
Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions

Guha Balakrishnan

MIT

balakg@mit.edu

Adrian V. Dalca

MIT and MGH

adalca@mit.edu

Amy Zhao

MIT

xamyzhao@mit.edu

John V. Guttag

MIT

guttag@mit.edu
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Abstract

We introduce visual deprojection: the task of recovering

an image or video that has been collapsed along a dimen-

sion. Projections arise in various contexts, such as long-

exposure photography, where a dynamic scene is collapsed

in time to produce a motion-blurred image, and corner cam-

eras, where reflected light from a scene is collapsed along

a spatial dimension because of an edge occluder to yield a

1D video. Deprojection is ill-posed– often there are many

plausible solutions for a given input. We first propose a

probabilistic model capturing the ambiguity of the task. We

then present a variational inference strategy using convolu-

tional neural networks as functional approximators. Sam-

pling from the inference network at test time yields plausi-

ble candidates from the distribution of original signals that

are consistent with a given input projection. We evaluate

the method on several datasets for both spatial and tem-

poral deprojection tasks. We first demonstrate the method

can recover human gait videos and face images from spa-

tial projections, and then show that it can recover videos

of moving digits from dramatically motion-blurred images

obtained via temporal projection.

1. Introduction

Captured visual data is often a projection of a higher-

dimensional signal “collapsed” along some dimension. For

example, long-exposure, motion-blurred photographs are

produced by projecting motion trajectories along the time

dimension [11, 25]. Recent “corner cameras” leverage the

fact that a corner-like edge occluder vertically projects light

rays of hidden scenes to produce a 1D video [4]. Med-

ical x-ray machines use spatial projectional radiography,

where x-rays are distributed by a generator, and the imaged

anatomy affects the signal captured by the detector [26].

Given projected data, is it possible to synthesize the orig-
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Figure 1: Our method takes a spatial projection of an im-

age or video (a, b) or a temporal projection of a video (c),

and outputs a distribution over possible original signals. A

projection here is an average of pixel values along a dimen-

sion of the original signal. The original signal is only one of

multiple possible signals that may have plausibly generated

that particular projection.

inal signal? In this work, we present an algorithm that en-

ables this synthesis. We focus on recovering images and

video from spatial projections, and recovering a video from

a long-exposure image obtained via temporal projection.

The task of inverting projected, high-dimensional signals

is ill-posed, making the task infeasible without some priors

or constraints on the true signal. This ambiguity includes
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object orientations and poses in spatial projections, and the

“arrow of time” [43] in temporal projections (Fig. 1). We

leverage the fact that the effective dimension of most natu-

ral images is often much lower than the pixel representation,

because of the shared structure in a given domain. We han-

dle this ambiguity by formulating a probabilistic model for

the generation of signals given a projection. The model con-

sists of parametric functions that we implement with convo-

lutional neural networks (CNNs). Using variational infer-

ence, we derive an intuitive objective function. Sampling

from this deprojection network at test time produces plau-

sible examples of signals that are consistent with an input

projection.

There is a rich computer vision literature on recovering

high-dimensional data from partial observations. Single-

image super-resolution [15], image demosaicing [46], and

motion blur removal [14] are all special cases. Here, we fo-

cus on projections where a spatial or temporal dimension is

entirely removed, resulting in dramatic loss of information.

To the best of our knowledge, ours is the first general recov-

ery method in the presence of a collapsed dimension. We

build on insights from related problems to develop a first

solution for extrapolating appearance and motion cues (in

the case of videos) to unseen dimensions. In particular, we

leverage recent advances in neural network-based synthesis

and stochastic prediction tasks [2, 17, 44].

We evaluate our work both quantitatively and qualita-

tively. We demonstrate that our method can recover the

distribution of human gait videos from 2D spacetime im-

ages, and face images from their 1D spatial projections. We

also show that our method can model distributions of videos

conditioned on motion-blurred images using the Moving

MNIST dataset [37].

