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Abstract

The Progressive-X algorithm, Prog-X in short, is pro-

posed for geometric multi-model fitting. The method inter-

leaves sampling and consolidation of the current data in-

terpretation via repetitive hypothesis proposal, fast rejec-

tion, and integration of the new hypothesis into the kept

instance set by labeling energy minimization. Due to ex-

ploring the data progressively, the method has several ben-

eficial properties compared with the state-of-the-art. First,

a clear criterion, adopted from RANSAC, controls the ter-

mination and stops the algorithm when the probability of

finding a new model with a reasonable number of inliers

falls below a threshold. Second, Prog-X is an any-time al-

gorithm. Thus, whenever is interrupted, e.g. due to a time

limit, the returned instances cover real and, likely, the most

dominant ones. The method is superior to the state-of-the-

art in terms of accuracy in both synthetic experiments and

on publicly available real-world datasets for homography,

two-view motion, and motion segmentation.

1. Introduction

The multi-class multi-model fitting problem is to inter-

pret a set of input points as the mixture of noisy observa-

tions originating from multiple model instances which are

not necessarily of the same class. Examples of this problem

are the estimation of k planes and l spheres in a 3D point

cloud; multiple line segments and circles in 2D edge maps;

a number of homographies or fundamental matrices from

point correspondences; or multiple motions in videos. Ro-

bustness is achieved by considering the assignment to one

or multiple outlier classes.

Multi-model fitting has been studied since the early six-

ties. The Hough-transform [13, 14] perhaps is the first

popular method for finding multiple instances of a single

class [10, 21, 24, 33]. The RANSAC [9] algorithm was ex-

tended as well to deal with multiple instances. Sequential

RANSAC [29, 17] detects instances one after another by

searching in the point set from which the inliers of the de-
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Figure 1: The Prog-X multi-model fitting pipeline gets a

point set as input (a). It then repeats three steps. First,

proposal of putative hypotheses (b) considering the active

instance set (c), i.e. the compound model. In (b), the blue

points are inliers of the putative instance, and the green ones

are that of the compound one. Second, fast rejection of re-

dundant hypotheses. Third, optimization by integrating new

hypotheses, re-assigning points, maintaining model param-

eters, and removing unnecessary instances. In (c) and (d),

the color codes the assignment to instances.

tected instances have been removed. The greedy approach

makes RANSAC a powerful tool for finding a single in-

stance, is a drawback in multi-instance setting. Points are

assigned not to the best but to the first instance, typically

the one with the largest support, for which they cannot be

deemed outliers. MultiRANSAC [35] forms compound hy-

potheses about n instances. Besides requiring the number

n of the instances to be known a priori, the processing time

is high, since samples of size n times m are drawn in each

iteration, where m is the number of points required for es-

timating a model instance. Nevertheless, RANSAC-based

approaches have a desirable property of interleaving the hy-

pothesis generation and verification steps. Moreover, they

have a justifiable termination criterion based on the inlier-

outlier ratio in the data which provides a probabilistic guar-

antee of finding the best instance.

Recent approaches for multi-model fitting [32, 15, 23,
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(a) homographies; (left) best, 4.8%; (right) worst, 5.6% (b) two-view motions; (left) best, 2.4%; (right) worst, 27.4%

(c) homographies; (left) best, 5.9%; (right) worst, 12.6% (d) motions; (left) best, 0.0%; (right) worst, 2.4%

Figure 2: Prog-X – quality and stability of the results on selected problems: homography estimation (a,c), multiple epipolar

geometries (b) and rigid motion (d). The best (left) and worst (right) results for five runs with fixed parameters, overlayed on

one of the images. White points have been labeled as outliers, color codes the assignment to an instance. Misclassification

errors, i.e. the fraction of points assigned to the wrong cluster, are shown as percentages. Results in Table 3 show that

competing algorithms are much less stable.

