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Abstract

This paper introduces a novel feature detector based

only on information embedded inside a CNN trained on

standard tasks (e.g. classification). While previous works

already show that the features of a trained CNN are suitable

descriptors, we show here how to extract the feature loca-

tions from the network to build a detector. This informa-

tion is computed from the gradient of the feature map with

respect to the input image. This provides a saliency map

with local maxima on relevant keypoint locations. Contrary

to recent CNN-based detectors, this method requires nei-

ther supervised training nor finetuning. We evaluate how

repeatable and how ‘matchable’ the detected keypoints are

with the repeatability and matching scores. Matchability

is measured with a simple descriptor introduced for the

sake of the evaluation. This novel detector reaches similar

performances on the standard evaluation HPatches dataset,

as well as comparable robustness against illumination and

viewpoint changes on Webcam and photo-tourism images.

These results show that a CNN trained on a standard task

embeds feature location information that is as relevant as

when the CNN is specifically trained for feature detection.

1. Introduction

Feature extraction, description and matching is a recur-

rent problem in vision tasks such as Structure from Motion

(SfM), visual SLAM and scene recognition. The extraction

consists in detecting image keypoints, then the matching

pairs the nearest keypoints based on their descriptor dis-

tance. Even though hand-crafted solutions, such as SIFT

[19], prove to be successful, recent breakthroughs on local

feature detection and description rely on supervised deep-

learning methods [12, 25, 40]. They detect keypoints on

saliency maps learned by a Convolutional Neural Network

(CNN), then compute descriptors using another CNN or a

Figure 1. (1-6) Embedded Detector: Given a CNN trained on a

standard vision task (classification), we backpropagate the feature

map back to the image space to compute a saliency map. It is

thresholded to keep only the most informative signal and keypoints

are the local maxima. (7-8): Proxy-descriptor.

separate branch of it. They all require strong supervision

and complex training procedures: [40] requires ground-

truth matching keypoints to initiate the training, [25] needs

the ground-truth camera pose and depth maps of the im-

ages, [12] circumvents the need for ground-truth data by us-

ing synthetic one but requires a heavy domain adaptation to

transfer the training to realistic images. All these methods

require a significant learning effort. In this paper, we show

that a trained network already embeds enough information

to build State-of-the-Art (SoA) detector and descriptor.

The proposed method for local feature detection needs

only a CNN trained on standard task, such as ImageNet

[11] classification, and no further training. The detector,

dubbed ELF, relies on the features learned by such a CNN

and extract their locations from the feature map gradients.

Previous work already highlights that trained CNN features

are relevant descriptors [13] and recent works [6, 15, 31]

specifically train CNN to produce features suitable for key-

point description. However, no existing approach uses a

7940



pre-trained CNN for feature detection.

ELF computes the gradient of a trained CNN feature map

with respect to w.r.t the image: this outputs a saliency map

with local maxima on keypoint positions. Trained detec-

tors learn this saliency map with a CNN whereas we extract

it with gradient computations. This approach is inspired by

[32] which observes that the gradient of classification scores

w.r.t the image is similar to the image saliency map. ELF

differs in that it takes the gradient of feature maps and not

the classification score contrary to existing work exploiting

CNN gradients [30, 34, 35, 37]. These previous works aim

at visualising the learning signal for classification specifi-

cally whereas ELF extracts the feature locations. The ex-

tracted saliency map is then thresholded to keep only the

most relevant locations and standard Non-Maxima Suppres-

sion (NMS) extracts the final keypoints (Figure 2).

Figure 2. Saliency maps thresholding to keep only the most infor-

mative location. Top: original image. (Left-Right: Webcam [39],

HPatches [5], COCO[18]) Middle: blurred saliency maps. Bot-

tom: saliency map after threshold. (Better seen on a computer.)

ELF relies only on six parameters: 2×2 Gaussian blur

parameters for the automatic threshold level estimation and

for the saliency map denoising; and two parameters for the

(NMS) window and the border to ignore. Detection only

requires one forward and one backward passes and takes

∼0.2s per image on a simple Quadro M2200, which makes

it suitable for real-time applications.

