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Abstract

We introduce a novel approach for keypoint detection

task that combines handcrafted and learned CNN filters

within a shallow multi-scale architecture. Handcrafted fil-

ters provide anchor structures for learned filters, which lo-

calize, score and rank repeatable features. Scale-space rep-

resentation is used within the network to extract keypoints

at different levels. We design a loss function to detect robust

features that exist across a range of scales and to maximize

the repeatability score. Our Key.Net model is trained on

data synthetically created from ImageNet and evaluated on

HPatches benchmark. Results show that our approach out-

performs state-of-the-art detectors in terms of repeatability,

matching performance and complexity.

1. Introduction

Research advances in local feature detectors and descrip-

tors led to remarkable improvements in areas such as im-

age matching, object recognition, self-guided navigation or

3D reconstruction. Although the general direction of image

matching methods is moving towards learned based sys-

tems, the advantage of learning methods over handcrafted

ones has not been clearly demonstrated in keypoint de-

tection [1]. In particular, Convolutional Neural Networks

(CNNs) were able to significantly reduce matching error in

local descriptors [2], despite the impractical inefficiency of

the initial techniques [3, 4]. These works stimulated fur-

ther research efforts and resulted in improved efficiency of

CNN based descriptors, on the contrary, on top of the lim-

ited success of learned detectors, a general trend towards

dense rather than sparse representation and matching put

aside local feature detectors. However, the growing pop-

ularity of augmented reality (AR) headsets, as well as AR

smartphone apps, has drawn more attention to reliable and

efficient local feature detectors that could be used for sur-

face estimation, sparse 3D reconstruction, 3D model acqui-

sition or objects alignment, among others.

Traditionally, local feature detectors were based on engi-

neered filters. For instance, approaches such as Difference
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Figure 1: The proposed Key.Net architecture combines

handcrafted and learned filters to extract features at differ-

ent scale levels. Feature maps are upsampled and concate-

nated. Last learned filter combines the Scale Space Volume

to obtain the final response map.

of Gaussians [5], Harris-Laplace or Hessian-Affine [6] use

combinations of image derivatives to compute feature maps,

which is remarkably similar to the operations in trained

CNN’s layers. Intuitively, with just a few layers, a net-

work could mimic the behavior of traditional detectors by

learning the appropriate values in its convolutional filters.

However, unlike the success with CNNs based local im-

age descriptors, the improvements upon handcrafted detec-

tors offered by recently proposed fully CNN based meth-

ods [7, 8, 9, 10, 11] are limited in terms of widely accepted

metrics such as repeatability. One of the reasons is their

low accuracy when estimating the affine parameters of the

feature regions. Robustness to scale variations seems partic-

ularly problematic while other parameters such as dominant

orientation can be regressed well by CNNs [12, 7]. This mo-

tivates our novel architecture, termed Key.Net, that makes

use of handcrafted and learned filters as well as a multi-

scale representation. The Key.Net architecture is illustrated

in figure 1. Introducing handcrafted filters, which act as soft

anchors, makes possible to reduce the number of parameters

used by state-of-the-art detectors while maintaining the per-
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formance in terms of repeatability. The model operates on

multi-scale representation of full-size images and returns a

response map containing the keypoint score for every pixel.

The multi-scale input allows the network to propose stable

keypoints across scales thus providing robustness to scale

changes.

Ideally, a robust detector is able to propose the same fea-

tures for images that undergo different geometric or photo-

metric transformations. A number of related works have

focused their objective function to address this issue, al-

though they were based either on local patches [9, 10] or

global map regression loss [13, 14, 11]. In contrast, we ex-

tend the covariant constraint loss to a new objective func-

tion that combines local and global information. We design

a fully differentiable operator, Multi-scale Index Proposal,

that proposes keypoints at multi-scale regions. We exten-

sively evaluate the method in recently introduced HPatches

benchmark [2] in terms of accuracy and repeatability ac-

cording to the protocol from [15].

In summary, our contributions are the following: a) a

keypoint detector that combines handcrafted and learned

CNN features, b) a novel multi-scale loss and operator for

detecting and ranking stable keypoints across scales, c) a

multi-scale feature detection with shallow architecture.

