstract

Understanding proper distance measures between dis-

tributions is at the core of several learning tasks such as

generative models, domain adaptation, clustering, etc. In

this work, we focus on mixture distributions that arise nat-

urally in several application domains where the data con-

tains different sub-populations. For mixture distributions,

established distance measures such as the Wasserstein dis-

tance do not take into account imbalanced mixture propor-

tions. Thus, even if two mixture distributions have identical

mixture components but different mixture proportions, the

Wasserstein distance between them will be large. This often

leads to undesired results in distance-based learning meth-

ods for mixture distributions. In this paper, we resolve this

issue by introducing the Normalized Wasserstein measure.

The key idea is to introduce mixture proportions as opti-

mization variables, effectively normalizing mixture propor-

tions in the Wasserstein formulation. Using the proposed

normalized Wasserstein measure leads to significant per-

formance gains for mixture distributions with imbalanced

mixture proportions compared to the vanilla Wasserstein

distance. We demonstrate the effectiveness of the proposed

measure in GANs, domain adaptation and adversarial clus-

tering in several benchmark datasets.

1. Introduction

Quantifying distances between probability distributions

is a fundamental problem in machine learning and statis-

tics with several applications in generative models, domain

adaptation, clustering, etc. Popular probability distance

measures include optimal transport measures such as the

Wasserstein distance [22] and divergence measures such as

the Kullback-Leibler (KL) divergence [4].

Classical distance measures, however, can lead to some

issues for mixture distributions. A mixture distribution is

the probability distribution of a random variable X where

X = Xi with probability πi for 1 ≤ i ≤ k. k is the

number of mixture components and π = [π1, ..., πk]
T is the

vector of mixture (or mode) proportions. The probability

distribution of each Xi is referred to as a mixture compo-

nent (or, a mode). Mixture distributions arise naturally in

different applications where the data contains two or more

sub-populations. For example, image datasets with differ-

ent labels can be viewed as a mixture (or, multi-modal) dis-

tribution where samples with the same label characterize a

specific mixture component.

If two mixture distributions have exactly same mixture

components (i.e. same Xi’s) with different mixture pro-

portions (i.e. different π’s), classical distance measures be-

tween the two will be large. This can lead to undesired re-

sults in several distance-based machine learning methods.

To illustrate this issue, consider the Wasserstein distance

between two distributions PX and PY , defined as [22]

W (PX ,PY ) := min
PX,Y

E [‖X − Y ‖] , (1)

marginalX(PX,Y ) = PX , marginalY (PX,Y ) = PY

where PX,Y is the joint distribution (or coupling) whose

marginal distributions are equal to PX and PY . When no

confusion arises and to simplify notation, in some equa-

tions, we use W (X,Y ) notation instead of W (PX ,PY ).
The Wasserstein distance optimization is over all joint

distributions (couplings) PX,Y whose marginal distribu-

tions match exactly with input distributions PX and PY .

This requirement can cause issues when PX and PY are

mixture distributions with different mixture proportions. In

this case, due to the marginal constraints, samples belong-

ing to very different mixture components will have to be

coupled together in PX,Y (e.g. Figure 1(a)). Thus, using

this distance measure can then lead to undesirable outcomes

in problems such as domain adaptation. This motivates the

need for developing a new distance measure to take into ac-

count mode imbalances in mixture distributions.

In this paper, we propose a new distance measure that

resolves the issue of imbalanced mixture proportions for
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Figure 1. An illustration of the effectiveness of the proposed Normalized Wasserstein measure in domain adaptation. The source domain

(shown in red) and the target domain (shown in blue) have two modes with different mode proportions. (a) The couplings computed by

estimating Wasserstein distance between source and target distributions (shown in yellow lines) match several samples from incorrect and

distant mode components. (b,c) Our proposed normalized Wasserstein measure (3) constructs intermediate mixture distributions P1 and P2

(shown in green) with similar mixture components to source and target distributions, respectively, but with optimized mixture proportions.