ELF is compared to individual detectors with standard

repeatability [24] but results show that this metric is not

discriminative enough. Most of the existing detectors can

extract keypoints repeated across images with similar re-

peatability scores. Also, this metric does not express how

‘useful’ the detected keypoints are: if we sample all pix-

els as keypoints, we reach 100% of rep. but the matching

may not be perfect if many areas look alike. Therefore, the

detected keypoints are also evaluated on how ‘matchable’

they are with the matching score [24]. This metric requires

to describe the keypoints so we define a simple descriptor:

it is based on the interpolation of a CNN feature map on the

detected keypoints, as in [12]. This avoids biasing the per-

formance by choosing an existing competitive descriptor.

Experiments show that even this simple descriptor reaches

competitive results which comforts the observation of [13],

on the relevance of CNN features as descriptors. (See 4.1.)

ELF is tested on five architectures: three classifica-

tion networks trained on ImageNet classification: AlexNet,

VGG and Xception [17, 33, 9], as well as SuperPoint [12]

and LF-Net [25] descriptor networks. Although outside the

scope of this paper, this comparison provides preliminary

results of the influence of the network architecture, task and

training data on ELF’s performance. Metrics are computed

on HPatches [5] for general performances, scale and rota-

tion robustness analysis; on Strecha and Webcam [36, 39]

for light and 3D robustness analysis. We also test ELF on

3D reconstruction from images (CVPR19 Image Matching

challenge [1]). Our contributions are the following:

• Extensive experiments show that a CNN trained on a

standard vision task embeds feature location in its fea-

ture gradients. This data is as relevant for feature de-

tection as when the CNN is specifically trained for it.

This novel detector is on par with other sparse ones.

• We define a systematic method for local feature detec-

tion. They also update the previous result from [13]:

self-taught CNN features provide SoA descriptors in

spite of recent improvements in CNN descriptors [10].

• We release the python-based evaluation code to ease

future comparison together with ELF code1.

2. Related work

Early methods rely on hand-crafted detection and de-

scription : SIFT [19] detects 3D spatial-scale keypoints on

difference of gaussians and describes them with a 3D His-

togram Of Gradients (HOG). SURF [7] uses image inte-

gral to speed up the previous detection and uses a sum of

Haar wavelet responses for description. KAZE [4] extends

the previous multi-scale approach by detecting features in

non-linear scale spaces instead of the classic Gaussian ones.

ORB [27] combines the FAST [26] detection, the BRIEF [8]

description, and improves them to make the pipeline scale

and rotation invariant. MSER-based detector hand-crafts

desired invariance properties for keypoints, and designs a

fast algorithm to detect them [21]. Even though these hand-

crafted methods have proven to be successful and to reach

state-of-the-art performance for some applications, recent

research focus on learning-based methods.

One of the first learned detector is TILDE [39], trained

under drastic changes of light and weather on the Webcam

1ELF code:https://github.com/abenbihi/elf
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dataset. They learn saliency maps which maxima are key-

point locations. Ground-truth saliency maps are generated

with ‘good keypoints’ i.e. SIFT keypoints repeated in more

than 100 images. One drawback of this method is the need

for supervision that relies on another detector. However,

there is no universal explicit definition of what a good key-

point is. This lack of specification inspires Quad-Networks

[28] to adopt an unsupervised approach: they train a neu-

ral network to rank keypoints according to their robust-

ness to random hand-crafted transformations. They keep

the top/bottom quantile of the ranking as keypoints. ELF is

similar in that it does not requires supervision but differs in

that it does not need to further train the CNN.

Other learned detectors are trained within full detec-

tion/description pipelines such as LIFT [40], SuperPoint

[12] and LF-Net [25]. LIFT contribution lies in their orig-

inal training method of three CNNs. The detector CNN

learns a saliency map which maxima are keypoints. They

then crop patches around them, compute their orientations

and descriptors with two other CNNs. They first train

the descriptor with patches around ground-truth matching

points with contrastive loss, then the orientation CNN to-

gether with the descriptor and finally with the detector. One

drawback of this method is the need for ground-truth match-

ing keypoints to initiate the training. In [12], the problem is

avoided by pre-training the detector on a synthetic geomet-

ric dataset made of polygons on which they detect mostly

corners. The detector is then finetuned during the descrip-

tor training on image pairs from COCO [18] with synthetic

homographies and the correspondence contrastive loss in-

troduced in [10]. LF-Net relies on another type of super-

vision: it uses ground-truth camera poses and image depth

maps that are ‘easy’ to compute with laser or standard SfM.