18, 19, 30, 20, 3, 1] follow a two-step procedure, first,

generating a number of instances using RANSAC-like hy-

pothesis generation. Second, a subset of the hypotheses is

selected interpreting the input data points the most. This

selection is done in various ways. For instance, a pop-

ular group of methods [15, 23, 3, 1] optimizes point-to-

instance assignments by energy minimization using graph

labeling techniques [4]. The energy originates from point-

to-instance residuals, label costs [7], geometric priors [23],

and from the spatial coherence of the points. Another group

of methods uses preference analysis based on the distribu-

tion of the residuals of data points. [34, 18, 19, 20]. Also,

there are techniques [30, 31] approaching the problem as

a hyper-graph partitioning where the instances are vertices,

and the points are hyper-edges.

The common part of these algorithms is the initialization

step when model instances are generated blindly, having

no information about the data. As a consequence, it must

be decided by the user whether to consider the worst case

scenario and, thus, generate an unnecessarily high number

of instances; or to use some rule of thumb, e.g. to generate

twice the point number hypotheses. In practice, this is what

is usually done. It, however, offers no guarantees for cover-

ing all the desired instances. The first method recognizing

this problem was Multi-X [3]. It added a new step to the op-

timization procedure to reduce the number of instances by

replacing sets of labels by the corresponding density modes

in the model parameter domain. Even though this step al-

lows the generation of more initial instances than before

without high computational demand, it still does not pro-

vide guarantees, especially, in case of low inlier ratio.

The main contribution of the proposed Prog-X is its

any-time nature which originates from interleaving sam-

pling and consolidation of the current data interpretation.

This is done via repeated instance proposal minding the al-

ready proposed ones; fast rejection of redundant hypothe-

ses; and integration of the new hypothesis into the kept

instance set by energy minimization (see Fig. 1 for the

basic concept). Moreover, Prog-X adopts the probabilis-

tic guaranties of RANSAC by progressively exploring the

data. We use a general instance-to-instance metric based on

set overlaps which can be efficiently estimated by the min-

hash method [6] and modify the model quality function of

RANSAC considering the existence of multiple model in-

stances. The method is tested both in synthetic experiments

and on publicly available real-world datasets. It is supe-

rior to the state-of-the-art in terms of accuracy for homogra-

phy, two-view motion, motion clustering, and simultaneous

plane and cylinder fitting.

2. Terminology and notation

In this section, we discuss the most important concepts

used in this paper. For the sake of generality, we consider

multi-class multi-model fitting, thus, aiming to find multiple

model instances not necessarily of the same model class.

We adopt the notation from [3].

Multi-class multi-instance model fitting. First, we show
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Figure 3: Examples of the compound model, represented by

the union of the distance fields, generated by (left) two lines

and (right) a line and circle. Best viewed in color.

the problem through examples. A simple problem is find-

ing a pair of line instances h1, h2 ∈ Hl interpreting a set

of 2D points P ⊆ R
2. Line class Hl is the space of

lines Hl = {(θl, φl, τl), θl = [α c]T} equipped with a

distance function φl(θl, p) = | cos(α)x + sin(α)y + c|
(p = [x y]T ∈ P) and a function τl(p1, ..., pml

) = θl
for estimating θl from ml ∈ N data points. Multi-line

fitting is the problem of finding multiple line instances

{h1, h2, ...} ⊆ Hl, while the multi-class case is extract-

ing a subset H ⊆ H∀, where H∀ = Hl ∪ Hc ∪ H. ∪ · · · .

The set H∀ is the space of all classes including that of lines

and circles. Also, the formulation includes the outlier class

Ho = {(θo, φo, τo), θo = ∅} which behaves as if all points

were equally distant, φo(θo, p) = k, k ∈ R
+ and τo() =

∅. The objective of multi-instance multi-class model fitting

is to determine a set of instances {hi}ni

i=1
⊆ H∀ and label-

ing L ∈ P → H assigning each point p ∈ P to an instance

from {hi}ni

i=1
minimizing energy E.