2. Related Work

Projections play a central role in computer vision, start-

ing from the initial stages of image formation, where light

from the 3D world is projected onto a 2D plane. We

focus on a particular class of projections where higher-

dimensional signals of interest are collapsed along one di-

mension to produce observed data.

2.1. Corner Cameras

Corner cameras exploit reflected light from a hidden

scene occluded by obstructions with edges to “see around

the corner” [4]. Reflected light rays from the scene from

the same angular position relative to the corner are verti-

cally integrated to produce a 1D video (one spatial dimen-

sion + time). That study used the temporal gradient of the

1D video to coarsely indicate angular positions of the hu-

man with respect to the corner, but did not reconstruct the

hidden scene. As an initial step towards this difficult re-

construction task, we show that videos and images can be

recovered after collapsing one spatial dimension.

2.2. Compressed Sensing

Compressed sensing techniques efficiently reconstruct a

signal from limited observations by finding solutions to un-

derdetermined linear systems [8, 12]. This is possible be-

cause of the redundancy of natural signals in an appropriate

basis. Several methods show that it is possible to accurately

reconstruct a signal from a small number (1000s) of bases

through convex optimization, even when the bases are cho-

sen randomly [6, 7, 16]. We tackle an extreme variant where

one dimension of a signal is completely lost. We also take

a learning-based approach to the problem that yields a dis-

tribution of potential signals instead of one estimate.

2.3. Conditional Image/Video Synthesis and Future
Frame Prediction

Neural network-based image and video synthesis has re-

ceived significant attention. In conditional image synthesis,

an image is synthesized conditioned on some other infor-

mation, such as a class label or another image of the same

dimension (image-to-image translation) [5, 17, 29, 38, 42,

47]. In contrast to our work, most of these studies condition

on data of the same dimensionality as the output.

Video synthesis algorithms mainly focus on uncondi-

tional generation [33, 39, 40] or video-to-video transla-

tion [9, 34, 41]. In future video frame prediction, frames are

synthesized conditioned on one or more past images. Sev-

eral of these algorithms treat video generation as a stochas-

tic problem [2, 24, 44], using a variational autoencoder

(VAE) style framework [23]. The inputs and outputs in

these problems take a similar form to ours, but the infor-

mation in the input is different. We draw insights from the

stochastic formulation in these studies for our task.

2.4. Inverting a Motion-blurred Image to Video

One application we explore is the formation of videos

from dramatically motion-blurred images, created by tem-

porally aggregating photons from a scene over an extended

period of time. Two recent studies present the deterministic

recovery of a video sequence from a single motion-blurred

image [18, 30]. We propose a general deprojection frame-

work for dimensions including, but not limited to time. In

addition, our framework is probabilistic, capturing the dis-

tribution of signal variability instead of a single determinis-

tic output (see Fig. 1).

3. Methods

We assume a dataset of pairs {x,y} of orig-

inal signals y ∈ R
d1×···×dD and projections

x ∈ R
d1×···dp−1×dp+1···×dD , where D is the number

of dimensions of y and p is the projected dimension.
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Figure 2: Schematic of the probabilistic model at test time.

The shaded variable x is the observed input projection, y

is the higher-dimensional signal, z is a multinomial latent

variable, φ and θ are global network parameters, and N is

the number of test examples in the dataset.

We assume a projection function fω : RD → R
D−1 with

parameters ω. In our experiments, we focus on a case often

observed in practice, where fω is a linear operation in ω

along p, such as averaging: x = fω(y) =
∑dp
k=1

ωky
p=k,

where yp=k is the kth slice of y along dimension p.

For example, a grayscale video y ∈ R
H×W×T might get

projected to an image x ∈ R
H×W by averaging pixels

across time. Deprojection is a highly underconstrained

problem. Even if the values of ω are known, there are dp as

many variables (size of y) as constraints (size of x).