Its training pipeline builds over LIFT and employs the pro-

jective camera model to project detected keypoints from one

image to the other. These keypoint pairs form the ground-

truth matching points to train the network. ELF differs in

that the CNN model is already trained on a standard task.

It then extracts the relevant information embedded inside

the network for local feature detection, which requires no

training nor supervision.

The detection method of this paper is mainly inspired

from the initial observation in [32]: given a CNN trained for

classification, the gradient of a class score w.r.t the image is

the saliency map of the class object in the input image. A

line of works aims at visualizing the CNN representation

by inverting it into the image space through optimization

[20, 14]. Following works use these saliency maps to better

understand the CNN training process and justify the CNN

outputs. Efforts mostly focus on the gradient definitions

[30, 34, 35, 37, 42]. ELF simply backpropagates the feature

map back to the image space. As far as we know, this is the

first work to exploit such gradients for feature detection.

The simple descriptor used in the matchability evaluation

is borrowed from UCN [10]. Given a feature map and the

keypoints to describe, it interpolates the feature map on the

keypoints location. Trained CNNs have long been known to

provide relevant feature descriptors [13]. Recent research

has taken on specifically training the CNN for description

with patch-based approaches, (e.g. [31, 22, 15, 41]) or

image-based approaches [10, 38]. We favor [10], also used

by SuperPoint, for its simplicity over [38] and its O(1) com-

plexity compared to O(N) patch-based approaches with N

the number of keypoints.

3. Method

This section defines ELF, a detection method valid for

any trained CNN. Keypoints are local maxima of a saliency

map computed as the feature gradient w.r.t the image. We

use the data adaptive Kapur method [16] to automatically

threshold the saliency map and keep only the most salient

locations, then run NMS for local maxima detection.

Figure 3. (Bigger version in Appendix.) Saliency maps computed

from the feature map gradient

∣

∣

∣

TF l(x) · ∂F l

∂I

∣

∣

∣
. Enhanced image

contrast for better visualisation. Top row: gradients of VGG pool2

and pool3 show a loss of resolution from pool2 to pool3. Bot-

tom: (pooli)i∈[1,2,5] of VGG on Webcam, HPatches and Coco im-

ages. Low level saliency maps activate accurately whereas higher

saliency maps are blurred.

3.1. Feature Specific Saliency

We generate a saliency map that activates on the most

informative image region for a specific CNN feature level l.

Let I be a vector image of dimension DI = HI ·WI · CI .

Let F l be a vectorized feature map of dimension DF =
Hl · Wl · Cl. The saliency map Sl, of dimension DI , is

Sl(I) =
∣

∣

tF l(I) · ∇IF
l
∣

∣, with ∇IF
l a DF ×DI matrix.

The saliency activates on the image regions that con-

tribute the most to the feature representation F l(I). The
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term ∇IF
l explicits the correlation between the feature

space of F l and the image space in general. The multi-

plication by F l(I) applies the correlation to the features

F l(I) specifically and generate a visualisation in image

space Sl(I). From a geometrical point of view, this oper-

ation can be seen as the projection ∇IF
l of a feature signal

F l(I) into the image space. From a signal processing ap-

proach, F l(I) is an input signal filtered through ∇IF
l into

the image space. If CI > 1, Sl is converted into a grayscale

image by averaging it across channels.

3.2. Feature Map Selection

We provide visual guidelines to choose the feature level

l so that F l still holds high resolution localisation informa-

tion while providing a useful high-level representation.

CNN operations such as convolution and pooling in-

crease the receptive field of feature maps while reducing

their spatial dimensions. This means that F l has less spatial

resolution than F l−1 and the backpropagated signal Sl ends

up more spread than Sl−1. This is similar to when an image

is too enlarged and it can be observed in Figure 3, which

shows the gradients of the VGG feature maps. On the top

row, pool2’s gradient (left) better captures the location de-

tails of the dome whereas pool3’s gradient (right) is more

spread. On the bottom rows, the images lose their resolu-

tion as we go higher in the network. Another consequence

of this resolution loss is that small features are not embed-

ded in F l if l is too high. This would reduce the space of

potential keypoint to only large features which would hin-

der the method. This observation motivates us to favor low-

level feature maps for feature detection. We chose the final

F l by taking the highest l which provides accurate locali-

sation. This is visually observable by sparse high intensity

signal contrary to the blurry aspect of higher layers.

