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Abstract

Multi-Domain Learning (MDL) refers to the problem of
learning a set of models derived from a common deep ar-
chitecture, each one specialized to perform a task in a cer-
tain domain (e.g., photos, sketches, paintings). This paper
tackles MDL with a particular interest in obtaining domain-
specific models with an adjustable budget in terms of the
number of network parameters and computational complex-
ity. Our intuition is that, as in real applications the number
of domains and tasks can be very large, an effective MDL
approach should not only focus on accuracy but also on
having as few parameters as possible. To implement this
idea we derive specialized deep models for each domain
by adapting a pre-trained architecture but, differently from
other methods, we propose a novel strategy to automatically
adjust the computational complexity of the network. To this
aim, we introduce Budget-Aware Adapters that select the
most relevant feature channels to better handle data from
a novel domain. Some constraints on the number of active
switches are imposed in order to obtain a network respect-
ing the desired complexity budget. Experimentally, we show
that our approach leads to recognition accuracy competi-
tive with state-of-the-art approaches but with much lighter
networks both in terms of storage and computation.

1. Introduction

Deep learning methods have brought revolutionary ad-
vances in computer vision, setting the state of the art in
many tasks such as object recognition [9, 14], detection [7],
semantic segmentation [4], depth estimation [37], and many
more. Despite these progresses, a major drawback with
deep architectures is that when a novel task is addressed
typically a new model is required. However, in many sit-
uations it may be reasonable to learn models which per-
form well on data from different domains. This problem,
referred as Multi-Domain Learning (MDL) and originally
proposed in [25], has received considerable attention lately
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Figure 1: In Multi-Domain Learning, a pre-trained model is
usually adapted to solve new tasks in new domains. When
using standard approaches, the complexity C of the domain-
specific models is dependent on the pre-trained model com-
plexity. In this work we propose a novel approach to learn
specialized models while imposing budget constraints in
terms of the number of parameters for each new domain.

[18, 20, 26]. An example of MDL is the problem of image
classification when the data belong to several domains (e.g.,
natural images, paintings, sketches, etc.) and the categories
in the different domains do not overlap.

Previous MDL approaches [18, 20, 25, 26] utilize a com-
mon backbone architecture (i.e., a pre-trained model) and
learn a limited set of domain-specific parameters. This
strategy is advantageous with respect to building several
independent classifiers, as it guarantees a significant sav-
ing in terms of memory. Furthermore, it naturally deals
with the catastrophic forgetting issue, as when a new do-
main is considered the knowledge on the previously learned
ones is retained. Existing approaches mostly differ from
the way domain-specific parameters are designed and in-
tegrated within the backbone architecture. For instance,
binary masks are employed in [18, 20] in order to select
the parameters of the main network that are useful for a
given task. Differently, in [25, 26] domain-specific resid-
ual blocks are embedded in the original deep architecture.
While the different approaches are typically compared in
terms of classification accuracy , their computational and
memory requirements are not taken into account.
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In this paper we argue that an optimal MDL algorithm
should not only achieve high recognition accuracy on all the
different domains but should also permit to keep the num-
ber of parameters as low as possible. In fact, as in real world
applications the number of domains and tasks can be very
large, it is desirable to limit the models’ complexity (both in
terms of memory and computation). Furthermore, it is very
reasonable to assume that different domains and tasks may
correspond to a different degree of difficulty (e.g., recogniz-
ing digits is usually easier than classifying flowers) and may
require different models: small networks should be used for
easy tasks, while models with a large number of parameters
should be employed for difficult ones.

Following these ideas, we propose the first MDL ap-
proach which derives a set of domain-specific classifiers
from a common backbone deep architecture under a bud-
get constraint, where the budget is specified by a user and
is expressed as the number of network parameters (see Fig-
ure 1). This idea is realized by designing a new network
module, called Budget-Aware Adapters (BA?), which em-
beds switch variables that can select the feature channels
relevant to a domain. By dropping feature channels in each
convolutional layer, BA? both adapt the image representa-
tion of the network and reduce the computational complex-
ity. Furthermore, we propose a constrained optimization
problem formulation in order to train domain-specific clas-
sifiers that respect budget constraints provided by the user.
The proposed approach has been evaluated on two publicly
available benchmarks, the ten datasets of the Visual De-
cathlon Challenge [25] and the six-dataset benchmark pro-
posed in [18]. Our results show that the proposed method
is competitive with state-of-the-art baselines and requires
much less storage and computational resources.