3. Progressive multi-model fitting

In this section, a new pipeline is proposed for multi-

model fitting. Before describing each step in depth, a few

definitions are discussed.

Definition 3.1. A putative model instance hp is temporary,

generated by the proposal engine, not activated to take part

in the optimization procedure.

Definition 3.2. An active model instance ha is an instance

whose parameters and support are updated in the optimiza-

tion procedure.

Definition 3.3. Compound model instance. Given a set of

activate instances {ha,i}na

i=1
, where na is the cardinality of

the set, the compound model instance h∪ ∈ H∀ is defined

as the union of the distance fields each generated by an in-

dividual active instance ha,i (i ∈ [1, na]). The distance of a

point p from h∪ is φ(h∪,p) = minna

i=1
φ(ha,i,p).

Examples of compound instances are shown in Fig. 3. The

color codes the distance (blue – close, red – far). The left

plot shows the union of the distance fields generated by two

lines. The right one shows that of a circle and a line.

Definition 3.4. Proposal engine Σ : h∪ × P∗ → H∗
∀ is a

function generating a putative instance from the data, using

the compound model. Operator ∗ denotes the power set.

Therefore, function Σ gets the compound model and the set

of points and outputs one or multiple proposals.

Definition 3.5. Multi-instance optimization procedure Θ :

{ha,i}na

i=1
× {hp}np

i=1
× P∗ → {ĥa,i}n̂a

i=1
× L is a func-

tion getting the active, the putative instances and the data

as input. It returns a set of active instances and a labeling

L : P∗ → h∗
a which assigns each point to a single active

instance.

Function Θ gets the active instances {ha,i}na

i=1
, set of pro-

posals {hp}np

i=1
and input points. It returns the optimized

active instances and the labeling. Putative instances can be

activated or rejected. Also, activate instances may be deac-

tivated and removed here. The set of active instances always

contain an instance of the outlier class.

3.1. Proposal engine

The proposal engine proposes a yet unseen instance in

every iteration. For the engine, we choose a recent variant

of RANSAC [9]: Graph-Cut RANSAC [2] since it is state-

of-the-art and its implementation is publicly available1. Due

to assuming local structures, similarly as in [3], we choose

NAPSAC [22] to be the sampler inside GC-RANSAC. The

main objective of the proposal engine is to propose un-

seen instances, i.e. the ones which are possibly not among

the active ones in {ha,i}na

i=1
. A straightforward choice for

achieving this goal is to prefer instances having a reason-

able number of points not shared with the compound in-

stance h∪. Therefore, we propose a new quality function

Q̂ : H∀ × H∗
∀ × P∗ × R → R, for RANSAC, mea-

suring the score of a model instance originating from H∀

w.r.t. the compound instance (from H∗
∀), data and a manu-

ally set threshold. For the sake of easier understanding, we

start from one of the simplest quality functions, i.e. the in-

lier counting of RANSAC. It is as follows: QR(h,P, ǫ) =∑
p∈P [φ(h,p) < ǫ], where [.] is the Iverson bracket which

is equal to one if the condition inside holds and zero oth-

erwise. Based on QR, the modified quality function which

takes h∪ into account and, thus, does not count the shared

points is the following:

Q̂R(h,P, ǫ) =
∑

p∈P

[φ(h,p) < ǫ ∧ φ(h∪,p) ≥ ǫ]. (1)

The condition inside holds if and only if the distance of

point p from instance h is smaller than ǫ and, at the same

time, its distance from the compound model h∪ is greater

than ǫ. Therefore, Q̂R counts the points which are not in-

liers of the compound instance but inliers of the new one.