3.3. Automatic DataAdaptive Thresholding

The threshold is automatic and adapts to the saliency

map distribution to keep only the most informative regions.

Figure 2 shows saliency maps before and after thresholding

using Kapur’s method [16], which we briefly recall below.

It chooses the threshold to maximize the information be-

tween the image background and foreground i.e. the pixel

distribution below and above the threshold. This method is

especially relevant in this case as it aims at maintaining as

much information on the distribution above the threshold as

possible. This distribution describes the set of local max-

ima among which we choose our keypoints. More formally,

for an image I of N pixels with n sorted gray levels and

(fi)i∈n the corresponding histogram, pi =
fi
N

is the empir-

ical probability of a pixel to hold the value fi. Let s ∈ n

be a threshold level and A,B the empirical background and

foreground distributions. The level s is chosen to maximize

the information between A and B and the threshold value is

set to fs: A =
(

pi∑
i<s

pi

)

i<s
and B =

(

pi∑
i>=s

pi

)

i>s
. For

better results, we blur the image with a Gaussian of param-

eters (µthr, σthr) before computing the threshold level.

Once the threshold is set, we denoise the image with

a second Gaussian blur of parameters (µnoise, σnoise) and

run standard NMS (the same as for SuperPoint) where we

iteratively select decreasing global maxima while ensuring

that their nearest neighbor distance is higher than the win-

dow wNMS ∈ N. Also we ignore the bNMS ∈ N pixels

around the image border.

3.4. Simple descriptor

As mentioned in the introduction, the repeatability score

does not discriminate detectors anymore. So they are also

evaluated on how ‘matchable’ their detected keypoints are

with the matching score. The ELF detector is completed

with a simple descriptor inspired by UCN [10]: a CNN fea-

ture map is interpolated on the detected keypoints. Its sim-

plicity over existing competitive ones avoids unfairly boost-

ing ELF’s perfomance. Although simple, experiments show

that this description completes ELF into a competitive fea-

ture detection/description method.

The feature map used for description may be different

from the one for detection. High-level feature maps have

wider receptive field hence take higher context into account

for the description of a pixel location. This leads to more

informative descriptors which motivates us to favor higher

level maps. However we are also constrained by the loss of

resolution previously described: if the feature map level is

too high, the interpolation of the descriptors generate vec-

tor too similar to each other. For example, the VGG pool4
layer produces more discriminative descriptors than pool5
even though pool5 embeds information which higher level

semantics. Empirically, we observe there exists a layer level

l′ above which the description performance stops increasing

before decreasing. This is measured through the matching

score [24]. The final choice of the feature map is done by

testing some layers l′ > l and select the lowest feature map

before the descriptor performance stagnates.

Detectors are evaluated with both their original descrip-

tor and this simple one. The motivation is that detectors

may be biased to sample keypoints that their respective de-

scriptor can describe ‘well’ [40]. So it is fair to compute the

matching score with the original detector/descriptor pairs.

However, a detector can sample ‘useless points’ (e.g. sky

pixels for 3d reconstructions) that its descriptor can charac-

terise ‘well’. In this case, the descriptor ‘hides’ the detector

default. This motivates the integration of a common inde-

pendent descriptor with all detectors to evaluate them.
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4. Experiments

This section describes the evaluation metrics and

datasets as well as the method’s tuning. Our method is

compared to detectors with available public code: the fully

hand-crafted SIFT [19], SURF [7], ORB [27], KAZE [4],

the learning-based LIFT [40], SuperPoint [12], LF-Net [25],

the individual detectors TILDE [39], MSER [21].

4.1. Metrics

We follow the standard validation [24] that evaluates the

detection performance with repeatability (rep). It measures

the percentage of keypoints common to both images. We

also compute the matching score (ms) as an additional de-

tector metric. It captures the percentage of keypoint pairs

that are nearest neighbours in both image space and de-

scriptor space i.e. the ratio of keypoints correctly matched.

For completeness, the metric definitions are recalled in Ap-

pendix and their implementation in the released code.