2. Related Work

Multi-domain Learning. The problem of adapting deep
architectures to novel tasks and domains has been exten-
sively studied in the past. Earlier works considered sim-
ple strategies, such as fine-tuning existing pre-trained mod-
els, with the drawback of incurring to catastrophic forget-
ting and of requiring the storage of multiple specialized
models. More recent studies address the problem propos-
ing methods for extending the capabilities of existing deep
architectures by adding few task-specific parameters. In
this way, as the parameters of the original network are
left untouched, the catastrophic forgetting issue is natu-
rally circumvented. For instance, Rebuffi et al. [25] in-
troduced residual adapters, i.e., a novel design for residual
blocks that embed task-specific components. In a subse-
quent work [26], they proposed an improved architecture
where the topology of the adapters is parallel rather than
series. Rosenfeld et al. [27] employed controller modules
to constrain newly learned parameters to be linear combi-

nations of existing ones. Weight-based pruning has been
considered in [19] to adapt a single neural network to mul-
tiple tasks. Aiming at decreasing the overhead in terms of
storage, more recent works proposed to adopt binary masks
[18, 20] as task-specific parameters. In particular, while in
[18] simple multiplicative binary masks are used to indicate
which parameters are and which are not useful for a new
task, [20] proposes a more general formulation considering
affine transformations. Guo et al. [8] proposed an adap-
tive fine-tuning method and derive specialized classifiers by
fine-tuning certain layers according to a given target image.

While these works considered a supervised learning set-
ting, the idea of learning task-specific parameters has also
been considered in reinforcement learning. For instance
Rusu et al. [29] proposed an approach where each novel
task is addressed by adding a side branch to the main net-
work. While our approach also aims at developing archi-
tectures which adapts a pretrained model to novel tasks, we
target for the first time the problem of automatically adjust-
ing the complexity of the task-specific models.

Incremental and Life-long learning. In the last few
years several works have addressed the problem of incre-
mental [2, 24] and life-long learning [1, 11, 16], consider-
ing different strategies to avoid catastrophic forgetting. For
instance, Li and Hoeim [16] proposed to adopt knowledge
distillation to ensure that the model adapted to the new tasks
is also effective for the old ones. Kirkpatrick et al. [11]
demonstrated that a good strategy to avoid forgetting on the
old tasks is to selectively slow down learning on the weights
important for those tasks. In [1] Aljundi et al. presented
Memory Aware Synapses, where the idea is to estimate the
importance weights for the network parameters in an unsu-
pervised manner in order to allow adaptation to unlabeled
data stream. However, while these works are interested in
learning over multiple tasks in sequence, in this paper we
focus on a different problem, i.e., re-configuring an existing
architecture under some resource constraints.

Adaptive and Resource-aware Networks. The prob-
lem of designing deep architectures which allow an adaptive
accuracy-efficiency trade-off directly at runtime has been
recently addressed in the research community. For instance,
Wau et al. [36] proposed BlockDrop, an approach that learns
to dynamically choose which layers of a Residual Network
to drop at test time to reduce the computational cost while
retaining the prediction accuracy. Wang et al. [34] intro-
duced novel gating functions to automatically define at test
time the computational graph based on the current network
input. Slimmable Networks have been introduced in [38]
with the purpose of adjusting the network width according
to resource constraints. While our approach is inspired by
these methods, in this paper we show that the idea of dy-
namically adjusting the network according to resource con-
straints is especially beneficial in the multi-domain setting.
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3. Budget-Aware Adapters for MDL

In Multi-Domain Learning (MDL), the goal is to learn
a single model that can work for diverse visual domains,
such as pictures from the web, medical images, paintings,
etc. Importantly, when the visual domains are very differ-
ent, the model has to adapt its image representation. To
address MDL, we follow the common approach [18, 25]
that consists in learning Convolutional Neural Networks
(ConvNets) that share the vast majority of their parameters
but employ a very limited number of additional parameters
specifically trained for each domain.

Formally, we consider an arbitrary pre-trained ConvNet
Uo(-;6p) : X — Yo with parameters 6y that assigns class
labels in ) to elements of an input space X (e.g., images).
Our goal is to learn for each domain d € {1,...,D}, a
classifier Wy(+; 09,0%) : X — Y,; with a possibly different
output space )y that shares the vast majority of its param-
eters 0 but exploits additional domain-specific parameters
6< to adapt ¥ 4 to the domain d.