We aim to capture the distribution p(y|x) for a particular

scenario with data. We first present a probabilistic model for

the deprojection task which builds on the conditional VAE

(CVAE) [36] (Fig. 2). We let z ∼ pφ(z|x) be a multivariate

normal latent variable which captures variability of y unex-

plainable from x alone. Intuitively, z encodes information

orthogonal to the unprojected dimensions. For example, it

could capture the temporal variation of the various scenes

that may have led to a long-exposure image.

We define pθ(y|x, z) as a Gaussian distribution:

pθ(y|x, z) =N (y; gθ(x, z), Iσ
2

y) (1)

where σ2

y is a per-pixel noise variance and gθ(x, z) is a de-

projection function, parameterized by θ and responsible for

producing a noiseless estimate of y given x and z.

3.1. Variational Inference and Loss Function

Our goal is to estimate pφ,θ(y|x):

pφ,θ(y|x) =

∫

z

pθ(y|x, z)pφ(z|x)dz (2)

Evaluating this integral directly is intractable because of its

reliance on potentially complex parametric functions and

the intractability of estimating the posterior p(z|y). We in-

stead use variational inference to obtain a lower bound of

the likelihood, and use stochastic gradient descent to opti-

mize it [20, 23]. We introduce an approximative posterior

distribution qψ(z|y) = N (z;µψ(y), σψ(y)):

log pφ,θ(y|x) = logEz∼qψ

[

pφ(z|x)

qψ(z|y)
pθ(y|x, z)

]

. (3)

Using Jensen’s inequality, we achieve the following evi-

dence lower bound (ELBO) for log pφ,θ(y|x):

log pφ,θ(y|x) ≥ Ez∼qψ

[

log pθ(y|x, z)
]

(4)

−DKL[qψ(z|y)||pφ(z|x)],

where DKL[·||·] is the Kullback-Leibler divergence encour-

aging the variational distribution to approximate the condi-

tional prior, resulting in a regularized embedding. We esti-

mate the expectation term by drawing one ẑ from qψ(z|y)
within the network using the reparametrization trick [23]

and evaluating the expression:

log pθ(y|x, ẑ) =
||gθ(x, ẑ)− y||2

2

2σ2
y

+ const. (5)

This leads to the training loss function to be minimized:

Lφ,ψ,θ(x,y, ẑ) =βDKL[qψ(z|y)||pφ(z|x)]

+ ||gθ(x, ẑ)− y||2
2

(6)

where β is a tradeoff parameter capturing the relative im-

portance of the regularization term. The per-pixel recon-

struction term in Eq. (6) can result in blurry outputs. For

datasets with subtle details such as face images, we also

add a perceptual error, computed over a learned feature

space [13, 19, 45]. We use a distance function Dγ(·, ·) [45],

computed over high-dimensional features learned by the

VGG16 network [35] with parameters γ, trained to perform

classification on ImageNet.

3.2. Network Architectures

We implement gθ(·, ·) and the Gaussian parameters of

qψ(·|·) and pφ(·|·) with neural networks. Fig. 3 depicts the

architecture for the 2D-to-3D temporal deprojection task.

Our 2D-to-3D spatial deprojection architecture is nearly

identical, differing only in the dimensions of x and the re-

shaping operator’s dimension ordering. We handle 1D-to-

2D deprojections by using the lower-dimensional versions

of the convolution and reshaping operators. The number

of convolutional layers, and number of parameters vary by

dataset based on their complexities.

3.2.1 Posterior and Prior Encoders

The encoder for the distribution parameters of the posterior

qψ(·|·) is implemented using a series of strided 3D convolu-

tional operators and Leaky ReLU activations until a volume
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Figure 3: Overview of our network architecture, drawn here for the 2D-to-3D temporal deprojection task. The network

consists of three parameterized functions: qψ(·|·) captures the variational posterior distribution, pφ(·|·) captures the prior

distribution and gθ(·, ·) performs deprojection. z is sampled from qψ(·) during training, and from pφ(·) during testing.

of resolution less than 8× 8× 3 is reached. We flatten this

volume and use two fully connected layers to obtain µψ and

σψ , the distribution parameters. The encoder for the condi-

tional prior pφ(·|·) is implemented in a similar way, with 2D

strided convolutions. One ẑ is drawn from qψ(·|·) and fed

to the deprojection function. At test time, ẑ is drawn from

pφ(·|·) to visualize results.