A way to reach perfect rep is to sample all the pixels

or sample them with a frequency higher than the distance

threshold ǫkp of the metric. One way to prevent the first

flaw is to limit the number of keypoints but it does not

counter the second. Since detectors are always used to-

gether with descriptors, another way to think the detector

evaluation is: ’a good keypoint is one that can be discrimi-

natively described and matched’. One could think that such

a metric can be corrupted by the descriptor. But we ensure

that a detector flaw cannot be hidden by a very performing

descriptor with two guidelines. One experiment must eval-

uate all detector with one fixed descriptor (the simple one

defined in 3.4). Second, ms can never be higher than rep so

a detector with a poor rep leads to a poor ms.

Here the number of detected keypoints is limited to 500

for all methods. As done in [12, 25], we replace the overlap

score in [24] to compute correspondences with the 5-pixel

distance threshold. Following [40], we also modify the

matching score definition of [24] to run a greedy bipartite-

graph matching on all descriptors and not just the descriptor

pairs for which the distance is below an arbitrary threshold.

We do so to be able to compare all state-of-the-art meth-

ods even when their descriptor dimension and range vary

significantly. (More details in Appendix.)

4.2. Datasets

All images are resized to the 480×640 pixels and the

image pair transformations are rectified accordingly.

General performances. The HPatches dataset [5] gath-

ers a subset of standard evaluation images such as DTU and

OxfordAffine [2, 23]: it provides a total of 696 images, 6

images for 116 scenes and the corresponding homographies

between the images of a same scene. For 57 of these scenes,

the main changes are photogrammetric and the remaining

Figure 4. Left-Right: HPatches: planar viewpoint. Webcam: light.

HPatches: rotation. HPatches: scale. Strecha: 3D viewpoint.

59 show significant geometric deformations due to view-

point changes on planar scenes.

Illumination Robustness. The Webcam dataset [39]

gathers static outdoor scenes with drastic natural light

changes contrary to HPatches which mostly holds artificial

light changes in indoor scenes.

Rotation and Scale Robustness. We derive two datasets

from HPatches available with the code. For each of the

116 scenes, we keep the first image and rotate it with

angles from 0◦ to 210◦ with an interval of 40◦. Four

zoomed-in version of the image are generated with scales

[1.25, 1.5, 1.75, 2].
3D Viewpoint Robustness. We use three Strecha scenes

[36] with increasing viewpoint changes: Fountain, Castle

entry, Herzjesu-P8. The viewpoint changes proposed by

HPatches are limited to planar scenes which does not reflect

the complexity of 3D structures. We use COLMAP [29] to

get ‘ground-truth’ scaleless depth that we release. ELF is

also tested in the CVPR19 Image Matching Challenge [1].

4.3. Baselines

We describe the rationale behind the evaluation. The

tests run on a QuadroM2200 with Tensorflow 1.4, Cuda8,

Cudnn6 and Opencv3.4. We use the OpenCV implemen-

tation of SIFT, SURF, ORB, KAZE, MSER with the de-

fault parameters and the author’s code for TILDE, LIFT,

SuperPoint, LF-Net with the provided models and param-

eters. When comparing detectors in the feature matching

pipeline, we measure their matching score with both their

original descriptor and ELF simple descriptor. For MSER

and TILDE, we use the VGG simple descriptor.

Architecture influence. ELF is tested on five networks:

three classification ones trained on ImageNet (AlexNet,

VGG, Xception [17, 33, 9]) as well as the trained Super-

Point’s and LF-Net’s descriptor ones. We call each variant

with the network’s names prefixed with ELF as in saliency.

The paper compares the influence of i) architecture for a

fixed task (ELF-AlexNet [17] vs. ELF-VGG [33] v.s. ELF-

Xception [9]), ii) the task (ELF-VGG vs. ELF-SuperPoint

(SP) descriptor), iii) the training dataset (ELF-LFNet on

phototourism vs. ELF-SP on MS-COCO). This study is be-

ing refined with more independent comparisons of tasks,

datasets and architectures in a journal extension.

We use the author’s code and pre-trained models which
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we convert to Tensorflow [3]. We search the blurring param-

eters (µthr, σthr), (µnoise, σnoise) in the range [[3, 21]]2; the

NMS parameters (wNMS , bNMS) in [[4, 13]]2.