1https://github.com/danini/graph-cut-ransac
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It nevertheless turned out that, in practice, the truncated

quality function of MSAC [27] is superior to the inlier

counting of RANSAC in terms of accuracy and sensitivity

of the user-defined threshold. It is as follows:

QM(h,P, ǫ) = |P| −
∑

p∈P

min

(
1,

φ(h,p)2

γ(ǫ)2

)
, γ(ǫ) =

3

2
ǫ.

(2)

Considering the previously described objective, QM is mod-

ified as follows to reduce the score of the points which are

shared with the compound model:

Q̂M(h,P, ǫ) = |P|−

∑

p∈P

min

(
1,max

(
φ(h,p)2

γ(ǫ)2
, 1−

φ(h∪,p)
2

γ(ǫ)2

))
.

(3)

Consequently, for point p, the implied score is zero (i) if p

is close to both the proposal and the compound instances,

and (ii) if it is far from the proposal.

Summarizing this section, we apply GC-RANSAC as a

proposal engine with NAPSAC sampling and quality func-

tion Q̂M to propose instances one-by-one.

3.2. Proposal validation

The validation is an intermediate step between the pro-

posal and the optimization to decide if an instance should

be involved in the optimization. To do so, an instance-to-

instance distance has to be defined measuring the similar-

ity of the proposed and compound instances. If the dis-

tance is low, the proposal is likely to be an already seen

one and, thus, is unnecessary to optimize. In [3], the in-

stances are represented by problem-specific sequences of

points and this approach, leads to the question of how to

represent models by points. In general, the answer is not

trivial and the representation affects the outcome signifi-

cantly. There, is a straightforward solution for representing

instances by point sets. In [26], the models are described

by their preference sets, and the similarity of two instances

is defined via their Jaccard score [16]. The preference set

of instance h is Ph ∈ {0, 1}|P|, where Ph,j is one if the

jth point is an inlier of h, otherwise zero (j ∈ [1, |P|]).
The proposed criterion of accepting a putative instance is

J(h, h∪) = (|Ph ∩Ph∪
|/|Ph ∪Ph∪

|) > ǫS, where J holds

if the Jaccard similarity is higher than a manually set thresh-

old ǫS ∈ [0, 1] and J is false otherwise. We choose Jaccard

similarity instead of Tanimoto distance [25, 18] since rep-

resenting the instances by sets offers a straightforward way

of speeding up the procedure.

Computing the Jaccard similarity in case of having thou-

sands of points is a computationally demanding operation.

Luckily, we are mostly interested in recognizing if the over-

lap of the instances is significant. The min-hash algo-

rithm [6] is a straightforward choice for making the pro-

cessing time of the similarity calculation fast and indepen-

dent on the number of points. Therefore, the validation step

runs in constant time.

3.3. Multiinstance optimization

The objective of this step is to optimize the set of ac-

tive model instances whenever a new putative one comes

and to decide if this new instance shall be activated or

should be rejected. Due to aiming at the most general

case, i.e. having multiple classes, there are just a few algo-

rithms [15, 7, 23, 3] which can approach the problem with-

out requiring non-trivial modifications. These algorithms

are based on labeling energy-minimization. In general, the

major issue of labeling algorithms is their computational

complexity, especially, in the case of large label space. In

our case, due to proposing instances one-by-one, the label

space is always kept small and, therefore, the time spent on

the labeling is not significant.

Multi-X [3] could be a justifiable choice. However, in

our case, it is simplified to the PEARL algorithm [15, 8]

since its major contribution is a move in the label space re-

placing a label set with the corresponding density mode.

When having just a few labels, this move is not needed.