This significantly reduces the number of couplings between samples from incorrect modes and leads to 42% decrease in target loss in

domain adaptation compared to the baseline.

multi-modal distributions. Our developments focus on a

class of optimal transport measures, namely the Wasser-

stein distance Eq (1). However, our ideas can be extended

naturally to other distance measures (eg. adversarial dis-

tances [6]) as well.

Let G be an array of generator functions with k compo-

nents defined as G := [G1, ...,Gk]. Let PG,π be a mix-

ture probability distribution for a random variable X where

X = Gi(Z) with probability πi for 1 ≤ i ≤ k. Throughout

the paper, we assume that Z has a normal distribution.

By relaxing the marginal constraints of the classical

Wasserstein distance (1), we introduce the Normalized

Wasserstein measure (NW measure) as follows:

WN (PX ,PY )

:= min
G,π(1),π(2)

W (PX ,PG,π(1)) +W (PY ,PG,π(2)).

There are two key ideas in this definition that help re-

solve mode imbalance issues for mixture distributions.

First, instead of directly measuring the Wasserstein dis-

tance between PX and PY , we construct two intermediate

(and potentially mixture) distributions, namely PG,π(1) and

PG,π(2) . These two distributions have the same mixture

components (i.e. same G) but can have different mixture

proportions (i.e. π(1) and π(2) can be different). Second,

mixture proportions, π(1) and π(2), are considered as op-

timization variables. This effectively normalizes mixture

proportions before Wasserstein distance computations. See

an example in Figure 1 (b, c) for a visualization of PG,π(1)

and PG,π(2) , and the re-normalization step.

In this paper, we show the effectiveness of the proposed

Normalized Wasserstein measure in three application do-

mains. In each case, the performance of our proposed

method significantly improves against baselines when input

datasets are mixture distributions with imbalanced mixture

proportions. Below, we briefly highlight these results:

Domain Adaptation: In Section 4, we formulate the

problem of domain adaptation as minimizing the normal-

ized Wasserstein measure between source and target fea-

ture distributions. On classification tasks with imbalanced

datasets, our method significantly outperforms baselines

(e.g. ∼ 20% gain in synthetic to real adaptation on VISDA-

3 dataset).

GANs: In Section 5, we use the normalized Wasserstein

measure in GAN’s formulation to train mixture models with

varying mode proportions. We show that such a generative

model can help capture rare modes, decrease the complexity

of the generator, and re-normalize an imbalanced dataset.

Adversarial Clustering: In Section 6, we formulate

the clustering problem as an adversarial learning task using

Normalized Wasserstein measure.

2. Normalized Wasserstein Measure

In this section, we introduce the normalized Wasserstein

measure and discuss its properties. Recall that G is an array

of generator functions defined as G := [G1, ...,Gk] where

Gi : R
r → R

d. Let G be the set of all possible G function

arrays. Let π be a discrete probability mass function with

k elements, i.e. π = [π1, π2, · · · , πk] where πi ≥ 0 and
∑

i πi = 1. Let Π be the set of all possible π’s.

Let PG,π be a mixture distribution, i.e. it is the proba-

bility distribution of a random variable X such that X =
Gi(Z) with probability πi for 1 ≤ i ≤ k. We assume that

Z has a normal density, i.e. Z ∼ N (0, I). We refer to G

and π as mixture components and proportions, respectively.

The set of all such mixture distributions is defined as:

PG,k := {PG,π : G ∈ G, π ∈ Π} (2)

where k is the number of mixture components. Given two

distributions PX and PY belonging to the family of mixture

distributions PG,k, we are interested in defining a distance
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measure agnostic to differences in mode proportions, but

sensitive to shifts in mode components, i.e., the distance

function should have high values only when mode compo-

nents of PX and PY differ. If PX and PY have the same

mode components but differ only in mode proportions, the

distance should be low.