The rest of the paper is organized as follows. We re-

view the related work in section 2. Section 3 presents our

proposed hybrid Key.Net architecture of handcrafted and

learned CNNs filters and section 4 introduces the loss. Im-

plementation and experimental details are given in section 5

and the results are presented in section 6.

2. Related Work

There are many surveys that extensively discuss feature

detection methods [1, 16]. We present related works in two

main categories: handcrafted and learned based.

2.1. Handcrafted Detectors

Traditional feature detectors localize geometric struc-

tures through engineered algorithms, which are often re-

ferred to as handcrafted. Harris [17] and Hessian [18] de-

tectors used first and second order image derivatives to find

corners or blobs in images. Those detectors were further

extended to handle multi-scale and affine transformations

[6, 19]. Later, SURF [20] accelerated the detection process

by using integral images and an approximation of the Hes-

sian matrix. Multi-scale improvements were proposed in

KAZE [21] and its extension, A-KAZE [22], where Hessian

detector was applied to a non-linear diffusion scale space in

contrast to widely used Gaussian pyramid. Although corner

detectors proved to be robust and efficient, other methods

seek alternative structures within images. SIFT [5] looked

for blobs over multiple scale levels, and MSER [23] seg-

mented and selected stable regions as keypoints.

2.2. Learned Detectors

The success of learned methods in general object de-

tection and feature descriptors motivated the research com-

munity to explore similar techniques for feature detectors.

FAST [24] was one of the first attempts to use machine

learning to derive a corner keypoint detector. Further works

extended FAST by optimizing it [25], adding a descriptor

[26] or orientation estimation [27].

Latest advances in CNNs also made an impact on feature

detection. TILDE [14] trained multiple piece-wise linear

regression models to identify interest points that are robust

under severe weather and illumination changes. [9] intro-

duced a new formulation to train a CNN based on feature

covariant constraints. Previous detector was extended in

[10] by adding predefined detector anchors, showing im-

proved stability in training. [8] presented two networks,

MagicPoint, and MagicWarp, which first extracted salient

points and then a parameterized transformation between

pairs of images. MagicPoint was extended in [13] to Su-

perPoint, which included a salient detector and descriptor.

LIFT [7] implemented an end-to-end feature detection and

description pipeline, including the orientation estimation

for every feature. Quadruple image patches and a rank-

ing scheme of point responses as cost function were used

in [28] to train a neural network. In [29], authors proposed

a pipeline to automatically sample positive and negative

pairs of patches from a region proposal network to optimize

jointly point detections and their representations. Recently,

LF-Net [11] estimated position, scale and orientation of fea-

tures by optimizing jointly the detector and descriptor.

In addition to the above presented learned detectors,

CNN architectures also were deployed to optimize the

matching stage. [30] learned to predict which features

and descriptors were matchable. More recently, [31] intro-

duced a network to learn to find good correspondences for

wide-baseline stereo. Furthermore, other CNNs also stud-

ied to perform tasks beyond detection or matching. In [12],

the architecture assigned orientations to interest points and

AffNet [32] used the descriptor loss to learn to predict the

affine parameters of a local feature.

3. Key.Net Architecture

Key.Net architecture combines successful ideas from

handcrafted and learned methods namely gradient-based

feature extraction, learned combinations of low-level fea-

tures and multi-scale pyramid representation.

3.1. Handcrafted and Learned Filters

The design of the handcrafted filters is inspired by the

success of Harris [17] and Hessian [18] detectors, which

used first and second order derivatives to compute the

salient corner responses. A complete set of derivatives is

5837



Figure 2: Siamese training process. Image Ia and Ib go through Key.Net to generate their response maps, Ra and Rb. M-SIP

proposes interest point coordinates for each one of the windows at multi-scale regions. The final loss function is computed

as a regression of coordinate indexes from Ia and local maximum coordinates from Ib. Better visualize in color.

called LocalJet [33] and they approximate the signal in the

local neighborhood as known from Taylor expansion:

Ii1,...,in = I0 ∗ ∂i1,...,ingσ(~x), (1)

where gσ denotes the Gaussian of width σ centered at ~x =
~0, and in denotes the direction. Higher order derivatives i.e.,

n > 2 are sensitive to noise and require large kernels, we,

therefore, include derivatives and their combinations up to

the second order only:

• First Order. From image I we derive 1st order gradi-

ents Ix and Iy . In addition, we compute Ix ∗ Iy , Ix
2

and Iy
2 as in the second moment matrix of Harris de-

tector [17].

