
Learning Discriminative Model Prediction for Tracking

Goutam Bhat∗ Martin Danelljan∗ Luc Van Gool Radu Timofte

CVL, ETH Zürich, Switzerland

Abstract

The current strive towards end-to-end trainable com-

puter vision systems imposes major challenges for the task

of visual tracking. In contrast to most other vision problems,

tracking requires the learning of a robust target-specific ap-

pearance model online, during the inference stage. To be

end-to-end trainable, the online learning of the target model

thus needs to be embedded in the tracking architecture it-

self. Due to the imposed challenges, the popular Siamese

paradigm simply predicts a target feature template, while

ignoring the background appearance information during

inference. Consequently, the predicted model possesses lim-

ited target-background discriminability.

We develop an end-to-end tracking architecture, capa-

ble of fully exploiting both target and background appear-

ance information for target model prediction. Our archi-

tecture is derived from a discriminative learning loss by

designing a dedicated optimization process that is capa-

ble of predicting a powerful model in only a few iterations.

Furthermore, our approach is able to learn key aspects of

the discriminative loss itself. The proposed tracker sets

a new state-of-the-art on 6 tracking benchmarks, achiev-

ing an EAO score of 0.440 on VOT2018, while running

at over 40 FPS. The code and models are available at

https://github.com/visionml/pytracking.

1. Introduction

Generic object tracking is the task of estimating the state

of an arbitrary target in each frame of a video sequence. In

the most general setting, the target is only defined by its ini-

tial state in the sequence. Most current approaches address

the tracking problem by constructing a target model, capa-

ble of differentiating between the target and background ap-

pearance. Since target-specific information is only available

at test-time, the target model cannot be learned in an of-

fline training phase, as in for instance object detection. In-

stead, the target model must be constructed during the infer-

ence stage itself by exploiting the target information given

∗Both authors contributed equally.

Image Siamese based Ours

Figure 1. Confidence maps of the target object (red box) provided

by the target model obtained using i) a Siamese approach (middle),

and ii) Our approach (right). The model predicted in a Siamese

fashion, using only target appearance, struggles to distinguish the

target from distractor objects in the background. In contrast, our

model prediction architecture also integrates background appear-

ance, providing superior discriminative power.

at test-time. This unconventional nature of the visual track-

ing problem imposes significant challenges when pursuing

an end-to-end learning solution.

The aforementioned problems have been most success-

fully addressed by the Siamese learning paradigm [2, 22].

These approaches first learn a feature embedding, where

the similarity between two image regions is computed by

a simple cross-correlation. Tracking is then performed by

finding the image region most similar to the target template.

In this setting, the target model simply corresponds to the

template features extracted from the target region. Conse-

quently, the tracker can easily be trained end-to-end using

pairs of annotated images.

Despite its recent success, the Siamese learning frame-

work suffers from severe limitations. Firstly, Siamese track-

ers only utilize the target appearance when inferring the

model. This completely ignores background appearance

information, which is crucial for discriminating the target

from similar objects in the scene (see figure 1). Secondly,

the learned similarity measure is not necessarily reliable for

objects that are not included in the offline training set, lead-

ing to poor generalization. Thirdly, the Siamese formulation

16182

does not provide a powerful model update strategy. Instead,

state-of-the-art approaches resort to simple template averag-

ing [45]. These limitations result in inferior robustness [20]

compared to other state-of-the-art tracking approaches.

In this work, we introduce an alternative tracking archi-

tecture, trained in an end-to-end manner, that directly ad-

dresses all aforementioned limitations. In our design, we

take inspiration from the discriminative online learning pro-

cedures that have been successfully applied in recent track-

ers [6, 9, 29]. Our approach is based on a target model

prediction network, which is derived from a discriminative

learning loss by applying an iterative optimization proce-

dure. The architecture is carefully designed to enable ef-

fective end-to-end training, while maximizing the discrim-

inative ability of the predicted model. This is achieved by

ensuring a minimal number of optimization steps through

two key design choices. First, we employ a steepest descent

based methodology that computes an optimal step length

in each iteration. Second, we integrate a module that ef-

fectively initializes the target model. Furthermore, we in-

troduce significant flexibility into our final architecture by

learning the discriminative learning loss itself.