In this paper, we claim that an effective approach for
MDL should require a low number of domain-specific pa-
rameters. In other words, the cardinality of each ¢ parame-
ter set should be negligible with respect to the cardinality of
fo. In addition, we argue that one major drawback of previ-
ous MDL methods is that the network computational com-
plexity directly ensues from the initial pre-trained network
W,. More precisely, the networks W, for the new domains
usually have computational complexities at best equal to the
one of the initial pre-trained network. Moreover, such mod-
els lack flexibility for deployment since the user cannot ad-
just the computational complexity of V; depending on its
needs or on hardware constraints.

To address this issue, we introduce novel modules, the
Budget-Aware Adapters (BA?) that are designed both for
enabling a pre-trained model to handle a new domain and
for controlling the network complexity. The key idea be-
hind BA? is that the parameters 09 control the use of the
convolution operations parametrized by 6. Therefore, BA?
can learn to drop parts of the computational graph of ¥
and parts of the parameters 0 resulting in a model ¥, with
a lower computational complexity and fewer parameters to
load at inference time. In the following, we first describe
the proposed Budget-Aware Adapters (Subsection 3.1) and
then present the training procedure we introduced to learn
domain-specific models with budget constraints (Subsec-
tion 3.2).

3.1. Adapting Convolutions with BA?

We now describe our Budget-Aware Adapters illustrated
in Figure 2. Since, BA? acts on the elementary convolu-
tion operation, it can be employed in any ConvNet but, for
the sake of notation simplicity, we consider the case of 2D
convolutions. Let K € R2Ku+1x2Kw+1xC pe 5 kernel

Switches

4 Mﬁ »i?« p0080
K(h,w,c) Se

N
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Figure 2: Budget-Aware Adapters (BA?): a switch vector
controls the activation of convolution channels in order to
both adapt the network to a new domain and adjust its com-
putational complexity. Dark grey arrays represents channels
that are “turned off” by the switches.

of a standard convolutional layer of ¥y. Here 2Ky + 1
and 2Kyw + 1 denote the kernel size and C' the number
of input channels. Note that K is a subset of the param-
eters 0y introduced in Section 3. Considering a standard
2D convolution, an input feature map I € R¥*Wx*¢ and
an activation function g, the output value at the location
(1,7) € [1..H] x [1..W] is given by:

c
2(i,5) = 9( D 6c(.4) ) M
c=1
where ¢, is given by:
Koy

Ky
pe= > >, Khwc)I(i—hj—wec). ()

h=—Kjp w=—K,,

For the sake of simplicity, the kernel parameter tensor K
is indexed from — K, to K}, and from — K, to K,,. When
learning a new domain d, we propose to adapt the convo-
lution by controlling the use of each channel of the convo-
lution layer. To this aim, we introduce an additional binary
switch vector s € {0,1}¢. This vector s is a subset of
the 6¢ introduced in Section 3. As shown in Figure 3.1,
each switch value is used for an entire channel. As a con-
sequence, BA? results in a limited number of additional pa-
rameters. Formally, the output of the adapted convolution
at location (i, j) is given by:

2(i.j) = g(fj seelis ) 3
c=1

Note that, when s. = 0, the tensor ¢. in Equation (3) does
not need to be computed. In this context, by adjusting the
proportion of zeros in s., we can control the computational
complexity of the convolution layer. Furthermore, in Equa-
tion (2), when ¢, is not computed, the kernel weights values
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K (h,w,c) can be removed from the computational graph
and do not need to be stored. Therefore, in scenarios where
the parameters K of the initial networks are not further
used, these K (h, w, ¢) weights can be dropped resulting in
a lower number of parameters to store. Thus, s. can also
control the number of parameters of the new domain net-
works.

In order to obtain a model that can be trained via
Stochastic Gradient Descent, we follow [10, 18] and obtain
binary values using a threshold function 7:

sc=T7(3:) = {

where 5. € R are continuous scalar parameters. Simi-
larly to [10, 18], during backward propagation, the 7 func-
tion is replaced by the identity function to be able to back-
propagate the error and update S.. Even though we learn s,
at training time, we only need to store the binary s, values to
use at testing time, leading to a small storage requirement
(1-bit per s.). Compared to other multi-domain methods
that generally use additional 32-bit floating-point numbers
[25, 26, 27], BA? results in a much lighter storage.