Thus, we choose PEARL as the optimization procedure.2

3.4. Termination criterion

In this section, we propose a criterion to determine when

to stop with proposing new instances. We generalize the

adaptive termination criterion of RANSAC which is based

on formula
1− µ ≤ (1− (|I|/|P|)m)k , (4)

where µ is the required confidence in the results typically

set to 0.95 or 0.99; k is the number of iterations; m is the

size of the minimal sample; |I| and |P| are the number

of inliers and points, respectively. In RANSAC, Eq. 4 is

formulated to determine k, i.e. the number of iterations re-

quired, using the current inlier ratio. We, instead, formulate

Eq. 4 to have an estimate of the maximum number of inliers

independent on the compound model as follows: (|P| −
|h∪|) m

√
1− k

√
1− µ ≥ |I| where |h∪| is the inlier num-

ber of the compound model and |P| − |h∪| is the number

of points which are not covered by the compound instance.

Therefore, I(P, h∪,m, k, µ) = (|P|−|h∪|) m
√
1− k

√
1− µ

is an upper limit for the inlier number of a not yet found in-

stance with confidence µ in the kth iteration.

To find an instance, it has to fit (i.e., the residual is ap-

proximately zero) to more points than what initialized it.

Thus, at least m+1 points have to support it, where m is the

size of a minimal sample. Therefore, the algorithm updates

I in the end of every iteration and terminates if I < m+ 1.

This constraint guaranties that when the algorithm termi-

nates, the probability of having an unseen model with at

least m+ 1 inliers is smaller than 1− µ.

2https://github.com/nsubtil/gco-v3.0
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Note that in practice, it is more convenient to set this

limit on the basis of the optimization. For instance, if the

optimization does not accept instances having fewer than 20
inliers, it does not make sense to propose ones with fewer.

4. Experimental results

In this section, we evaluate the proposed Prog-X method

on various computer vision problems that are: 2D line, ho-

mography, two-view motion, motion estimation, and simul-

taneous plane and cylinder fitting. The reported results are

the averages over five runs and obtained by using fixed pa-

rameters. See Table 2 for the parameters of Prog-X.

4.1. Synthesized tests

In this section Prog-X is tested in a synthetic environ-

ment. We chose line fitting to 2D points and downloaded

the dataset used in [26]. It consists of three scenes: stair4,

star5 and star11 (see Fig. 4a). The outlier ratio in all test

cases is 0.5 thus having equal number of inliers and outliers.

Comparison of multi-model fitting algorithms. We com-

pare Prog-X, Multi-X3, [3] RansaCov [20], RPA [19], T-

Linkage4 [18], and PEARL [5] on line fitting in this sec-

tions. All methods were applied five times to all scenes with

fixed parameters. For T-Linkage, RPA and RansaCov, we

used the parameters which the authors proposed. We tuned

Prog-X, Multi-X, and PEARL to achieve the most accurate

average results.

The worst results (i.e., the ones with the highest “# fn

+ # fp” error) in five runs are visualized in Fig. 4. Plot (a)

shows the ground truth lines and point-to-line assignments.

The points of each cluster are drawn by color. The number

of false negative, i.e. a line which is not found, and false

positive, i.e. a found line which is not in the ground truth

set, instances are reported in Table 1. It can be seen, that

the proposed method leads to the most accurate results. It

finds all but one lines and does not return false positives.

Any-time property. To demonstrate the any-time property

of Prog-X, we applied the methods which minimize an en-

ergy function iteration-by-iteration, i.e. Prog-X, PEARL [5]

and Multi-X [3], to the star11 scene and reported their

states in each iteration. All methods were applied five times

and, for each, the run with the worst outcome was selected.

Fig. 5 plots the evolution of the properties iteration-by-

iteration. In (a), the numbers of stored instances (vertical

axis) are plotted as the function of the iteration number (hor-

izontal). It can be seen that PEARL and Multi-X have an

unnecessarily high number of instances stored in the first

iteration. Then, from the second one, it drops significantly

and remains almost constant. For Prog-X, the number of in-

stances increases by one in each iteration. The ground truth

3https://github.com/danini/multi-x
4http://www.diegm.uniud.it/fusiello/demo/

number was 11 in this scene. In (b), it is simulated what

would happen if a method is stopped before it terminates.