• Second Order. From image I , 2nd order derivatives

Ixx, Iyy and Ixy are also included as in the Hessian

matrix used in Hessian and DoG detectors [34, 5].

Since Hessian detector uses the determinant of the

Hessian matrix we add Ixx ∗ Iyy and I2xy .

• Learned. A convolutional layer with M filters, a batch

normalization layer and a ReLU activation function

form a learned block.

The hardcoded filters reduce the number of total learnable

parameters to train the architecture, improving the stability

and convergence during backpropagation.

3.2. Multi­scale Pyramid

We design our architecture to be robust to small scale

changes without the need for computing several forward

passes. As illustrated in figure 1, the network includes three

scale levels of the input image which is blurred and down-

sampled by a factor of 1.2. All the feature maps result-

ing from the handcrafted filters are concatenated to feed the

stack of learned filters in each of the scale levels. All three

streams share the weights, such that the same type of an-

chors result from different levels and form the set of candi-

dates for final keypoints. Feature maps from all scale levels

are then upsampled, concatenated and fed to the last convo-

lutional filter to obtain the final response map.

4. Loss Functions

In supervised training, the loss function relies on the

ground truth. In the case of keypoints, ground truth is

not well defined as keypoint locations are useful as long

as they can be accurately detected regardless of geometric

or photometric image transformation. Some learned detec-

tors [9, 28, 11] train the network to identify keypoints with-

out constraining their locations, where only the homogra-

phy transformation between images is used as ground truth

to calculate the loss as a function of keypoints repeatability.

Other works [14, 13, 10] show the benefits of using an-

chors to guide their training. Although anchors make the

training more stable and lead to better results, they prevent

the network from proposing new keypoints in case there is

no anchor in the proximity.

In contrast, the handcrafted filters in Key.Net provide a

weak constraint with the benefit of the anchor-based meth-

ods while allowing the detector to propose new stable key-

points. In our approach, only the geometric transformation

between images is required to guide the loss.

4.1. Index Proposal Layer

This section introduces the Index Proposal (IP) layer,

which is extended to its multi-scale version in section 4.2.

Extracting coordinates for training keypoint detectors

has been widely studied and showed great improvements:

[7, 9, 10] extracted coordinates in a patch level, SuperPoint
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[13] used a channel-wise softmax to get maxima belonging

to fix grids of 8x8, and [35] used a spatial softmax layer to

compute the global maxima of a feature map, obtaining one

keypoint candidate per feature map. In contrast to previous

methods, the IP layer is able to return multiple global key-

point coordinates centered on local maxima from a single

image without constraining the number of keypoints to the

depth of the feature map [35] or the size of the grid [13].

Similarly to handcrafted techniques, keypoint locations

are indicated by local maxima of the filter response map R
output by Key.Net. Spatial softmax operator is an effec-

tive method for extracting the location of a soft maximum

within a window [7, 35, 11, 13]. Therefore, to ensure that

the IP layer is fully differentiable, we rely on spatial soft-

max operator to obtain the coordinates of a single keypoint

per window. Consider a window wi of size N × N in R,

with the score value at each coordinate [u, v] within the win-

dow, exponentially scaled and normalized:

mi(u, v) =
ewi(u,v)

∑N

j,k e
wi(j,k)

. (2)

Due to exponential scaling the maximum dominates and the

expected location calculated as the weighted average [ūi, v̄i]
gives an approximation of the maximum coordinates:

[xi, yi]
T = [ūi, v̄i]

T =
N∑

u,v

[W⊙mi,W
T⊙mi]

T+cw, (3)

where W is a kernel of size N × N with index values

j = 1 : N along its columns, pointwise product ⊙, and

cw is the top-left corner coordinates of window wi. This is

similar to non-maxima suppression (NMS) but unlike NMS,

the IP layer is differentiable and it is a weighted average of

the global maximum of the window rather than the exact lo-

cation of it. Depending on the base of the power expression

in equation 2, multiple local maxima may have a more or

less significant effect on the resulting coordinates.