The proposed BA? have four main features:
Adapting image representation: In BA?, the ¢, features
can be interpreted as a filter bank and the switch vectors
can be understood as a filter selector. Depending on the
domain, different switch values can be employed to select
features relevant for the considered domain.
Low computational complexity: After training, all the
tensors {¢. | s. = 0} can be removed of the computational
graph, resulting in a lower computational complexity. More
precisely, the computational complexity is proportional to:

1 C
0:5;%. 5)

Note that, the uncomputed operations are grouped in chan-
nels allowing fast GPU implementation.

Lower storage: First, the number of additional parameters
is rather small compared to the number of kernel parameters
of the base network. Second, at testing time, the additional
switch parameters can be stored with a binary representa-
tion to obtain a lightweight storage (1-bit per kernel chan-
nel). Finally, the weight values { K (h,w,c) | s, = 0} can
be dropped, obtaining models with fewer parameters for the
new domains. Again, the number of parameters is propor-
tional to C in Equation (5).

Low Memory footprint: Reducing the computational
complexity, does not necessarily reduces the memory foot-
print at testing time. In order to properly reduce the memory
footprint, one needs to reduce the memory requirements of
all operations across the computational graph, as stated in
[31]. Given that BAZ works on the level of the convolution
operation, it can also control the memory footprint.

0 5.<0.0
1 otherwise

“4)

3.2. Training Budget-aware adapters for MDL

We now detail how BA? is used for MDL. As explained
in Subsection 3.1, we follow a strategy of adapting a pre-
trained model to novel domains. Therefore, when learning
a new domain, we consider that 6 is provided and we keep
it fixed for the whole training procedure.As a consequence
the learning procedure can be subdivided in independent
training for each domain resulting in simpler training pro-
cedure. Note that, similarly to [18, 20, 25], we use batch-
normalization parameters specific for each domain. Fur-
thermore, as shown in [38], using different number of chan-
nels leads to different feature mean and variance and, as a
consequence, sharing Batch Normalization layers performs
poorly. Therefore, we use different batch-normalization
layers for each budget. Note that, since the number of pa-
rameters in a batch-normalization layer is much lower than
in convolution layer, this solution does not increase signif-
icantly the number of additional parameters with respect to
the size of 6.

Following the notations introduced in Section 3, #¢ now
denotes the set of all the switch values s. and the addi-
tional batch-normalization parameters. Considering a new
domain d, W, is trained using a loss £. In the case of clas-
sification, we employ the cross-entropy loss for all the do-
mains. In the context of BA2, we aim at training ¥, with
budget constraints. Formally, we formulate the optimiza-
tion problem as follows: we minimize £ with respect to the
BA? parameters 6¢ such that the network complexity satis-
fies a target budget 8 € [0, 1]. For each new domain, we
obtain the following constrained optimization problem:

0% = arg min £(6, 0%) (6)
o4
s.t. 02 <3 (7)

where 69 denotes the mean value of the switches in 67,
From Equation (6), we construct the generalized Lagrange
function and the associated optimization problem:

92* = arg min [5(907 9;1) + rilf‘é(()‘(ég - 6))] ®)

0

The A is known as the Karush-Kuhn-Tucker (KKT) mul-
tiplier. Equation (8) is optimized via stochastic gradient
descent (SGD). When the budget constrained is respected,
A = 0 and Equation (8) corresponds to £ minimization.
When the constraint is not satisfied, in addition to £ mini-
mization, the SGD steps also lead to an increase of A which
in turn increases the impact of the budget constraint on L.
In order to obtained networks with different budgets,
training is performed independently for each 3 value. When
[ is set to 1, the constraint in Equation (6) is satisfied for
any 2. Therefore, the problem consists in a loss minimiza-
tion problem over the parametric network family defined by
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Method | Params || ImNet Airc. C100 DPed DTD GTSR Flwr. Oglt. SVHN UCF | Mean || S-Score
Feature [25] 1 59.7 233 631 803 454 682 737 588 435 268 | 543 544
Finetune [25] 10 59.9 603 821 928 555 975 814 877 966 512 | 765 || 2500
SpotTune [8] 11 603 639 805 965 57.13 995 8522 888 967 523 | 781 || 3612
RA[25] 2 59.7 567 812 939 509 971 662 896 961 475 | 739 || 2118
DAM [27] 2.17 577 641 801 913 565 985 861 897 968 494 | 77.0 || 2851
PA [26] 2 603 642 819 947 588 994 847 892 965 509 | 78.1 3412
PB [18] 1.28 577 653 799 970 575 973 791 876 972 475 | 766 | 2838
WTPB [20] 1.29 60.8 528 820 962 587 992 882 892 968 48.6 | 772 || 3497
BA? (Ours) (3 =1.00) | 1.03 56.9 499 781 955 551 994 861 887 969 502 | 757 3199
BA? (Ours) (8 =0.75) | 103 56.9 470 784 953 550 992 856 888 968 487 | 752 || 3063
BA? (Ours) (3 =0.50) | 1.03 56.9 457 766 950 552 994 833 889 969 468 | 745 2999
BA? (Ours) (8 =0.25) | 103 56.9 422 710 934 524 991 820 885 969 439 | 726 | 2538