3.2.2 Deprojection Function

The function gθ(x, ẑ) deprojects x into an estimate ŷ. We

first use a UNet-style architecture [32] to compute per-pixel

features of x. The UNet consists of two stages. In the first

stage, we apply a series of strided 2D convolutional oper-

ators to extract multiscale features. We apply a fully con-

nected layer to ẑ, reshape these activations into an image,

and concatenate this image to the coarsest features. The

second stage applies a series of 2D convolutions and upsam-

pling operations to synthesize an image of the same dimen-

sions as x and many more data channels. Activations from

the first stage are concatenated to the second stage activa-

tions with skip connections to propagate learned features.

We expand the resulting image along the collapsed di-

mension to produce a 3D volume. To do this, we apply a

2D convolution to produce TF data channels, where T is

the size of the collapsed dimension (time in this case), and

F is some number of features. Finally, we reshape this im-

age into a 3D volume, and apply a few 3D convolutions to

refine and produce a signal estimate ŷ.

4. Experiments and Results

We first evaluate our method on 1D-to-2D spatial de-

projections of human faces using FacePlace [31]. We then

show results for 2D-to-3D spatial deprojections using an in-

house dataset of human gait videos collected by the authors.

Finally, we demonstrate 2D-to-3D temporal deprojections

using the Moving MNIST [37] dataset. We focus on pro-

jections where pixels are averaged along a dimension for

all experiments. For all experiments we split the data into

train/test/validation non-overlapping groups.

4.1. Implementation

We implement our models in Keras [10] with a Tensor-

flow [1] backend. We use the ADAM optimizer [22] with

a learning rate of 1e−4. We trained separate models for

each experiment. We select the regularization hyperparam-

eter β separately for each dataset such that the KL term is

between [5, 15] on our validation data, to obtain adequate

data reconstruction while avoiding mode collapse. We set

the dimension of z to 10 for all experiments.

4.2. Spatial Deprojections with FacePlace

FacePlace consists of over 5,000 images of 236 different

people. There are many sources of variability, including

different ethnicities, multiple views, facial expressions, and

props. We randomly held out all images for 30 individuals

to form a test set. We scaled images to 128×128 pixels and

performed data augmentation with translation, scaling and

saturation variations. We compare our method against the

following baselines:

1. Nearest neighbor selector (k-NN): Selects the k im-

ages from the training dataset with projections clos-

est to the test projection using mean squared error dis-

tance.

2. A deterministic model (DET) identical to the depro-

jection network gθ(x, z) of our method, without the
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Figure 4: Sample image reconstructions on FacePlace. The

input projections along with ground truth images are shown

on the left. Our method’s samples are randomly chosen.

Our method is able to synthesize a variety of appearances

with projections closely matching the input.

incorporation of a latent variable z.

3. A linear minimum mean squared error (LMMSE) es-

timator which assumes that x and y are drawn from

distributions X,Y such that ȳ = EY [y] is linear in x:

ȳ = Ax+ b for some parameters A and b. Minimizing

the expected MSE of y yields a closed form expression

for p(y|x):

p(y|x) = N (y;ΣY XΣ−1

X (x− x̄) + ȳ,

ΣY − ΣY XΣ−1

X ΣTY X), (7)

where ΣX and ΣY are the covariance matrices of X

and Y and ΣXY is their cross-covariance matrix.