A detector is covariant if same features are detected un-

der varying image transformations. Covariant constraint

was formulated as a regression problem in [9]. Given im-

ages Ia and Ib, and ground truth homography Hb,a between

them, the loss L is based on the squared difference between

points extracted by IP layer and actual maximum coordi-

nates (NMS) in corresponding windows from Ia and Ib :

LIP (Ia, Ib, Ha,b, N) =
∑

i

αi‖[xi, yi]
T
a −Hb,a[x̂i, ŷi]

T
b ‖

2,

and αi = Ra(xi, yi)a +Rb(x̂i, ŷi)b, (4)

where Ra and Rb are the response map of Ia and Ib with

coordinates related by the homography Hb,a. We skip ho-

mogeneous coordinates for simplicity. Parameter αi con-

trols the contribution of each location based on its score

Figure 3: Keypoints obtained after adding larger context

windows to M-SIP operator. The points that are more sta-

ble remain as the M-SIP operator increases its window size.

Feature maps in the middle row contain points around edges

or non discriminative areas, while bottom row shows detec-

tions that are more robust under geometric transformations.

value, thus computing the loss for significant features only.

As NMS is non-differentiable, gradients are only back-

propagated where IP layer is applied, therefore, we switch

Ia and Ib and combine both losses to enforce consistency.

4.2. Multi­scale Index Proposal Layer

IP layer returns one location per window, therefore, the

number of keypoints per image strongly depends on the

predefined window size N , in particular, with an increas-

ing size only a few dominant keypoints survive in the im-

age. In [36], authors demonstrated improved performance

of local features by accumulating image features not only

within a spatial window but also within the neighboring

scales. We propose to extend IP layer loss by incorporating

multi-scale representation of a local neighborhood. Multi-

ple window sizes encourage the network to find keypoints

that exist across a range of scales. The additional benefit of

including larger windows is that other keypoints within the

window can act as anchors for the estimated location of the

dominant keypoint. Similar idea proved successful in [37],

where stable region boundaries are used.

We, therefore, propose the Multi-Scale Index Proposal

(M-SIP) layer. M-SIP splits multiple times the response

map into grids, each with a window size of Ns × Ns and

computes the candidate keypoint position for each window

as shown in figure 2. Our proposed loss function is the av-

erage of covariant constraint losses from all scale levels:

LMSIP (Ia, Ib, Ha,b) =
∑

s

λsLIP (Ia, Ib, Ha,b, Ns), (5)
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where s is the index of the scale level with Ns as window

size, LIP is the covariant constraint loss and λs is the con-

trol parameter at scale level s, that decreases proportionally

to the increasing window area as larger windows lead to a

larger loss, which is somewhat similar to the scale-space

normalisation [6].

The combination of different scales imposes an intrinsic

process of simultaneous scoring and ranking of keypoints

within the network. In order to minimize the loss, the net-

work must learn to give higher scores to robust features that

remain dominant across a range of scales. Figure 3 shows

different response maps for increasing window size.

5. Experimental Settings

In this section, we present implementation details, met-

rics and the dataset used for evaluating the method.

5.1. Training Data

We generate a synthetic training set from ImageNet

ILSVRC 2012 dataset. We apply random geometric trans-

formations to images and extract pairs of corresponding re-

gions as our training set. The process is illustrated in fig-

ure 4. The parameters of the transformations are: scale

[0.5, 3.5], skew [−0.8, 0.8] and rotation [−60◦, 60◦]. Tex-

tureless regions are not discriminative, therefore, we dis-

card them by checking if the response of any of the hand-

crafted filters is lower than a threshold. We modify the con-

trast, brightness and hue value in HSV space to one of the

images to improve network’s robustness against illumina-

tion changes. In addition, for each pair, we generate bi-

nary masks that indicate the common area between images.

Those masks are used in training to avoid regressing in-

dexes of keypoints that are not present in the common re-

gion. There are 12,000 image pairs of size 192 × 192. We

use 9,000 of them as the training data and 3,000 as valida-

tion set.