The main idea is to introduce mixture proportions as op-

timization variables in the Wasserstein distance formulation

(1). This leads to the following distance measure which we

refer to as the Normalized Wasserstein measure (NW mea-

sure), WN (PX ,PY ), defined as:

min
G,π(1),π(2)

W (PX ,PG,π(1)) +W (PY ,PG,π(2)) (3)

k
∑

j=1

π
(i)
j = 1 i = 1, 2,

π
(i)
j ≥ 0 1 ≤ j ≤ k, i = 1, 2.

Since the normalized Wasserstein’s optimization (3) in-

cludes mixture proportions π(1) and π(2) as optimization

variables, if two mixture distributions have similar mix-

ture components with different mixture proportions (i.e.

PX = PG,π(1) and PY = PG,π(2) ), although the Wasser-

stein distance between the two can be large, the introduced

normalized Wasserstein measure between the two will be

zero. Note that WN is defined with respect to a set of gen-

erator functions G = [G1, ...,Gk]. However, to simplify

the notation, we make this dependency implicit. We would

like to point our that our proposed NW measure is a semi-

distance measure (and not a distance) since it does not sat-

isfy all properties of a distance measure. Please refer to

Supplementary material for more details.

To compute the NW measure, we use an alternating gra-

dient descent approach similar to the dual computation of

the Wasserstein distance [1]. Moreover, we impose the π
constraints using a soft-max function. Please refer to Sec-

tion 3 of Supplementary material for more details.

To illustrate how NW measure is agnostic to mode im-

balances between distributions , consider an unsupervised

domain adaptation problem with MNIST-2 (i.e. a dataset

with two classes: digits 1 and 2 from MNIST) as the source

dataset, and noisy MNIST-2 (i.e. a noisy version of it) as

the target dataset (details of this example is presented in

Section 4.2). The source dataset has 4/5 digits one and 1/5
digits two, while the target dataset has 1/5 noisy digits one

and 4/5 noisy digits two. The couplings produced by esti-

mating the Wasserstein distance between the two distribu-

tions is shown in yellow lines in Figure 1-a. We observe

that there are many couplings between samples from in-

correct mixture components. The normalized Wasserstein

measure, on the other hand, constructs intermediate mode-

normalized distributions P1 and P2, which get coupled to

the correct modes of source and target distributions, respec-

tively (see panels (b) and (c) in Figure 1)).

3. Theoretical Results

For NW measure to work effectively, the number of

modes k in NW formulation (Eq. (3)) must be chosen appro-

priately. For instance, given two mixture distributions with

k components each, Normalized Wasserstein measure with

2k modes would always give 0 value. In this section, we

provide some theoretical conditions under which the num-

ber of modes can be estimated accurately. We begin by

making the following assumptions for two mixture distri-

butions X and Y whose NW distance we wish to compute:

• (A1) If mode i in distribution X and mode j in distri-

bution Y belong to the same mixture component, then

their Wasserstein distance is ≤ ǫ i.e., if Xi and Yj cor-

respond to the same component, W (PXi
,PYj

) < ǫ.

• (A2) The minimum Wasserstein distance between any

two modes of one mixture distribution is at least δ i.e.,

W (PXi
,PXj

) > δ and W (PYi
,PYj

) > δ ∀i 6= j.

Also, non-overlapping modes between X and Y are

separated by δ i.e., for non-overlapping modes Xi and

Yj , W (PXi
,PYj

) > δ. This ensures that modes are

well-separated.

• (A3) We assume that each mode Xi and Yi have den-

sity at least η i.e., PXi
≥ η ∀i, PYi

≥ η ∀i. This

ensures that every mode proportion is at least η.

• (A4) Each generator Gi is powerful enough to capture

exactly one mode of distribution PX or PY .