Table 1: Results in terms of accuracy and S-Score, for the Visual Decathlon Challenge. Best model in bold, second best

underlined.

0. This scenario corresponds to a standard multi-domain
scenario without considering budget as in [18, 20, 25, 27].
When § < 1, we combine both re-parametrization and
budget-adjustable abilities of Budget-Aware Adapters. In
this case, the goal is to obtain the best performing model
that respects the budget constrain. It is important to note
that the actual complexity of the network, after training,
can be lower than the one defined by the user, including
the § = 1 case.

Note that in Equation (6), the budget constraint is for-
mulated as a constraint on the total network complexity. In
practice, it can be preferable to constrain each BA? to satisfy
independent budget constraints in order to both spread com-
putation over the layers and obtain a lower memory foot-
print. In this case, KKT multipliers are added in Equation
(8) for each convolution layer.

4. Experimental Results

In this section we present the experimental methodol-
ogy and metrics used to evaluate our approach. Moreover,
we report the results and comparisons with state of the art
MDL approaches (Subsection 4.1). In addition, we also
conduct further experiments on the usual single-domain set-
ting and demonstrate the effectiveness of BA? (Subsection
4.3) in reducing complexity while learning accurate recog-
nition models.

4.1. Multi-Domain Learning

Datasets. In order to evaluate our MDL approach, we
adopt two different benchmarks. We first consider the Vi-
sual Decathlon Challenge [25]. The purpose of this chal-
lenge is to compare methods for MDL over 10 different
classification tasks: ImageNet [28], CIFAR-100 [13], Air-
craft [17], Daimler pedestrian (DPed) [21], Describable
Textures (DTD) [5], German Traffic Signs (GTSR) [33],
Omniglot [15], SVHN [22], UCF101 Dynamic Images [3,

32] and VGG-Flowers [23]. For more details about the chal-
lenge, please refer to [25].

As for the second benchmark, we follow previous
works [18, 20] and consider the union of six different
datasets: ImageNet [28], VGG-Flowers [23], Stanford
Cars [12], Caltech-UCSD Birds (CUBS) [35], Sketches [6],
and WikiArt [30]. These datasets are very heterogeneous,
comprising a wide range of the categories (e.g., cars [12]
vs birds [35]) and a large variety of image appearance (i.e.,
natural images [28], art paintings [30], sketches [6]).
Accuracy Metrics. Both benchmarks are designed to ad-
dress classification problems. Therefore, as common prac-
tice [18, 20], we report the accuracy for each domain and
the average accuracy over the domains. In addition, the
score function S, as introduced in [25], is considered to
jointly account for the N domains. The test error F4 of
the model on the domain d is compared to the test error
of a baseline model EJ™. The score is given by S =
S, amax{0, E™ — E4}?, where o is a scaling param-
eter ensuring that the perfect score for each domain is 1000.
The baseline error is given by doubling the error of 10 in-
dependent models fine-tuned for each domain. Importantly,
this metric favors models with good performances over all
domains, while penalizing those that are accurate only on
few domains.

Complexity Metrics. Furthermore, since in this paper we
argue that MDL methods should also be evaluated in terms
of model complexity, we consider two other metrics which
account for the number of network parameters and opera-
tions. First, following [18, 20], we report the total number
of parameters relative to the ones of the initial pre-trained
model (counting all domains and excluding the classifiers).
Note that, when computing the model size, we consider that
all float numbers are encoded in 32 bits and switches in 1 bit
only. Second, we propose to report the average number of
floating-point operations (FLOP) over all the domains (in-
cluding the pre-training domain d = 0, i.e., ImageNet) rel-
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ative to the number of operations of the initial pre-trained
network. Interestingly, for the Budget-Aware Adapters, this
ratio is also equal to the average number of parameters used
at inference time for each individual domain, relative to the
number of parameters of Wy.