Individual components comparison. Individual detec-

tors are compared with the matchability of their detection

together with the description of the simple VGG-pool3 de-

scriptor. This way, the m.s. only depends on the detec-

tion performance since the description is fixed for all detec-

tors. This experiment also raises the question of whether

triplet-like losses are relevant to train CNN descriptors. In-

deed, these losses constrain the CNN features directly so

that matching keypoints are near each other in descriptor

space. Simpler loss, such as cross-entropy for classification,

only constrain the CNN output on the task while leaving

the representation up to the CNN. The ELF-VGG detector

is also integrated with existing descriptors. This evaluates

how useful the CNN self-learned feature location compares

with the hand-crafted and the learned ones.

Gradient Baseline. Visually, the feature gradient map is

reminiscent of the image gradients computed with the Sobel

or Laplacian operators. We run two variants of our pipeline

where we replace the feature gradient with them. This aims

at showing whether CNN feature gradients embed more in-

formation than image intensity gradients.

5. Results

Experiments show that ELF compares with the SoA

on HPatches and demonstrates robustness similar to recent

learned methods. It generates saliency maps visually akin

to a Laplacian on very structured images (HPatches) but

proves to be more robust on outdoor scenes with natural

conditions (Webcam). When integrated with existing fea-

ture descriptors, ELF boosts the matching score. Even inte-

grating ELF simple descriptor improves it with the excep-

tion of SuperPoint for which results are equivalent. This

sheds new light on the representations learnt by CNNs and

suggests that deep description methods may underexploit

the information embedded in their trained networks.

Numerical results show that all methods can detect re-

peatable keypoints with similar performances. Even though

the matchability of the points (m.s) is a bit more discrimina-

tive, neither express how ‘useful’ the kp are for the end-goal

task. One way to do so would be to evaluate an end-goal

task (e.g. Structure-from-Motion). However, for the eval-

uation to be rigorous all the other steps should be fixed for

all papers. Recently, the Image Matching CVPR19 work-

shop proposed such an evaluation but is not fully automatic

yet. These results also challenge whether current descriptor-

training loss are a strong enough signal to constrain CNN

features better than a simple cross-entropy.

Unless mentioned otherwise, we compute repeatability

for each detector, and the matching score of detectors with

their respective descriptors, when they have one. We use

Figure 5. Top-Down: HPatches-Webcam. Left-Right: repeatabil-

ity, matching score. Better seen on digital screen with colors.

ELF-VGG-pool4 descriptor for TILDE, MSER, ELF-VGG,

ELF-SuperPoint, and ELF-LFNet. We use AlexNet and

Xception feature maps to build their respective simple de-

scriptors. The meta-parameters for each variants are pro-

vided in Appendix.

General performances. Figure 5 (top) shows that the

rep variance is low across detectors whereas ms is more dis-

criminative, hence the validation method (Section 4.1). On

HPatches, SuperPoint (SP) reaches the best rep-ms [68.6,

57.1] closely followed by ELF (e.g. ELF-VGG: [63.8,

51.8]) and TILDE [66.0, 46.7]. In general, we observe

that learning-based methods all outperform hand-crafted

ones. Still, LF-Net and LIFT curiously underperform on

HPatches: one reason may be that the data they are trained

on differs too much from this one. LIFT is trained on out-

door images only and LF-Net on either indoor or outdoor

datasets, whereas HPatches is made of a mix of them. We

compute metrics for both LF-Net models and report the

highest one (indoor). Even though LF-Net and LIFT fall

behind the top learned methods, they still outperform hand-

crafted ones which suggests that their framework learn fea-

ture specific information that hand-crafted methods can not

capture. This supports the recent direction towards trained

detectors and descriptors.

Light Robustness Again, ms is a better discriminant on

Webcam than rep (Figure 5 bottom). ELF-VGG reaches top

rep-ms [53.2, 43.7] closely followed by TILDE [52.5, 34.7]

which was the state-of-the-art detector.