Theorem 1 Let PX and PY be two mixture distributions

satisfying (A1)-(A4) with n1 and n2 mixture components,

respectively, where r of them are overlapping. Let k∗ =
n1 + n2 − r. Then, k∗ is smallest k for which NW (k) is

small (O(ǫ)) and NW (k)−NW (k− 1) is relatively large

(in the O(δη) )

The proof is presented in the Section 1 of supplementary

material. All assumptions made are reasonable: (A1)-(A3)

enforces that non-overlapping modes in mixture distribi-

tions are separated, and overlapping modes are close in

Wasserstein distance. To enforce (A4), we need to pre-

vent multi-mode generation in one mode of G. This can

be satisfied by using the regularizer in Eq. (11). Note that

in the above theorem, k∗ is the optimal k that should be

used in the Normalized Wasserstein formulation. The theo-

rem presents a way to estimate k∗. Please refer to Section 7

for experimental results. In many applications like domain

adaption, however, the number of components k is known

beforehand, and this step can be skipped.
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4. Normalized Wasserstein in Domain Adapta-

tion

In this section, we demonstrate the effectiveness of the

NW measure in Unsupervised Domain Adaptation (UDA)

both for supervised (e.g. classification) and unsupervised

(e.g. denoising) tasks. Note that the term unsupervised in

UDA means that the label information in the target domain

is unknown while unsupervised tasks mean that the label

information in the source domain is unknown.

First, we consider domain adaptation for a classifica-

tion task. Let (Xs, Ys) represent the source domain while

(Xt, Yt) denote the target domain. Since we deal with the

classification setup, we have Ys, Yt ∈ {1, 2, ..., k}. A com-

mon formulation for the domain adaptation problem is to

transform Xs and Xt to a feature space where the distance

between the source and target feature distributions is suffi-

ciently small, while a good classifier can be computed for

the source domain in that space [6]. In this case, one solves

the following optimization:

min
f∈F

Lcl (f(Xs), Ys) + λ dist (f(Xs), f(Xt)) (4)

where λ is an adaptation parameter and Lcl is the empiri-

cal classification loss function (e.g. the cross-entropy loss).

The distance function between distributions can be adver-

sarial distances [6, 21], the Wasserstein distance [20], or

MMD-based distances [14, 15].

When Xs and Xt are mixture distributions (which is

often the case as each label corresponds to one mixture

component) with different mixture proportions, the use of

these classical distance measures can lead to the computa-

tion of inappropriate transformation and classification func-

tions. In this case, we propose to use the NW measure

as the distance function. Computing the NW measure re-

quires training mixture components G and mode propor-

tions π(1), π(2). To simplify the computation, we make use

of the fact that labels for the source domain (i.e. Ys) are

known, thus source mixture components can be identified

using these labels. Using this information, we can avoid

the need for computing G directly and use the conditional

source feature distributions as a proxy for the mixture com-

ponents as follows:

Gi(Z)
dist
= f(X(i)

s ), (5)

X(i)
s = {Xs|Ys = i}, ∀1 ≤ i ≤ k,

where
dist
= means matching distributions. Using (5), the for-

mulation for domain adaptation can be written as

min
f∈F

min
π

Lcl (Xs, Ys) + λW

(

∑

i

π(i)f(X(i)
s ), f(Xt)

)

.

(6)

The above formulation can be seen as a version of instance

weighting as source samples in X
(i)
s are weighted by πi.

Instance weighting mechanisms have been well studied for

domain adaptation [23, 24]. However, different from these

approaches, we train the mode proportion vector π in an

end-to-end fashion using neural networks and integrate the

instance weighting in a Wasserstein optimization. Of more

relevance to our work is the method proposed in [3], where

the instance weighting is trained end-to-end in a neural net-

work. However, in [3], instance weights are maximized

with respect to the Wasserstein loss, while we show that the

mixture proportions need to minimized to normalize mode

mismatches. Moreover, our NW measure formulation can

handle the case when mode assignments for source embed-

dings are unknown (as we discuss in Section 4.2). This case

cannot be handled by the approach presented in [3].

For unsupervised tasks when mode assignments for

source samples are unknown, we cannot use the simplified

formulation of (5). In that case, we use a domain adaptation

method solving the following optimization:

min
f∈F

Lunsup (Xs) + λWN (f(Xs), f(Xt)) , (7)

where Lunsup(Xs) is the loss corresponding to the desired

unsupervised learning task on the source domain data.