For both our method and DET, we used the perceptual

loss metric. Fig. 4 presents visual results, with a few ran-

domly chosen samples from our method. 1-NN varies in

Ours Ours

Ours Ours

Figure 5: FacePlace PSNR for all methods (vertical pro-

jection on top, horizontal on bottom, max signal PSNR

(deprojection estimate) on left, mean projection PSNR on

right) with varying sample size for 100 test projections. Our

method yields higher maximum signal PSNR than all base-

lines. DET has a higher expected signal PSNR for one sam-

ple because it tends to return a blurry average over many

signals. LMMSE has infinite projection PSNR because it

captures the exact linear signal-projection relationship by

construction.

performance depending on the test example, and can some-

times produce faces from the wrong person. LMMSE pro-

duces very blurry outputs, indicating the highly nonlinear

nature of this task. DET produces less blurry outputs, but

still often merges different plausible faces together. Our

method captures uncertainty of head orientations as well as

appearance variations, such as hair color and facial struc-

ture. Ambiguity in head orientation is more apparent with

the horizontal projections, since pose changes affect that

dimension the most. The outputs of our methods are also

sharper than LMMSE and DET, and are more consistent

with ground truth than 1-NN.

We also quantitatively evaluate the models. We use

PSNR (peak-signal-to-noise-ratio, higher is better) to mea-

sure reconstruction quality between images. For each test

projection, we sample k deprojection estimates from each

model (DET always returns the same estimate) and record

the highest PSNR between any estimate and the ground

truth image. For each deprojection estimate, we reproject

and record the average PSNR of the output projections with

respect to the the test (initial) projection.

Fig. 5 illustrates the results with varying samples k for

175



Input

Projection

Input

Projection

Time

Real

Ours

Real

Ours

Real

Ours

Real

Ours

T
im

e

!

Input

Projection

T
im

e

!

T
im

e

!

T
im

e

!

Input

Projection

Figure 6: Sample outputs for four examples from the in-house walking dataset. The left column shows the input vertical

projection. For each example, the top row displays the ground truth sequence and the bottom row displays our method’s

mean output using z = µφ.

100 test projections. As the number of samples k increases,

our method’s signal (deprojection) PSNR improves, high-

lighting the advantage of our probabilistic approach. Best

estimates from k-NN approach the best estimates of our

method in signal reconstruction with increasing k, but many

poor estimates are also retrieved by k-NN as evidenced by

its decreasing projection PSNR curve. LMMSE has perfect

projection PSNR because it captures the exact linear rela-

tionship between the signal and projection by construction.

DET has higher signal PSNR when drawing one sample, be-

cause it averages over plausible images, while our method

does not. Our proposed method surpasses DET after 1 sam-

ple.
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4.3. Spatial Deprojections with Walking Videos

We qualitatively evaluate our method on reconstructing

human gait videos from vertical spatial projections. This

scenario is of practical relevance for corner cameras, de-

scribed in Sec. 2.1. We collected 35 videos of 30 subjects

walking in a specified area for one minute each. Subjects

had varying attire, heights (5’2”- 6’5”), ages (18-60), and

sexes (18m/12f). Subjects were not instructed to walk in

any particular way, and many walked in odd patterns. The

background is identical for all videos. We downsampled the

videos to 5 frames per second and each frame to 256× 224
pixels, and apply data augmentation of horizontal transla-

tions to each video. We held out 6 subjects to produce a test

set. We predict sequences of 24 frames (roughly 5 seconds

in real time).

Fig. 6 presents several reconstruction examples, obtained

by setting ẑ = µφ(x), the mean of the prior distribution.

Our method recovers many details from the vertical projec-

tions alone. The background is easily synthesized because

it is consistent among all videos in the dataset. Remark-

ably, many appearance and pose details of the subjects are

also recovered. Subtle fluctuations in pixel intensity and the

shape of the projected foreground trace contain clues about

the foreground signal along the collapsed dimension. For

example, the method seems to learn that a trace that gets

darker and wider with time likely corresponds to a person

walking closer to the camera.

The third subject is an illustrative result for which our

method separates the white shirt from black pants despite

their aspects not being obvious in the projection. Projected

details, along with a learned pattern that shirts are often

lighter colors than pants, likely enable this recovery. Fi-

nally, the method may struggle with patterns rarely seen in

the training data, such as the large step by the fourth subject

in the fifth frame.