These complexity measures lead us to two variants of the

score S: the score per parameter Sp and the score per oper-
ation Sp. These two metrics are able to assess the trade-off
between performance and model complexity.
Networks and training protocols. Concerning the Visual
Decathlon, we consider the Wide ResNet-28 [39] adopted
in previous works [18, 20, 25, 27] and employ the same
data pre-processing protocol. In term of hyper-parameters,
we follow [25] when pre-training on ImageNet. For other
domains, we employ the hyper-parameters used in [18].

For the second benchmark, we use a ResNet-50 [9]. Note
that, since the performance of the method in [19] relies
on the order of the domains, we report the performances
for two orderings as in [18]: starting from the model pre-
trained on ImageNet, the first (—) corresponds to CUBS-
Cars-Flowers-WikiArt-Sketch, while the second (+) cor-
responds to reversed order. We also followed the pre-
processing, hyper-parameters and training schedule of [18],
as we did in the Visual Decathlon Challenge.

We chose to use the same setting (network, pre-

processing, and training schedules) employed by previous
works seeking fairer analyses regarding the impact of the
proposed approach.
Budget Constraints Even if our training procedure is for-
mulated as a constrained optimization problem (see Equa-
tion 7), the stochastic gradient descent algorithm we employ
does not guarantee that all the constraints will be satisfied
at the end of training. Therefore, in all our experiments, we
check whether the final models respect the specified bud-
get constraints. All the scores reported in this paper were
obtained with models that respect the specified budget con-
straints, unless explicitly specified otherwise.

Method ‘ FLOP Params Score ‘ So Sp

Feature 1 1 544 544 544
Finetune 1 10 2500 | 2500 250
SpotTune 1 11 3612 | 3612 328
RA 1.099 2 2118 | 1926 1059
DAM 1 2.17 2851 | 2851 1314
PA 1.099 2 3412 | 3102 1706
PB 1 1.28 2838 | 2838 2217
WTPB 1 1.29 3497 | 3497 2710
BA? (Ours) (8 = 1.00) | 0.646 1.03 3199 | 4952 3106
BA? (Ours) (8 = 0.75) | 0.612 1.03 3063 | 5005 2974
BA? (Ours) (8 = 0.50) | 0.543 1.03 2999 | 5523 2912
BA? (Ours) (8 = 0.25) | 0.325 1.03 2538 | 7809 2464

Table 2: Performance/Complexity trade-off comparison on
the visual decathlon challenge.

Results on the Visual Decathlon Challenge. We first
evaluate our methods on the Visual Decathlon Chal-
lenge. Results are reported in Table 1. We report the
BA? scores with respect to four different budgets 8 €
{0.25,0.50,0.75,1.00}. We first observe that for most of
the domains, BA? without budget constrains is competitive
with state-of-the-art methods in terms of accuracy. Our
method is the second best performing for three domains
(GTSR, VGG-Flowers, and SVHN). In terms of score,
among lightweight methods, only Parallel Adapters (PA)
and Weight Transformations using Binary Masks (WTPB)
perform better than ours. However, both methods require
significantly more additional parameters to achieve these
performances. Concerning the models where a budget con-
straint is considered, we observe that the scores still out-
perform RA [25], DAM [27] and PB [18] in terms of score
when targeting a budget of 50% or 75% of the initial net-
work parameters, i.e., 3 = 0.50 or 0.75.

Interestingly, it can be seen in Table 1 that, when we
impose a tighter budget to BA2, the total number of pa-
rameters do not decrease. Indeed, all the parameters of
the pre-trained network W are still required at testing time
to handle the 10 domains. Only the number of parame-
ters used for each domain and the number of floating-point
operations are reduced. Therefore, we propose to com-
plete this evaluation in order to further understand the per-
formance/complexity trade-off achieved by each method.
More precisely, we report the number of parameters and
FLOPs in Table 2, and their corresponding scores. First, we
observe that only BA%? models report FLOPs lower than 1.
In other words, only BA? provide models with fewer opera-
tions than the initial network ¥,. We see that BA? achieve
the best performance in terms of Sp when using 100% bud-
get. As mentioned above, the total number of parameters for
the 10 domains do not decrease with a smaller budget. Con-
sequently, smaller budgets obtain lower Sp values. Never-
theless, the 75% and 50% models rank second and third,
respectively.