4.1. UDA for supervised tasks

4.1.1 MNIST → MNIST-M

In the first set of experiments1, we consider adaptation be-

tween MNIST→ MNIST-M datasets. We consider three

settings with imbalanced class proportions in source and

target datasets: 3 modes, 5 modes, and 10 modes. More

details can be found in Table 3 of Supplementary material.

We use the same architecture as [6] for feature network

and discriminator. We compare our method with the follow-

ing approaches: (1) Source-only which is a baseline model

trained only on source domain with no domain adaptation

performed, (2) DANN [6], a method where adversarial dis-

tance between source and target distibutions is minimized,

and (3) Wasserstein [20] where Wasserstein distance be-

tween source and target distributions is minimized. Table 1

summarizes our results of this experiment. We observe that

performing domain adaptation using adversarial distance

and Wasserstein distance leads to decrease in performance

compared to the baseline model. This is an outcome of not

accounting for mode imbalances, thus resulting in negative

transfer, i.e., samples belonging to incorrect classes are cou-

pled and getting pushed to be close in the embedding space.

Our proposed NW measure, however, accounts for mode

imbalances and leads to a significant boost in performance

in all three settings.

1Code available at https://github.com/yogeshbalaji/

Normalized-Wasserstein
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Table 1. Mean classification accuracies (in %) averaged over 5

runs on imbalanced MNIST→MNIST-M adaptation

Method 3 modes 5 modes 10 modes

Source only 66.63 67.44 63.17

DANN 62.34 57.56 59.31

Wasserstein 61.75 60.56 58.22

NW 75.06 76.16 68.57

4.1.2 VISDA

In the experiment of Section 4.1.1 on digits dataset, mod-

els have been trained from scratch. However, a common

practice used in domain adaptation is to transfer knowledge

from a pretrained network (eg. models trained on Ima-

geNet) and fine-tune on the desired task. To evaluate the

performance of our approach in such settings, we consider

adaptation on the VISDA dataset [18]; a recently proposed

benchmark for adapting from synthetic to real images.

We consider a subset of the entire VISDA dataset con-

taining the following three classes: aeroplane, horse and

truck. The source domain contains (0.55, 0.33, 0.12) frac-

tion of samples per class, while that of the target domain

is (0.12, 0.33, 0.55). We use a Resnet-18 model pre-trained

on ImageNet as our feature network. As shown in Table 2,

our approach significantly improves the domain adaptation

performance over the baseline and other compared methods.

Table 2. Mean classification accuracies (in %) averaged over 5

runs on synthetic to real adaptation on VISDA dataset (3 classes)

Method Accuracy (in %)

Source only 53.19

DANN 68.06

Wasserstein 64.84

Normalized Wasserstein 73.23

4.1.3 Mode balanced datasets

The previous two experiments demonstrated the effective-

ness of our method when datasets are imbalanced. In this

section, we study the case where source and target domains

have mode-balanced datasets – the standard setting con-

sidered in the most domain adaptation methods. We per-

form experiment on MNIST→MNIST-M adaptation using

the entire dataset. Table 3 reports the results obtained. We

observe that our approach performs on-par with the stan-

dard wasserstein distance minimization.

Table 3. Domain adaptation on mode-balanced datasets:

MNIST→MNIST-M. Average classification accuracies averaged

over 5 runs are reported
Method Classification accuracy (in %)

Source only 60.22

DANN 85.24

Wasserstein 83.47

Normalized Wasserstein 84.16

4.2. UDA for unsupervised tasks

For unsupervised tasks on mixture datasets, we use the

formulation of Eq (7) to perform domain adaptation. To

empirically validate this formulation, we consider the im-

age denoising problem. The source domain consists of dig-

its {1, 2} from MNIST dataset as shown in Fig 2(a). Note

that the color of digit 2 is inverted. The target domain is a

noisy version of the source, i.e. source images are perturbed

with random i.i.d Gaussian noise N (0.4, 0.7) to obtain tar-

get images. Our dataset contains 5, 000 samples of digit

1 and 1, 000 samples of digit 2 in the source domain, and

1, 000 samples of noisy digit 1 and 5, 000 samples of noisy

digit 2 in the target. The task is to perform image denois-

ing by dimensionaly reduction, i.e., given a target domain

image, we need to reconstruct the corresponding clean im-

age that looks like the source. We assume that no (source,

target) correspondence is available in the dataset.