In addition to these experiments, we trained a separate

model on the DGAIT dataset [3] consisting of more subjects

(53), but with simpler walking patterns. We obtain results

with similar quality, as illustrated in Fig. 7.

Vertical
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Figure 7: Sample output from the DGAIT walking dataset.
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Figure 8: Moving MNIST PSNR plots for 100 projection

test examples, similar to Fig. 5.

4.4. Temporal Deprojections with Moving MNIST

The Moving MNIST dataset consists of 10, 000 video se-

quences of two moving handwritten digits. The digits can

occlude one another, and bounce off the edges of the frames.

Given a dataset of 64 × 64 × 10-sized video subclips, we

generate each projection x by averaging the frames in time,

similar to other studies that generate motion-blurred images

at a large scale [18, 21, 27, 28]. Despite the simple ap-

pearance and dynamics of this dataset, synthesizing digit

appearances and capturing the plausible directions of each

trajectory is challenging.

Sample outputs of our method for three test examples

are visualized in Fig. 9. To illustrate the temporal aspects

learned by our method, we sample 10 sequences from our

method for each projection, and present the sequences with

the lowest mean squared error with respect to the ground

truth clip run forwards and backwards. Our method is able

to infer the shape of the characters from a dramatically

motion-blurred input image, difficult to interpret even by

human standards. Furthermore, our method captures the

multimodal dynamics of the dataset, which we illustrate

by presenting the two motion sequences: the first sequence

matches the temporal direction of the ground truth, and the

second matches the reverse temporal progression.

We quantify our accuracy using PSNR curves, similar to

the first experiment, displayed in Fig. 8. Because of the pro-

hibitive computational costs of generating the full joint co-

variance matrix, we do not evaluate LMMSE in this exper-

iment. DET produces blurry sequences, by merging differ-

ent plausible temporal orderings. Similar to the first exper-

iment, this results in DET outputs having the best expected

signal (deprojection) PSNR only for k = 1. Our method

clearly outperforms DET in signal PSNR for k > 1. DET

performs better in projection PSNR, since in this experi-

ment an average of all plausible sequences yields a very

accurate projection. k-NN performs relatively worse in

this experiment compared to the FacePlace experiments, be-

cause of the difficulty in finding nearest neighbors in higher-

dimensions.
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Figure 9: Sample outputs from the Moving MNIST dataset. The left column shows the input projection. For each example,

the top row displays the ground truth sequence. We show two sample sequences produced by our method per input projection:

the first matches the temporal direction of the ground truth, and the second synthesizes the reverse temporal progression.

5. Conclusion

In this work, we introduced the novel problem of visual

deprojection: synthesizing an image or video that has been

collapsed along a dimension into a lower-dimensional ob-

servation. We presented a first general method that handles

both images and video, and projections along any dimen-

sion of these data. We addressed the uncertainty of the task

by first introducing a probabilistic model that captures the

distribution of original signals conditioned on a projection.

We implemented the parameterized functions of this model

with CNNs to learn shared image structures in each domain

and enable accurate signal synthesis.

Though information from a collapsed dimension is of-

ten seemingly unrecoverable from a projection to the naked

eye, our results demonstrate that much of the “lost” infor-

mation is recoverable. We demonstrated this by reconstruct-

ing subtle details of faces in images and accurate motion in

videos from spatial projections alone. Finally, we illustrate

that videos can be reconstructed from dramatically motion

blurred images, even with multimodal trajectories, using the

Moving MNIST dataset. This work illustrates promising re-

sults in a new, ambitious imaging task and opens exciting

possibilities in future applications of revealing the invisible.

Acknowledgments

This work was funded by DARPA REVEAL Program under

Contract No. HR0011-16-C-0030, NIH 1R21AG050122

and Wistron Corp.

178



References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-

tion ({OSDI} 16), pages 265–283, 2016. 4

[2] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan,

Roy H Campbell, and Sergey Levine. Stochastic variational

video prediction. arXiv preprint arXiv:1710.11252, 2017. 2
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