Overall, there is a performance degradation (∼20%)

from HPatches to Webcam. HPatches holds images with

standard features such as corners that state-of-the-art meth-

ods are made to recognise either by definition or by supervi-

sion. There are less such features in the Webcam dataset be-

cause of the natural lighting that blurs them. Also there are
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strong intensity variations that these models do not handle

well. One reason may be that the learning-based methods

never saw such lighting variations in their training set. But

this assumption is rejected as we observe that even Super-

Point, which is trained on Coco images, outperforms LIFT

and LF-Net, which are trained on outdoor images. Another

justification can be that what matters the most is the pixel

distribution the network is trained on, rather than the image

content. The top methods are classifier-based ELF and Su-

perPoint: the first ones are trained on the huge ImageNet

dataset and benefit from heavy data augmentation. Super-

Point also employs a considerable data strategy to train their

network. Thus these networks may cover a much wider

pixel distribution which would explain their robustness to

pixel distribution changes such as light modifications.

Architecture influence ELF is tested on three classifica-

tion networks as well as the descriptor networks of Super-

Point and LF-Net (Figure 5, bars under ‘ELF’).

For a fixed training task (classification) on a fixed dataset

(ImageNet), VGG, AlexNet and Xception are compared.

As could be expected, the network architecture has a crit-

ical impact on the detection and ELF-VGG outperforms

the other variants. The rep gap can be explained by the

fact that AlexNet is made of wider convolutions than VGG,

which induces a higher loss of resolution when computing

the gradient. As for ms, the higher representation space of

VGG may help building more informative features which

are a stronger signal to backpropagate. This could also jus-

tify why ELF-VGG outperforms ELF-Xception that has less

parameters. Another explanation is that ELF-Xception’s

gradient maps seem smoother. Salient locations are then

less emphasized which makes the keypoint detection harder.

One could hint at the depth-wise convolution to explain

this visual aspect but we could not find an experimental

way to verify it. Surprisingly, ELF-LFNet outperforms the

original LF-Net on both HPatches and Webcam and ELF-

SuperPoint variant reaches similar results as the original.

Figure 6. Top-Down: Scale, Rotation. Left-Right: rep, ms.

Scale Robustness. ELF-VGG is compared with SoA de-

tectors and their respective descriptors (Figure 6, top). Rep.

is mostly stable for all methods: SIFT and SuperPoint are

the most invariant whereas ELF follows the same variations

as LIFT and LF-Net. Once again, ms better assesses the de-

tectors performance: SuperPoint is the most robust to scale

changes, followed by LIFT and SIFT. ELF and LF-Net lose

50% of their matching score with the increasing scale. It

is surprising to observe that LIFT is more scale-robust than

LF-Net when the latter’s global performance is higher. A

reasonable explanation is that LIFT detects keypoints at 21

scales of the same image whereas LF-Net only runs its de-

tector CNN on 5 scales. Nonetheless, ELF outperforms LF-

Net without manual multi-scale processing.

Rotation Robustness. Even though rep shows little vari-

ations (Figure 6, down), all learned methods’ ms crash while

only SIFT survives the rotation changes. This can be ex-

plained by the explicit rotation estimation step of SIFT.

However LIFT and LF-Net also run such a computation.

This suggests that either SIFT’s hand-crafted orientation es-

timation is more accurate or that HOG are more rotation in-

variant than learned features. LF-Net still performs better

than LIFT: this may be because it learns the keypoint ori-

entation on the keypoint features representation rather than

the keypoint pixels as done in LIFT. Not surprisingly, ELF

simple descriptor is not rotation invariant as the convolu-

tions that make the CNN are not. This also explains why

SuperPoint also crashes in a similar manner. These results

suggest that the orientation learning step in LIFT and LF-

Net is needed but its robustness could be improved.

Figure 7. Robustness analysis: 3D viewpoint.

3D Viewpoint Robustness. While SIFT shows a clear

advantage of pure-rotation robustness, it displays simi-

lar degradation as other methods on realistic rotation-and-

translation on 3D structures. Figure 7 shows that all meth-

ods degrade uniformly. One could assume that this small

data sample is not representative enough to run such robust-

ness analysis. However, we think that these results rather

suggest that all methods have the same robustness to 3D

viewpoint changes. Even though previous analyses allows

to rank the different feature matching pipelines, each has

advantages over others on certain situations: ELF or Su-

perPoint on general homography matches, or SIFT on rota-

tion robustness. This is why this paper only aims at show-

ing ELF reaches the same performances and shares similar

properties to existing methods as there is no generic rank-

ing criteria. The evaluation run after the submission by the

CVPR19 Image Matching Challenge [1] supports the previ-

ous conclusions. See numerical results in Appendix.
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Figure 8. Left-Middle-Right bars: original method, integration of

ELF detection, integration of ELF description.