To perform denoising when the (source, target) corre-

spondence is unavailable, a natural choice would be to min-

imize the reconstruction loss in source while minimizing

the distance between source and target embedding distribu-

tions. We use the NW measure as our choice of distance

measure. This results in the following optimization:

min
f,g

Ex∼Xs
‖g(f(x))− x‖22 + λWN (f(Xs), f(Xt))

where f(.) is the encoder and g(.) is the decoder.

As our baseline, we consider a model trained only on

source using a quadratic reconstruction loss. Fig 2(b) shows

source and target embeddings produced by this baseline. In

this case, the source and the target embeddings are distant

from each other. However, as shown in Fig 2(c), using the

NW formulation, the distributions of source and target em-

beddings match closely (with estimated mode proportions) .

We measure the L2 reconstruction loss of the target domain,

errrecons,tgt = Ex∼Xt
‖g(f(x)) − x‖22, as a quantitative

evaluation measure. This value for different approaches is

shown in Table 4. We observe that our method outperforms

the compared approaches.

Table 4. errrecons,tgt for an image denoising task

Method errrecons,tgt

Source only 0.31

Wasserstein 0.52

Normalized Wasserstein 0.18

Training on target (Oracle) 0.08

5. Normalized Wasserstein GAN

Learning a probability model from data is a fundamen-

tal problem in statistics and machine learning. Building on

the success of deep learning, a recent approach to this prob-

lem is using Generative Adversarial Networks (GANs) [8].
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Figure 2. Domain adaptation for image denoising. (a) Samples from source and target domains. (b) Source and target embeddings learnt

by the baseline model. (c) Source and target embeddings learnt by minimizing the proposed NW measure. In (b) and (c), red and green

points indicate source and target samples, respectively.

GANs view this problem as a game between a generator

whose goal is to generate fake samples that are close to the

real data training samples, and a discriminator whose goal

is to distinguish between the real and fake samples.

Most GAN frameworks can be viewed as methods that

minimize a distance between the observed probability dis-

tribution, PX , and the generative probability distribution,

PY , where Y = G(Z). G is referred to as the gener-

ator function. In several GAN formulations, the distance

between PX and PY is formulated as another optimization

which characterizes the discriminator. Several GAN archi-

tectures have been proposed in the last couple of years. A

summarized list includes GANs based on optimal trans-

port measures (e.g. Wasserstein GAN+Weight Clipping

[1], WGAN+Gradient Penalty [9]), GANs based on diver-

gence measures (e.g. the original GAN’s formulation [8],

DCGAN [19], f -GAN [17]), GANs based on moment-

matching (e.g. MMD-GAN [5, 11]), and other formula-

tions (e.g. Least-Squares GAN [16], BigGAN [2], etc.)

If the observed distribution PX is a mixture one, the pro-

posed normalized Wasserstein measure (3) can be used to

compute a generative model. Instead of estimating a single

generator G as done in standard GANs, we estimate a mix-

ture distribution PG,π using the proposed NW measure. We

refer to this GAN as the Normalized Wasserstein GAN (or

NWGAN) formulated as the following optimization:

min
G,π

WN (PX ,PG,π). (8)

In this case, the NW distance simplifies as

min
G,π

WN (PX ,PG,π)

= min
G,π

min
G′,π(1),π(2)

W (PX ,PG′,π(1)) +W (PG,π,PG′,π(2))

= min
G,π

W (PX ,PG,π). (9)