Our entire tracking architecture, along with the back-

bone feature extractor, is trained using annotated track-

ing sequences by minimizing the prediction error on fu-

ture frames. We perform comprehensive experiments on 7

tracking benchmarks: VOT2018 [20], LaSOT [10], Track-

ingNet [26], GOT10k [16], NFS [12], OTB-100 [42], and

UAV123 [25]. Our approach achieves state-of-the-art re-

sults on all 7 datasets, while running at over 40 FPS. We

also provide an extensive experimental analysis of the pro-

posed architecture, showing the impact of each component.

2. Related Work

Generic object tracking has undergone astonishing

progress in recent years, with the development of a vari-

ety of approaches. Recently, methods based on Siamese

networks [2, 22, 38] have received much attention due to

their end-to-end training capabilities and high efficiency.

The name derives from the deployment of a Siamese net-

work architecture in order to learn a similarity metric of-

fline. Bertinetto et al. [2] utilize a fully-convolutional ar-

chitecture for similarity prediction, thereby attaining high

tracking speeds of over 100 FPS. Wang et al. [41] learn a

residual attention mechanism to adapt the tracking model to

the current target. Li et al. [22] employ a region proposal

network [33] to obtain accurate bounding boxes.

A key limitation in Siamese approaches is their inability

to incorporate information from the background region or

previous tracked frames into the model prediction. A few

recent attempts aim to address these issues. Guo et al. [13]

learn a feature transformation to handle the target appear-

ance changes and to suppress background. Zhu et al. [45]

handle background distractors by subtracting corresponding

image features from the target template during online track-

ing. Despite these attempts, the Siamese trackers are yet

to reach high level of robustness attained by state-of-the-art

trackers employing online learning [20].

In contrast to Siamese methods, another family of track-

ers [6, 7, 29] learn a discriminative classifier online to dis-

tinguish the target object from the background. These ap-

proaches can effectively utilize background information,

thereby achieving impressive robustness on multiple track-

ing benchmarks [20, 42]. However, such methods rely on

more complicated online learning procedures that cannot

be easily formulated in an end-to-end learning framework.

Thus, these approaches are often restricted to features ex-

tracted from deep networks pre-trained for image classifi-

cation [9, 24] or hand-crafted alternatives [8].

A few recent works aim to formulate existing discrim-

inative online learning based trackers as a neural network

component in order to benefit from end-to-end training.

Valmadre et al. [40] integrate the single-sample closed-

form solution of the correlation filter (CF) [15] into a deep

network. Yao et al. [44] unroll the ADMM iterations in

BACF [18] tracker to learn the feature extractor and a few

tracking hyper-parameters in a complex multi-stage training

procedure. The BACF model learning is however restricted

to the single-sample variant of the Fourier-domain CF for-

mulation which cannot exploit multiple samples, requiring

ad-hoc linear combination of filters for model adaption.

The problem of learning to predict a target model using

only a few images is closely related to meta-learning [11,

27, 28, 32, 34, 35, 39]. A few works have already pursued

this direction for tracking. Bertinetto et al. [1] meta-train

a network to predict the parameters of the tracking model.

Choi et al. [5] utilize a meta-learner to predict a target-

specific feature space to complement the general target-

independent feature space used for estimating the similarity

in Siamese trackers. Park et al. [31] develop a meta-learning

framework employing an initial target independent model,

which is then refined using gradient descent with learned

step-lengths. However, constant step-lengths are only suit-

able for fast initial adaption of the model and does not pro-

vide optimal convergence when applied iteratively.

3. Method

In this work, we develop a discriminative model predic-

tion architecture for tracking. As in Siamese trackers, our

approach benefits from end-to-end training. However, un-

like Siamese, our architecture can fully exploit background

information and provides natural and powerful means of

updating the target model with new data. Our model pre-

diction network is derived from two main principles: (i)

A discriminative learning loss promoting robustness in the

learned target model; and (ii) a powerful optimization strat-

6183

Backbone Cls
Feat

Model
Initializer

Initial
Model f

Model
Optimizer

Conv
Cls

Feat

Update
Model f

Tr
ai

ni
ng

 S
et

Score
Prediction Te

st
 F

ra
m

e

Backbone

Final Model f

Feature Extractor F Model
Predictor D

(0)

(i)

Figure 2. An overview of the target classification branch in our tracking architecture. Given an annotated training set (top left), we extract

deep feature maps using a backbone network followed by an additional convolutional block (Cls Feat). The feature maps are then input

to the model predictor D, consisting of the initializer and the recurrent optimizer module. The model predictor outputs the weights of the

convolutional layer which performs target classification on the feature map extracted from the test frame.

egy ensuring rapid convergence. By such careful design,

our architecture can predict the target model in only a few

iterations, without compromising its discriminative power.