In this case, all methods have a set of instances stored. In

the plot, the ratio (vertical axis) of the number of desired in-

stances kept and the number of all stored instances is shown

as the function of the iteration number (horizontal). A de-

sired instance is one which overlaps with a ground truth

one. A ground truth instance can be covered only by one

instance. The number of desired instances is, thus, at most

the number of ground truth models in the data. It can be

seen that PEARL and Multi-X are significantly worse than

Prog-X in the first iteration since the number of stored in-

stances is far bigger than the number of desired ones. Even

if all the ground truth ones are covered, there are many false

positives and, thus, the instances are not usable without fur-

ther optimization. This ratio for Prog-X is one in all itera-

tions and, as a consequence, it can be stopped any time and

still returns solely desired instances. In (c), the processing

times in milliseconds (vertical axis) are reported for each

iteration (horizontal). PEARL and Multi-X spend seconds

in the first iteration and, then, their processing times drop

significantly. This is the expected behavior knowing that

their most time-consuming operation is the α-expansion al-

gorithm which has to manage a fairly large label space in

the first iterations. For Prog-X, the processing time is al-

most constant since it alternates between the proposal and

optimization step with slightly increasing label space. Sum-

marizing (a–c), PEARL and Multi-X are not any-time algo-

rithms. To (a) and (b), they can be stopped after the first

iteration without significant deterioration in the accuracy.

However, to (c), the first iteration requires more processing

time than the rest in total. Prog-X can be interrupted at any

time; all of the stored instances cover ground truth ones.

Plot (d) shows the change of the energy (vertical axis)

iteration-by-iteration (horizontal). We divided the energy in

each iteration by the energy in the first one. It can be seen

that Prog-X leads to a significantly higher reduction in the

energy than the competitor algorithms.

Comparison with increasing outlier ratio. To evaluate,

how the outlier ratio affects the outcome of multi-model fit-

ting algorithms, we first kept solely the noisy inliers from

the star11 scene. Then outliers, i.e. points uniformly dis-

tributed in the scene, were added to achieve a given out-

lier ratio ν. Fig. 6 reports (a) the processing time (in mil-

liseconds; vertical axis) and (b) the difference between the

ground truth and the obtained instance number (vertical) as

the function of the outlier ratio (horizontal). It can be seen

that the proposed Prog-X leads to similar processing time

as Multi-X but the returned number of instances is signifi-

cantly closer to the desired one. Consequently, it is the least

sensitive to the outlier ratio.
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(a) Ground truth instances and clustering coded by color
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Figure 4: Fitting of multiple 2D lines to synthetic data. The worst results over five runs on the dataset of [26] are shown.

The points are assigned to lines by color. In (a), the ground truth clusterings are shown. From (b) to (g), the results of the

evaluated algorithms are put. Fixed parameters were used for all methods. See Table 1 for the details of the results.

Progressive-X Multi-X PEARL RPA RansaCov T-Linkage

# fn # fp # fn # fp # fn # fp # fn # fp # fn # fp # fn # fp

stair4 1 0 1 4 2 5 2 2 4 4 4 2

star5 0 0 0 0 0 0 0 0 0 0 2 0

star11 0 0 0 2 0 3 5 5 1 1 9 0

all 1 0 1 6 2 8 7 7 5 5 15 2

Table 1: Fitting of multiple 2D lines to synthetic data. The worst results over five runs on the dataset of [26] are shown. The

reported properties are the number of false negative (# fn) and false positive instances (# fp). Fixed parameters were used for

all methods. The results are visualized in Fig. 4.

4.2. Real world problems

To evaluate the proposed method on real-world prob-

lems, we downloaded a number of publicly available

datasets. The error is the misclassification error (ME), i.e.

the ratio of points assigned to the wrong cluster. In Fig. 2,

the first images are shown of image pairs which are some of

the worst (left plots) and best (right) results of Prog-X run-

ning five times on each scene with a fixed parameters (re-

ported in Table 2). The shown percentages are the misclas-

sification errors. The white points are labeled as outliers,

while the ones with color are assigned to an instance. It can

be seen the error originates mostly from missing instances

and, thus, the returned ones are usable.