There are couple of differences between the proposed

NWGAN and the existing GAN architecures. The gener-

ator in the proposed NWGAN is a mixture of k models,

each producing πi fraction of generated samples. We se-

lect k a priori based on the application domain while π is

computed within the NW distance optimization. Modeling

the generator as a mixture of k neural networks has also

been investigated in some recent works [10, 7]. However,

these methods assume that the mixture proportions π are

known beforehand, and are held fixed during the training. In

contrast, our approach is more general as the mixture pro-

portions are also optimized. Estimating mode proportions

have several important advantages: (1) we can estimate rare

modes, (2) an imbalanced dataset can be re-normalized, (3)

by allowing each Gi to focus only on one part of the distri-

bution, the quality of the generative model can be improved

while the complexity of the generator can be reduced. In

the following, we highlight these properties of NWGAN on

different datasets.

5.1. Mixture of Gaussians

First, we present the results of training the NWGAN on

a two dimensional mixture of Gaussians. The input data

is a mixure of 9 Gaussians, each centered at a vertex of a

3 × 3 grid as shown in Figure 3. The mean and the covari-

ance matrix for each mode are randomly chosen. The mode

proportion for mode i is chosen as πi =
i
45 for 1 ≤ i ≤ 9.

Generations produced by NWGAN using k = 9 affine

generator models on this dataset is shown in Figure 3. We

also compare our method with WGAN [1] and MGAN [10].

Since MGAN does not optimize over π, we assume uniform

mode proportions (πi = 1/9 for all i). To train WGAN, a

non-linear generator function is used since a single affine

function cannot model a mixture of Gaussian distribution.

To evaluate the generative models, we report the follow-

ing quantitative scores: (1) the average mean error which
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NWGAN WGAN MGAN

Figure 3. Mixture of Gaussian experiments. In all figures, red points indicate samples from the real data distribution while blue points

indicate samples from the generated distribution. NWGAN is able to capture rare modes in the data and produces a significantly better

generative model than other methods.

is the mean-squared error (MSE) between the mean vectors

of real and generated samples per mode averaged over all

modes, (2) the average covariance error which is the MSE

between the covariance matrices of real and generated sam-

ples per mode averaged over all modes, and (3) the π esti-

mation error which is the normalized MSE between the π
vector of real and generated samples. Note that comput-

ing these metrics require mode assignments for generated

samples. This is done based on the closeness of generative

samples to the ground-truth means.

We report these error terms for different GANs in Ta-

ble 5. We observe that the proposed NWGAN achieves best

scores compared to the other two approaches. Also, from

Figure 3, we observe that the generative model trained by

MGAN misses some of the rare modes in the data. This is

because of the error induced by assuming fixed mixture pro-

portions when the ground-truth π is non-uniform. Since the

proposed NWGAN estimates π in the optimization, even

rare modes in the data are not missed. This shows the im-

portance of estimating mixture proportions specially when

the input dataset has imbalanced modes.

Table 5. Quantitative Evaluation on Mixture of Gaussians

Method Avg. µ error Avg. Σ error π error

WGAN 0.007 0.0003 0.0036

MGAN 0.007 0.0002 0.7157

NWGAN 0.002 0.0001 0.0001

5.2. A Mixture of CIFAR­10 and CelebA

One application of learning mixture generative models

is to disentangle the data distribution into multiple compo-

nents where each component represents one mode of the

input distribution. Such disentanglement is useful in many

tasks such as clustering (Section 6). To test the effective-

ness of NWGAN in performing such disentanglement, we

consider a mixture of 50, 000 images from CIFAR-10 and

100, 000 images from CelebA [12] datasets as our input dis-

tribution. All images are reshaped to be 32× 32.

To highlight the importance of optimizing mixture pro-

portion to produce disentangled generative models, we

compare the performance of NWGAN with a variation of

NWGAN where the mode proportion π is held fixed as

πi =
1
k

(the uniform distribution). Sample generations pro-

duced by both models are shown in Figure 4. When π is

held fixed, the model does not produce disentangled repre-

sentations (in the second mode, we observe a mix of CI-

FAR and CelebA generative images.) However, when we

optimize π, each generator produces distinct modes.