5.2. Evaluation Metrics

We follow the evaluation protocol proposed in [15] and

improved in the follow up works [7, 9, 10, 1]. Repeatability

score for a pair of images is computed as the ratio between

the number of corresponding keypoints and the lower num-

ber of keypoints detected in one of the two images. We

fix the number of extracted keypoints to compare across

methods and allow each keypoint to match only once as in

[25, 14]. In addition, as exposed by [1], we address the bias

from the magnification factor that was applied to accelerate

the computation of the overlap error between multi-scale

keypoints. Keypoints are identified by spatial coordinates

and scales at which the features were detected. To iden-

tify corresponding keypoints we compute the Intersection-

over-Union error, ǫIoU , between the areas of the two can-

didates. To evaluate the accuracy of keypoint location and

Figure 4: We apply random geometric and photometric

transformations to images and extract pairs of correspond-

ing regions as the training set. Red crop is discarded by

checking the response of the handcrafted filters.

scale independently, we perform two sets of experiments.

One is based on the detected scales and the other assumes

the scales are correctly detected by using the ground truth

parameters. In our benchmark, we use top 1,000 interest

points that belong to the common region between images

and a match is considered correct when ǫIoU is smaller

than 0.4 i.e., the overlap between corresponding regions is

more than 60%. The scales are normalized as in [1], which

sets the larger size in a pair of points to 30 pixels, and

rescales the other one accordingly. Non-maxima suppres-

sion of 15× 15 is performed at inference time during eval-

uation. HPatches [2] dataset is used for testing. HPatches

contains 116 sequences, which are split between viewpoint

and illumination transformations, 59 and 57 sequences re-

spectively. HPatches offers predefined image patches for

evaluating descriptors, instead, we use full images for eval-

uating keypoint detectors.

5.3. Implementation Notes

Training is performed in a siamese pipeline, with two

instances of Key.Net that share the weights and are up-

dated at the same time. Each convolutional layer has M

= 8 filters of size 5 × 5, with He weights initialization

and L2 kernel regularizer. We compute the covariant con-

straint loss LM-SIP for five scale levels, with the size of

the M-SIP windows Ns ∈ [8, 16, 24, 32, 40] and loss term

λs ∈ [256, 64, 16, 4, 1], that were determined by perform-

ing a hyperparameter search on the validation set. Larger

candidate window sizes have greater mean errors between

coordinate points since the maximum distance is propor-

tional to the window size. Thus, λs has the largest value for

the smallest window. We use a batch size of 32, an Adam

Optimizer with a learning rate of 10−3 and a decay factor of

0.5 after 20 epochs. On average, the architecture converges

in 30 epochs, 2h on a machine with an i7-7700 CPU running

at 3.60GHz and a NVIDIA GeForce GTX 1080 Ti. Evalua-

tion benchmark, synthetic data generator, Key.Net network,

and loss are implemented using TensorFlow and are avail-

able on GitHub1.

1https://github.com/axelBarroso/Key.Net
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M-SIP Region Sizes

W8x8 W16x16 W24x24 W32x32 W40x40 Repeatability

X - - - - 70.5

X X - - - 74.6

X X X - - 76.8

X X X X - 77.6

- - - - X 65.7

- - - X X 71.4

- - X X X 73.2

- X X X X 74.9

X X X X X 79.1 0.72 0.74 0.76 0.78 0.80
Repeatability

1

2

3

4

5
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m
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rn
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le

 B
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ck
s

Full Learnable
1st Order
2nd Order
1st and 2nd Order

Figure 5: Left: Comparison of repeatability results for several levels in the M-SIP operator. We show different combinations

of context losses as the final loss, from smaller to larger regions. The best result is obtained when using five window sizes

from 8 × 8 up to 40 × 40. Right: Repeatability results for different combinations of handcrafted filters and a number of

learnable layers (M = 8 filters each). A higher number of layers leads to better results. All repeatability scores are computed

on synthetic validation set from ImageNet.