Concerning the FLOP, only BA? return models with
fewer floating-point operations than the initial network. As
a consequence, BA? clearly outperforms other approaches
in terms of Sp. In addition, we note that S increases when
using tighter budgets. It illustrates the potential of our ap-
proach in order to obtain a good performance/complexity
trade-off. Interestingly, even the models with 8 = 100%
report a FLOP value lower than 1 since convolutional chan-
nels can be dropped to adapt to each domain. Note that
for all our models, the reported FLOP numbers are smaller
than the specified budget. The reason for this is that we
impose budget constraints independently to each convolu-
tional layer in order to obtain a low memory footprint (see
Subsection 3.2). Therefore, the average percentage of chan-
nels that are dropped can be smaller than the specified bud-
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Figure 3: Performance/Complexity Trade-Off on the visual decathlon challenge: the total score is displayed as a function of

the two considered complexity metrics FLOPs and Params.

‘ FLOP  Params ‘ ImageNet CUBS Cars Flowers WikiArt Sketch ‘ Score  So Sp
Classifier Only [18] 1 1 76.2 70.7 52.8 86.0 55.6 50.9 533 533 533
Individual Networks [18] 1 6 76.2 82.8 91.8 96.6 75.6 80.8 1500 1500 250
SpotTune [8] 1 7 76.2 84.03 9240 96.34 75.77 80.2 1526 1526 218
PackNet — [19] 1 1.10 75.7 80.4 86.1 93.0 69.4 76.2 732 732 665
PackNet < [19] 1 1.10 75.7 71.4 80.0 90.6 70.3 78.7 620 620 534
Piggyback [18] 1 1.16 76.2 80.4 88.1 93.5 73.4 79.4 934 934 805
Piggyback+BN [18] 1 1.17 76.2 82.1 90.6 95.2 74.1 79.4 1184 1184 1012
WTPB [20] 1 1.17 76.2 82.6 91.5 96.5 74.8 80.2 1430 1430 1222
BA? (Ours) (3 = 1.00) 0.700 1.03 76.2 81.19 92.14 95.74 72.32 79.28 | 1265 1807 1228
BA? (Ours) (8 = 0.75) 0.600 1.03 76.2 79.44  90.62  94.44 70.92 79.38 | 1006 1677 977
BA? (Ours) (8 = 0.50) 0.559 1.03 76.2 79.34  90.80 9491 70.61 78.28 | 1012 1810 983
BA? (Ours) (8 = 0.25) 0.375 1.03 76.2 78.01 88.15  93.19 67.99 77.85 755 2013 733

Table 3: State of the art comparison on the ImageNet-to-Sketch benchmark. Best model in bold, second best underlined.

get and, in fact, this is what we observed in ours models.

For better visualization, we illustrate in Figure 3 the per-
formance/complexity trade-off for each method on the Vi-
sual Decathlon Challenge. More precisely, in Figure 3a,
we plot the score obtained as a function of the computation
complexity in FLOPs. When comparing with other meth-
ods, we see that BAZ lead to much lighter models that have,
as a consequence, better performance/computation trade-
offs. In Figure 3b, we report the obtained score as a function
of the total number of parameters. BA? is the method that re-
quires the lowest number of additional parameters to adapt
to the 10 domains. Furthermore, this plot clearly show that
our 100% model has an interesting trade-off between the
performance and the number of additional parameters. Note
that WTPB [20] also obtained a good trade-off but stores, in
total, 29% more parameters (approximately x9 per new do-
main). Interestingly, the best performing approach in terms
of score, i.e., SpotTune [8], requires a much larger num-
ber of parameters that would restrict the use of this method
when increasing the number of domains.

Results on the ImageNet-to-Sketch setting. We now
compare our method with state-of-the-art approaches on the
ImageNet-to-Sketch setting. Results are reported in Table 3.

First, we see that BA? achieve the second best score among
methods that employ only a small number of additional pa-
rameters. Only WTPB [20] reports better scores at a higher
cost in terms of additional parameters per domain. Inter-
estingly, the 50% and 75% models report similar perfor-
mances. Second, the Sy and Sp values clearly confirm the
conclusions drawn on the first experiments on the Visual
Decathlon Challenge. The four different BA%2 models out-
perform all the other methods in terms of S and our model
with 100% budget slightly outperforms WTPB in terms of
Sp.