6. Adversarial Clustering

In this section, we use the proposed NW measure to for-

mulate an adversarial clustering approach. More specif-

ically, let the input data distribution have k underlying

modes (each representing a cluster), which we intend to

recover. The use of deep generative models for perform-

ing clustering has been explored in [25] (using GANs)

and [13](using VAEs). Different from these, our approach

makes use of the proposed NWGAN for clustering, and thus

explicitly handles data with imbalanced modes.

Let PX be observed empirical distribution. Let G∗ and

π∗ be optimal solutions of NWGAN optimization (9). For

a given point xi ∼ PX , the clustering assignment is com-

puted using the closest distance to a mode i.e.,

C(xi) = arg min
1≤j≤k

min
Z

[

‖xi −Gj(Z)‖2
]

. (10)

To perform an effective clustering, we require each mode

Gj to capture one mode of the data distribution. Without

enforcing any regularization and using rich generator func-

tions, one model can capture multiple modes of the data

distribution. To prevent this, we introduce a regularization

term that maximizes the weighted average Wasserstein dis-

tances between different generated modes. That is,

R =
∑

(i,j)|i>j

πiπjW (Gi(Z),Gj(Z)) . (11)
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Fixing π Learning π

Figure 4. Sample generations of NWGAN with k = 2 on a mixture of CIFAR-10 and CelebA datasets for fixed and optimized π’s. When

π is fixed, one of the generators produces a mix of CIFAR and CelebA generative images (boxes in red highlight some of the CelebA

generations in the model producing CIFAR+CelebA). However, when π is optimized, the model produces disentangled representations.

This term encourages diversity among generative modes.

With this regularization term, the optimization objective of

a regularized NWGAN becomes

min
G,π

W (PX ,PG,π)− λregR

where λreg is the regularization parameter.

We test the proposed adversarial clustering method on an

imbalanced MNIST dataset with 3 digits containing 3, 000
samples of digit 2, 1, 500 samples of digit 4 and 6, 000 sam-

ples of digit 6. We compare our approach with k-means

clustering and Gaussian Mixture Model (GMM) in Table 6.

Cluster purity, NMI and ARI scores are used as quantitative

metrics (refer to SM Section 5.3 for more details). We ob-

serve that our clustering technique is able to achieve good

performance over the compared approaches.

Table 6. Clustering results on Imbalanced MNIST dataset

Method Cluster Purity NMI ARI

k-means 0.82 0.49 0.43

GMM 0.75 0.28 0.33

NW 0.98 0.94 0.97

7. Choosing the number of modes

As discused in Section 3, choosing the number of modes

(k) is crucial for computing NW measure. While this infor-

mation is available for tasks such as domain adaptation, it

is unknown for others like generative modeling. In this sec-

tion, we experimentally validate our theoretically justified

algorithm for estimating k. Consider the mixture of Gaus-

sian dataset with k = 9 modes presented in Section 5.1. On

this dataset, the NWGAN model (with same architecture as

that used in Section 5.1) was trained with varying number

of modes k. For each setting, the NW measure between the

generated and real data distribution is computed and plot-

ted in Fig 5. We observe that k = 9 satisfies the condition

discussed in Theorem 1: optimal k∗ is the smallest k for

Figure 5. Choosing k: Plot of NW measure vs number of modes

which NW (k) is small, NW (k − 1) − NW (k) is large,

and NW (k) saturates after k∗.

8. Conclusion

In this paper, we showed that Wasserstein distance, due

to its marginal constraints, can lead to undesired results

when when applied on imbalanced mixture distributions.

To resolve this issue, we proposed a new distance measure

called the Normalized Wasserstein. The key idea is to op-

timize mixture proportions in the distance computation, ef-

fectively normalizing mixture imbalance. We demonstrated

the usefulness of NW measure in three machine learning

tasks: GANs, domain adaptation and adversarial clustering.

Strong empirical results on all three problems highlight the

effectiveness of the proposed distance measure.
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