Num. Pyramid Levels

1 2 3 4 5 6

Rep. 72.5 74.6 79.1 79.4 79.5 78.6

(a) Number of input scale levels in Key.Net.

Spatial Softmax Base

1.2 1.4 2.0 e 5.0 7.5

Rep. 77.5 78.4 77.9 79.1 74.6 73.2

(b) Spatial softmax base used in equation 2.

Table 1: Repeatability results for different design choices

on synthetic validation set from ImageNet.

6. Results

In this section, we present the experiments and discuss

the results. We first show results on validation data for sev-

eral variants of the proposed architecture. Next, Key.Net

repeatability scores in single-scale and multi-scale are pre-

sented along with the state-of-the-art detectors on HPatches.

Moreover, we evaluate the matching performance, the num-

ber of learnable parameters and inference time of our pro-

posed detector and compare to other techniques.

6.1. Preliminary Analysis

We study several combinations of loss terms, different

handcrafted filters and the effects of the number of learnable

layers or pyramid levels within the architecture.

M-SIP Levels are investigated in figure 5 (Left) showing in-

creasing repeatability with more scale levels within M-SIP

operator. In addition, we show how the loss with smaller

window size N improves repeatability. However, the best

result is obtained when all levels are combined.

Filter Combinations are analyzed in figure 5 (Right). We

show results for 1st and 2nd order filters as well as their

combination. All networks have the same number of fil-

ters, however, we either freeze first layer of 10 filters with

handcrafted kernels (c.f. section 3.1) or learn them depend-

ing on the variant of our network, e.g, in Fully Learnable

Key.Net there are no handcrafted filters as all are randomly

initialized and learned. The results show that the informa-

tion provided by handcrafted filters is essential when the

number of learnable layers is small. Handcrafted filters act

as soft constraints, which directly discard areas without gra-

dients, i.e. non-discriminative with low repeatability. How-

ever, as we add more learnable blocks, repeatability scores

for combined and fully learnable networks become compa-

rable. Naturally, gradient-based handcrafted filters are sim-

ple, and architectures with enough complexity could learn

them if they were required. However, the use of engineered

features leads to a smaller architecture while maintaining

the performance, which is often critical for real-time appli-

cations. In summary, combining both types of filters allows

to significantly reduce the number of learnable layers. We

use Key.Net architecture with three learnable blocks in the

next experiments.

Multiple Pyramid Levels at the input to the network also

affect the detection performance as shown in table 1a. For

a single pyramid level, only the original image is used as

input. Adding pyramid levels is similar to increasing the

size of the receptive fields in the architecture. Our exper-

iment suggests that using more than three levels does not

lead to significantly improved results. On the validation set,

we obtain a repeatability score of 72.5% for one level, an

increase of 6.6% for three, and 7.0% for five levels. We,

therefore, use three levels, which achieve good performance

while keeping the computational cost low.

Spatial Softmax Base in equation 2 defines how soft the es-

timation of keypoint coordinates is. High values return the
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Viewpoint Illumination