In our framework, the target model constitutes the

weights of a convolutional layer, providing target classifi-

cation scores as output. Our model prediction architecture

computes these weights by taking a set of bounding-box

annotated image samples as input. The model predictor

includes an initializer network that efficiently provides an

initial estimate of the model weights, using only the tar-

get appearance. These weights are then processed by the

optimizer module, taking both target and background ap-

pearance into account. By design, our optimizer module

possesses few learnable parameters in order to avoid over-

fitting to certain classes and scenes during offline training.

Our model predictor can thus generalize to unseen objects,

which is crucial in generic object tracking.

Our final tracking architecture consists of two branches:

a target classification branch (see figure 2) for distinguish-

ing the target from background, and a bounding box esti-

mation branch for predicting an accurate target box. Both

branches input deep features from a common backbone net-

work. The target classification branch contains a convolu-

tional block, extracting features on which the classifier op-

erates. Given a training set of samples and corresponding

target boxes, the model predictor generates the weights of

the target classifier. These weights are then applied to fea-

tures extracted from the test frame, in order to compute the

target confidence scores. For the bounding box estimation

branch, we utilize the overlap maximization based architec-

ture introduced in [6]. The entire tracking network, includ-

ing the target classification, bounding box estimation and

backbone modules, is trained offline on tracking datasets.

3.1. Discriminative Learning Loss

In this section, we describe the discriminative learning

loss used to derive our model prediction architecture. The

input to our model predictor D consists of a training set

Strain = {(xj , cj)}
n
j=1 of deep feature maps xj ∈ X gen-

erated by the feature extractor network F . Each sample

is paired with the corresponding target center coordinate

cj ∈ R
2. Given this data, our aim is to predict a target

model f = D(Strain). The model f is defined as the filter

weights of a convolutional layer tasked with discriminat-

ing between target and background appearance in the fea-

ture space X . We gather inspiration from the least-squares-

based regression take on the tracking problem, that has seen

tremendous success in the recent years [6, 7, 15]. However,

in this work we generalize the conventional least-squares

loss applied for tracking in several directions, allowing the

final tracking network to learn the optimal loss from data.

In general, we consider a loss of the form,

L(f) =
1

|Strain|

∑

(x,c)∈Strain

‖r(x ∗ f, c)‖2 + ‖λf‖2 . (1)

Here, ∗ denotes convolution and λ is a regularization factor.

The function r(s, c) computes the residual at every spatial

location based on the target confidence scores s = x∗f and

the ground-truth target center coordinate c. The most com-

mon choice is r(s, c) = s − yc, where yc are the desired

target scores at each location, popularly set to a Gaussian

function centered at c [4]. However, simply taking the dif-

ference forces the model to regress calibrated confidence

scores, usually zero, for all negative samples. This requires

substantial model capacity, forcing the learning to focus on

the negative data samples instead of achieving the best dis-

criminative abilities. Furthermore, taking the naı̈ve differ-

ence does not address the problem of data imbalance be-

tween target and background.

To alleviate the latter issue of data imbalance, we use a

spatial weight function vc. The subscript c indicates the de-

pendence on the center location of the target, as detailed in

section 3.4. To accommodate the first issue, we modify the

loss following the philosophy of Support Vector Machines.

We employ a hinge-like loss in r, clipping the scores at zero

as max(0, s) in the background region. The model is thus

6184

free to predict large negative values for easy samples in the

background without increasing the loss. For the target re-

gion on the other hand, we found it disadvantageous to add

an analogous hinge loss max(0, 1−s). Although contradic-

tory at a first glance, this behavior can be attributed to the

fundamental asymmetry between the target and background

class, partially due to the numerical imbalance. Moreover,

accurately calibrated target confidences are indeed advanta-

geous in the tracking scenario, e.g. for detecting target loss.

We therefore desire the properties of standard least-squares

regression in the target neighborhood.