Two-view motion fitting is evaluated on the AdelaideRMF

motion dataset consisting of 21 image pairs of different

sizes and correspondences manually assigned to motion

clusters. In this case, multiple fundamental matrices were

fit. In the proposal step, the 7-point algorithm [12] was ap-

plied for fitting to a minimal sample and the normalized 8-

point method [11] for the polishing steps on non-minimal

samples. The average (of 5 runs with fixed parameters)
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Figure 5: The results iteration-by-iteration. The compared

methods minimizing an energy function iteratively: the pro-

posed Prog-X (red), Multi-X [3] (blue) and PEARL [5] (or-

ange). (a) The number of stored instances are shown (verti-

cal axis) as a function of the iteration number (horizontal).

The values in the 1st iteration are 2 200 for PEARL and 550
for Multi-X. (b) The ratio (vertical) of the number of ground

truth models covered by an instance and the number of all

instances stored are reported. (c) The processing times (ver-

tical; in ms) are shown for each iteration (horizontal). The

times in the 1st iteration are 6 904 ms for PEARL and 1 949
ms for Multi-X. In total, PEARL required 9 880 ms, Multi-

X 2 065 ms and Prog-X 1 534 ms. (d) The energy divided

by the energy in the 1st iteration (horizontal) is is shown.
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Figure 6: (a) The average (of 1 000 runs) processing time

(in msecs; vertical axis) and (b) the difference of ground

truth and returned instance numbers (vertical) plotted as the

function of the outlier ratio (horizontal) on star11. In each

run, random, uniformly distributed, outliers are generated

and the coordinates of the original noisy inliers are per-

turbed by zero-mean Gaussian-noise with σ = 1.0 pixels.

errors and their standard deviations are shown in the first

block of Table 3 for each method (from the 2nd to the 4th

columns). Prog-X is superior to the competitors in all inves-

tigated properties. Detailed results for each scene are shown

µ ǫS ws ǫ wl

Two-view motions

0.95 0.1 0.15

1.6 43.0

Homographies 2.9 112.5

Motions 5 ∗ 10−4 2.25 ∗ 10−6

Planes, cylinders 0.5 0.035

Table 2: Parameters of Prog-X used for each problem

(rows). The RANSAC confidence (µ); minimal Jaccard-

distance for passing the instance validation (ǫT); inlier-

outlier threshold (ǫ); label cost (wl); and the weight of the

spatial coherence term (ws) are reported.

in the top-left plot of Fig. 7. It can be seen that Prog-X is

always the most or the second most accurate method.

Homography fitting is evaluated on the AdelaideRMF ho-

mography dataset [32] used in most recent publications.

AdelaideRMF consists of 19 image pairs of different res-

olutions with ground truth point correspondences assigned

manually to homographies. In the proposal step, the nor-

malized 4-point algorithm [12] was used for fitting to a min-

imal sample and also for the polishing steps. The results are

shown in the second block of Table 3 (from the 5th to the

7th columns). Prog-X leads to the lowest average error and

standard deviation. Similar results can be seen in the top-

right plot of Fig. 7 as before: Prog-X always leads to the

lowest or second lowest misclassification errors.

Motion segmentation is tested on the 155 videos of the

Hopkins dataset [28]. The dataset consists of 155 sequences

divided into three categories: checkerboard, traffic,

and other sequences. The trajectories are inherently cor-

rupted by noise, but no outliers are present. Motion seg-

mentation in videos is the retrieval of sets of points under-

going rigid motions contained in a dynamic scene captured

by a moving camera. It can be considered as a subspace

segmentation under the assumption of affine cameras. For

affine cameras, all feature trajectories associated with a sin-

gle moving object lie in a 4D linear subspace in R
2F , where

F is the number of frames [28]. The results are shown in the

third block of Table 3 (from the 8th to the 10th columns).