Repeatability ǭIoU Srange Repeatability ǭIoU Srange

SL L SL L SL SL L SL L SL

SIFT-SI [5] 43.1 57.6 0.18 0.12 78.6 47.8 60.4 0.18 0.12 84.5

SURF-SI [20] 46.7 60.3 0.18 0.18 24.8 53.0 64.0 0.15 0.11 27.4

FAST-TI [24] 30.4 63.1 0.21 0.10 - 63.6 63.6 0.09 0.09 -

MSER-SI [23] 56.4 62.8 0.12 0.08 503.7 46.5 54.5 0.12 0.10 524.8

Harris-Laplace-SI [34] 45.1 62.0 0.20 0.13 95.9 52.7 62.0 0.17 0.08 90.4

KAZE-SI [21] 53.3 65.7 0.20 0.11 12.5 56.9 65.7 0.12 0.10 12.7

AKAZE-SI [22] 54.0 65.6 0.19 0.10 13.5 64.9 69.1 0.11 0.09 13.6

TILDE-TI [14] 31.0 65.1 0.20 0.15 - 70.4 70.4 0.11 0.11 -

LIFT-SI [7] 43.4 59.4 0.20 0.13 13.3 51.6 65.4 0.18 0.12 13.8

DNet-SI [9] 49.4 62.2 0.21 0.14 11.4 59.1 65.1 0.14 0.13 17.1

TCDET-SI [10] 49.6 61.6 0.23 0.16 6.7 66.9 71.0 0.16 0.15 11.4

SuperPoint-TI [13] 33.3 67.1 0.20 0.17 - 69.9 69.9 0.10 0.10 -

LF-Net-SI [11] 32.3 62.2 0.23 0.12 2.00 68.6 69.1 0.10 0.10 2.0

Tiny-Key.Net-SI 57.8 70.3 0.20 0.12 7.6 56.1 62.8 0.14 0.11 7.6

Key.Net-TI 34.2 71.5 0.20 0.11 - 72.0 72.0 0.10 0.10 -

Key.Net-SI 60.5 73.2 0.19 0.14 7.6 61.3 66.2 0.12 0.10 7.6

Table 2: Repeatability results (%) for translation (TI) and scale (SI) invariant detectors on HPatches. We also report average

overlap error ǭIoU and ratio of maximum to minimum extracted scale SRange. In SL, scales and locations are used to compute

overlap error, meanwhile, in L, only locations are used and scales are assumed to be correctly estimated. Key.Net and Tiny-

Key.Net are the best algorithms on viewpoint, for both L and SL. On illumination sequences, translation invariant Key.Net-TI

obtains the best accuracy. Among scale invariant SI detectors, TCDET is the best in L and LF-Net in SL.

location of the global maximum within the window, while

low values average local maxima. The base is varied in ta-

ble 1b. Optimum scores are obtained when using the base

in equation 2 close to the e value, which is in line with the

setting used in [35].

6.2. Keypoint Detection

This section presents the results for state-of-the-art local

feature detectors along with our proposed method. Table

2 shows the repeatability score, average intersection-over-

union error ǭIoU and scale range Srange, which is the ratio

between the maximum and minimum scale values of the ex-

tracted interest points. Suffixes -TI and -SI, refer to trans-

lation (detection at a single scale only) and scale invariance

(detection at multiple scales), respectively. Keypoint loca-

tion is only evaluated under L by assuming correct scale

detection, while scale and location (SL) use the actual de-

tected scale and location for computing the repeatability and

overlap error.

In addition to Key.Net, we propose Tiny-Key.Net, which

is a reduced size architecture with all handcrafted filters

but only one learnable layer with one filter (M = 1) and

a single scale input. The idea behind Tiny-Key.Net is to

demonstrate how far the complexity can be reduced while

keeping good performance. Key.Net and Tiny-Key.Net are

extended to scale invariance by evaluating the detector on

several scaled images, similar to [10]. We also show results

on single scale input Key.Net-TI, to compare it directly with

other TI detectors such as SuperPoint or TILDE. We set the

thresholds of algorithms such that they return at least 1,000

points per image. As MSER proposes regions without scor-

ing or ranking, we randomly pick 1,000 points to compute

the results. We repeat this experiment ten times and aver-

age the results for MSER. Key.Net has the best results on

viewpoint sequences, in terms of both, location and scale.

Tiny-Key.Net does not perform as well as Key.Net but it is

within the top three repeatability scores, after Key.Net-TI

and Key.Net-SI.

On illumination sequences, Key.Net-TI performs the best

among TI detectors, not being affected by scale estimation

errors. TCDET, which uses points detected by TILDE as

anchors, is the most accurate in location estimation com-

pared to other SI detectors. Note that TILDE based detec-

tors were specifically designed and trained for illumination

sequences. LF-Net is the best SI detector according to SL

overlap, not suffering much from incorrect scale estima-

tions. However, its repeatability decreases the most from

L to SL among all SI detectors on viewpoint sequences.