Individual components performance. First, all meth-

ods’ descriptor are replaced with the simple ELF-VGG-

pool3 one. We then compute their new ms and compare it

to ELF-VGG on HPatches and Webcam (Figure 8, stripes).

The description is based on pool3 instead of pool4 here for it

produces better results for the other methods while preserv-

ing ours. ELF reaches higher ms [51.3] for all methods ex-

cept for SuperPoint [53.7] for which it is comparable. This

shows that ELF is as relevant, if not more, than previous

hand-crafted or learned detectors. This naturally leads to

the question: ’What kind of keypoints does ELF detect ?’

There is currently no answer to this complex question. Still,

we observe that ELF activates mostly on high intensity gra-

dient areas although not all of them. One explanation is that

as the CNN is trained on the vision task, it learns to ignore

image regions useless for the task. This results in killing the

gradient signals in areas that may be unsuited for matching.

Another surprising observation regards CNN descrip-

tors: SuperPoint (SP) keypoints are described with the SP

descriptor in one hand and the simple ELF-VGG one in the

other hand. Comparing the two resulting matching scores

is one way to compare the SP and ELF descriptors. Re-

sults show that both approaches lead to similar ms. This re-

sult is surprising because SP specifically trains a description

CNN so that its feature map is suitable for keypoint descrip-

tion [10]. In VGG training, there is no explicit constraints

on the features from the cross-entropy loss. Still, both fea-

ture maps reach similar numerical description performance.

This raises the question of whether contrastive-like losses,

which input are CNN features, can better constrain the CNN

representation than simpler losses, such as cross-entropy,

which inputs are classification logits. This also shows that

there is more to CNNs than only the task they are trained

on: they embed information that can prove useful for unre-

lated tasks. Although the simple descriptor was defined for

evaluation purposes, these results demonstrate that it can be

used as a description baseline for feature extraction.

The integration of ELF detection with other methods’

descriptor (Figure 8, circle) boosts the ms. [40] previously

suggested that there may be a correlation between the detec-

tor and the descriptor within a same method, i.e. the LIFT

descriptor is trained to describe only the keypoints output

by its detector. However, these results show that ELF can

easily be integrated into existing pipelines and even boost

their performances.

Figure 9. Gradient baseline.

Gradient Baseline The ELF saliency map used is re-

placed with simple Sobel or Laplacian gradient maps. The

rest of the detection stays the same. They are completed

with simple ELF descriptors from the VGG, AlexNet and

Xception networks and we compute their performance (Fig-

ure 9 Left). These new hybrids are then compared to their

respective ELF variant (Right). Results show that these sim-

pler gradients can detect systematic keypoints with compa-

rable rep on very structured images such as HPatches. How-

ever, the ELF detector better overcomes light changes (We-

bcam). On HPatches, the Laplacian-variant reaches similar

ms as ELF-VGG (55 vs 56) and outperforms ELF-AlexNet

and ELF-Xception. These scores can be explained with the

images structure: for heavy textured images, high intensity

gradient locations are relevant enough keypoints. However,

on Webcam, all ELF detectors outperform Laplacian and

Sobel with a factor of 100%. This shows that ELF is more

robust than Laplacian and Sobel operators.

Qualitative results Available in the video 2. Green lines

show putative matches based only on nearest neighbour

matching of descriptors.

6. Conclusion

We have introduced ELF, a novel method to extract fea-

ture locations from pre-trained CNNs, with no further train-

ing. Extensive experiments show that it performs as well

as state-of-the art detectors. It can easily be integrated

into existing matching pipelines and proves to boost their

matching performances. Even when completed with a sim-

ple feature-map-based descriptor, it turns into a compet-

itive feature matching pipeline. These results shed new

light on the information embedded inside trained CNNs.

This work also raises questions on the descriptor training

of deep-learning approaches: whether their losses actually

constrain the CNN to learn better features than the ones it

would learn on its own to complete a vision task. Prelim-

inary results show that the CNN architecture, the training

task and the dataset have substantial impact on the detector

performances. A further analysis of these correlations is the

object of a future work.

2https://youtu.be/oxbG5162yDs
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