Prog-X leads to the lowest average errors. Its standard devi-

ation is the second lowest. Detailed results on the sequences

of traffic are put in the bottom of Fig. 7.

Plane and cylinder fitting is evaluated on the dataset

from [3]. It consists of LiDAR point clouds of traffic signs,

their columns and the neighboring points. Points were man-

ually assigned to signs (planes) and columns (cylinders).

The proposal step of Prog-X alternately proposes cylinders

and planes. The results are in the last three columns of Ta-

ble 3. Prog-X obtains the most accurate results, but, most

importantly, it is three orders of magnitude faster than the

second fastest method. The reason is the large number of

points in the scenes (from 1 260 up to 52 445). The process-

ing time of Prog-X, due to being dominated by a number of
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Figure 7: The average ME (vertical axis; in percentage; avg. of 5 runs) of multi-model estimators applied to problems:

two-view motion (AdelaideRMF F dataset; top-left), multi-homography (AdelaideRMF H dataset; top-right), multi-motion

(Hopkins dataset, traffic sequences; bottom) fitting. All methods used fixed parameters. Summarized results are in Table 3.

Two-view motions Homographies Motions Planes and cylinders

18 scenes 19 scenes 155 scenes 8 scenes

avg. std. time avg. std. time avg. std. time avg. std. time

Prog-X 10.73 8.73 14.38 6.86 5.91 1.03 8.41 10.29 0.02 33.69 8.26 9.36

Multi-X [3] 17.13 12.23 1.52 8.71 8.13 0.27 12.96 19.60 0.95 35.67 11.94 1 407.39

PEARL [15] 29.54 14.80 4.94 15.14 6.75 2.61 14.25 23.23 3.30 43.89 11.99 5 142.39

RPA [19] 17.11 11.08 10.24 23.54 13.42 622.87 9.16 11.26 4.92 55.47 11.71 10 459.98

RansaCov [20] 55.61 12.42 2.33 66.88 18.44 17.69 11.13 8.00 2.04 46.65 10.31 7 914.00

T-linkage [18] 46.67 15.60 2.69 54.79 22.17 57.84 27.24 15.57 0.95 45.33 15.37 8 423.31

Table 3: Average misclassification errors (in %; 5 runs on each scene), their standard deviations and the processing times (in

secs) for each problem: two-view motion fitting on the AdelaideRMF motion dataset (2nd–4th cols), homography estimation

on the AdelaideRMF homography dataset (5th–7th), motion fitting on the Hopkins dataset (8th–10th), and simultaneous

plane and cylinder fitting on the Multi-X dataset (11th–13th). Fixed parameters were used for all methods (see Table 2 for

Prog-X). Detailed results are in Fig. 7.

RANSAC runs, depends linearly on the point number. All

of the other methods depend approximately quadratically

on n. In RPA, T-Linkage and RansaCov, the preference cal-

culation has O(n2) complexity. In Multi-X and PEARL, if

at least n initial instances are generated, the label space is

already too large for the inner α-expansion to finish early.

5. Conclusion

The Prog-X algorithm is proposed for geometric multi-

class multi-model fitting. The method is fast and superior

to the state-of-the-art in terms of accuracy in a synthetic en-

vironment and on publicly available real-world datasets for

homography, two-motion, and motion segmentation. Ad-

ditionally, it is an any-time algorithm. Therefore, when-

ever is interrupted, e.g. due to a strict time limit, the re-

turned instances cover real and, likely, the most dominant

ones. The termination criterion, adopted from RANSAC,

makes Prog-X robust to the inlier-outlier ratio. The source

code is available at https://github.com/danini/

progressive-x.
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