Key.Net-SI addresses the scale changes better than the other

methods but the errors in multi-scale sampling affect it
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Matching Score

View Illum

MSER [23] + HardNet [38] 11.7 18.8

SIFT [5] + HardNet [38] 23.2 24.8

HarrisLaplace [34] + HardNet [38] 30.0 31.7

AKAZE [22] + HardNet [38] 36.4 41.4

TILDE [14] + HardNet [38] 32.3 39.3

LIFT [7] + HardNet [38] 30.3 32.8

DNet [9] + HardNet [38] 33.5 34.7

TCDET [10] + HardNet [38] 27.6 36.3

SuperPoint [13] + HardNet [38] 37.4 43.0

LF-Net [11] + HardNet [38] 26.9 43.8

LIFT [7] 21.8 26.5

SuperPoint [13] 38.0 41.5

LF-Net [11] 23.0 29.1

Tiny-Key.Net + HardNet [38] 37.9 37.3

Key.Net + HardNet [38] 38.4 39.7

Table 3: Matching score (%) of best detectors together with

HardNet and state-of-the-art detector/descriptors. Results

on HPatches sequences, both viewpoint, and illumination.

Key.Net architecture gets the best matching score for view-

point, while LF-Net+HardNet for illumination sequences.

when there is no scale change between images i.e. illumina-

tion sequences. This has often been observed for detectors

with more invariance than required by the data. Handcrafted

detectors have the lowest average overlap error ǭIoU among

all detectors. A wide range of scales Srange is detected by

MSER, which has a great capability of extracting local fea-

tures from different scales due to its feature segmentation

nature.

6.3. Keypoint Matching

Moreover, in order to demonstrate that the detected fea-

tures are useful for matching, table 3 shows matching scores

for detectors combined with HardNet descriptor [38]. As

our method only focuses on the detection part, and for a

fair comparison, we used the same descriptor and discard

the orientation for all methods that provide it. In addi-

tion, we include in the table LIFT [7], SuperPoint [13] and

LF-Net [11] with their descriptors, but ignoring their ori-

entation estimation. SuperPoint and LF-Net have 256 de-

scriptor dimension, while dimension of HardNet [38] and

LIFT is 128. Matching score is computed as the ratio

between features matched and detected (top 1,000). Top

matching scores is obtained by Key.Net on viewpoint, and

LF-Net+HardNet on illumination. Feature detectors that

were optimized jointly with a descriptor [7, 13, 11] have

better matching score than regular learned detectors on il-

Number of Learnable Parameters

TCDET SuperPoint LF-Net Tiny-Key.Net Key.Net

548k 940k 39k 280 5.9k

Table 4: Comparison of the number of learnable parameters

for state-of-the-art architectures. Tiny-Key.Net has only one

learnable block with one filter.

lumination sequences, but not on viewpoint. Handcrafted

AKAZE performs close to the top learned methods for both

viewpoint and illumination sequences.

6.4. Efficiency

We also compare the number of learnable parameters, in-

dicating then the complexity of the predictor, which leads to

an increasing risk of overfitting and need for a large amount

of training data. Table 4 shows the approximate number of

parameters for different architectures. Learnable parame-

ters that are not used during inference in the detector part

are not counted for SuperPoint and LF-Net detectors. The

highest complexity is from SuperPoint with 940k learnable

parameters. Key.Net has nearly 160 times fewer parameters

and Tiny-Key.Net has 3,100 times fewer parameters than

SuperPoint with better repeatability for viewpoint scenes.

The inference time of an image of 600 × 600 is 5.7ms (175

FPS) and 31ms (32.25 FPS) for Tiny-Key.Net and Key.Net,

respectively.

7. Conclusions

We have introduced a novel approach to detect local fea-

tures that combines handcrafted and learned CNN filters.

We have proposed a multi-scale index proposal layer that

finds keypoints across a range of scales, with a loss function

that optimizes the robustness and discriminating properties

of the detections. We demonstrated how to compute and

combine differentiable keypoint detection loss for multi-

scale representation. Evaluation results on large benchmark

show that combining handcrafted and learned features as

well as multi-scale analysis at different stages of the net-

work improves the repeatability scores compared to other

state-of-the-art keypoint detection methods.

We further show that excessively increasing network’s

complexity does not lead to improved results. In contrast,

using handcrafted filters allows to significantly reduce the

complexity of the architecture leading to a detector with 280

learnable parameters and inference of 175 frames per sec-

ond. Proposed detectors lead to state-of-the-art matching

performance when used with a descriptor on viewpoint.
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