4.2. Ablation study of BA?

In order to further understand the performance of BAZ,
we propose to compare the drop in accuracy when impos-
ing different budget constraints. In Figure 4, we perform an
experiment on the Visual Decathlon Challenge with vary-
ing budgets 8 = {0.1,0.2,...,1.0}. We display the ac-
curacy drop relative to the performance of the model with
100% budget. Because of the restrictions of the Challenge
in terms of number of submissions (per day and in total),
we report results on the validation set. To decrease the
impact of the training stochasticity, we report the median
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Figure 4: Relative accuracy drop compared to the 100%
model accuracy for the 10 domains of the Visual Decathlon
challenge datset (validation set). Median score over 4 runs
is reported. Missing points correspond to models where the
budget constraint was not satisfied in the four runs.

performance over 4 runs. As mentioned previously, the
stochastic gradient descent algorithm we employ for train-
ing our model does not guarantee to provide a solution that
respect the budget constraints. Therefore, in Figure 4, we
display only points corresponding to models that satisfy the
specified budget. We first observe that for all the domains,
our method returns models that respect the specified budget
when the budget is greater than 30%. For some domains,
we obtain models that respect even tighter budgets, such as
the GTSR dataset where we obtain a 10%-budget model.
Interestingly, we notice that the domains where our mod-
els fail to respect the 20% budget are the same in which the
drop in performance is more clearly visible from the 100%
to 30% budgets. Furthermore, we observe that the domains
where the performance drop is small correspond to those
where the 100% model reaches excellent performance. For
instance, in Table 1 the models for the GTSR (traffic signs)
and DPed (pedestrians) datasets reach accuracy over 95%
with our 100% model and do not significantly lose perfor-
mance when imposing a tighter budget. Conversely, we ob-
serve that the DTD and the aircraft datasets, that show the
largest performance drop, correspond also to the most chal-
lenging datasets according the accuracies of all methods re-

ported in Table 1.
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Figure 5: Single-domain classification with adaptive bud-
get. BA? is compared with Slimmable Networks [38].

4.3. Evaluating BA? for single-domain problems

In order to further demonstrate the effectiveness of our pro-
posed BA?, we perform experiments on a standard single-
domain classification problem training a single ConvNet
with different budget constraints.

Datasets and Experimental Protocol. We perform exper-
iments on two well-known classification datasets: CIFAR-
10 and CIFAR-100 [13]. In these experiments, we employ
the following procedure. We first train a ResNet-50 archi-
tecture setting all the switch vectors to 1, leading to the ini-
tial model. We then employ different switches 6 for each
budget, but we share the convolution parameters 6, among
budgets. We fine-tune all the parameters optimizing Equa-
tion (8) w.r.t. 8 and all the different 5 parameters jointly.
Results. We compare our approach with the recently pro-
posed Slimmable Networks [38]. We consider this approach
as this is the most closely related to our method in litera-
ture. In [38], different budgets are obtained by gradually
dropping filters, imposing that filters dropped for a given
budget are also dropped for lower budgets. Conversely, in
BA? we do not impose any constraints between the switches
at different budgets. It can be observed in Figure 5 that,
in the case of CIFAR-10, both models achieve an accu-
racy similar to a vanilla network trained without any bud-
get constraint. On the more challenging CIFAR-100, both
BA? and Slimmable Networks perform slightly worse than
the vanilla network. Interestingly, BA? is able to maintain
a constant accuracy on both datasets when decreasing the
budget constraint up to 50% whereas Slimmable Networks
begins to perform poorly. The difference between the two
methods becomes larger with tighter budgets, until 10%
where Slimmable Networks accuracy collapses. These ex-
periments show that imposing constraints between budgets
as in [38] harms the performance and illustrate the potential
of our approach even for single-domain problems.

5. Conclusions

In this paper, we proposed to investigate the multi-
domain learning problem with budget constraints. We pro-
pose to adapt a pre-trained network to each new domain
with constraints on the network complexity. Our Budget-
Aware Adapters (BA?) select the most relevant feature chan-
nels using trainable switch vectors. We impose constraints
on the switches to obtain networks that respect to user-
specified budget constraints. From an experimental point
of view, BA? show performances competitive with state-of-
the-art methods even with small budget values. As future
works, we plan to extend our Budget-Aware Adapters in or-
der to be able do control the budget in a continuous fashion.
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