To accommodate the advantages of both least-squares re-

gression and the hinge loss, we define the residual function,

r(s, c) = vc · (mcs+ (1−mc)max(0, s)− yc) . (2)

The target region is defined by the mask mc, having val-

ues in the interval mc(t) ∈ [0, 1] at each spatial location

t ∈ R
2. Again, the subscript c indicate the dependence on

the target center coordinate. The formulation in (2) is capa-

ble of continuously changing the behavior of the loss from

standard least squares regression to a hinge loss depending

on the image location relative to the target center c. Setting

mc ≈ 1 at the target and mc ≈ 0 in the background region

yields the desired behavior described above. However, how

to optimally set mc is not clear, in particular at the transition

region between target and background. While the classical

strategy is to manually set the mask parameters using trial

and error, our end-to-end formulation allows us to learn the

mask in a data-driven manner. In fact, as detailed in sec-

tion 3.4, our approach learns all free parameters in the loss:

the target mask mc, the spatial weight vc, the regularization

factor λ, and even the regression target yc itself.

3.2. Optimization­Based Architecture

Here, we derive the network architecture D that predicts

the filter f = D(Strain) by implicitly minimizing the error

(1). The network is designed by formulating an optimiza-

tion procedure. From eqs. (1) and (2) we can easily derive a

closed-form expression for the gradient of the loss∇L with

respect to the filter f (see supplementary material). The

straight-forward option is to then employ gradient descent

using a step length α,

f (i+1) = f (i) − α∇L(f (i)) . (3)

However, we found this simple approach to be insufficient,

even if the learning rate α (either a scalar or coefficient-

specific) is learned by the network itself (see section 4.1). It

experiences slow adaption of the filter parameters f , requir-

ing a vast increase in the number of iterations. This harms

efficiency and complicates offline learning.

The slow convergence of gradient descent is largely due

to the constant step length α, which does not depend on data

or the current model estimate. We solve this issue by deriv-

ing a more elaborate optimization approach, requiring only

a handful of iterations to predict a strong discriminative fil-

ter f . The core idea is to compute the step length α based

on the steepest descent methodology, which is a common

optimization technique [30, 36]. We first approximate the

loss with a quadratic function at the current estimate f (i),

L(f) ≈ L̃(f) =
1

2
(f − f (i))TQ(i)(f − f (i))+ (4)

(f − f (i))T∇L(f (i)) + L(f (i)) .

Here, the filter variables f and f (i) are seen as vectors and

Q(i) is positive definite square matrix. The steepest descent

then proceeds by finding the step length α that minimizes

the approximate loss (4) in the gradient direction (3). This

is found by solving d
dα L̃

(

f (i) − α∇L(f (i))
)

= 0, as

α =
∇L(f (i))T∇L(f (i))

∇L(f (i))TQ(i)∇L(f (i))
. (5)

In steepest descent, the formula (5) is used to compute the

scalar step length α in each iteration of the filter update (3).

The quadratic model (4), and consequently the resulting

step length (5), depends on the choice of Q(i). For exam-

ple, by using a scaled identity matrix Q(i) = 1
β
I we re-

trieve the standard gradient descent algorithm with a fixed

step length α = β. On the other hand, we can now integrate

second order information into the optimization procedure.

The most obvious choice is setting Q(i) = ∂2L
∂f2 (f

(i)) to the

Hessian of the loss (1), which corresponds to a second order

Taylor approximation (4). For our least-squares formula-

tion (1) however, the Gauss-Newton method [30] provides

a powerful alternative, with significant computational bene-

fits since it only involves first-order derivatives. We thus set

Q(i) = (J (i))TJ (i), where J (i) is the Jacobian of the resid-

uals at f (i). In fact, neither the matrix Q(i) or Jacobian J (i)

need to be constructed explicitly, but rather implemented as

a sequence of neural network operations. See the supple-

mentary material for details. Algorithm 1 describes our tar-

get model predictor D. Note that our optimizer module can

easily be employed for online model adaption as well. This

is achieved by continuously extending the training set Strain

with new samples from the previously tracked frames. The

optimizer module is then applied on this extended training

set, using the current target model as the initialization f (0).

3.3. Initial Filter Prediction

To further reduce the number of optimization recursions

required in D, we introduce a small network module that

predicts an initial model estimate f (0). Our initializer net-

work consists of a convolutional layer followed by a pre-

cise ROI pooling [17]. The latter extracts features from the

6185

Algorithm 1 Target model predictor D.

Input: Samples Strain = {(xj , cj)}
n
j=1, iterations Niter

1: f (0) ← ModelInit(Strain) # Initialize filter (sec 3.3)

2: for i = 0, . . . , Niter − 1 do # Optimizer module loop

3: ∇L(f (i))← FiltGrad(f (i), Strain) # Using (1)-(2)

4: h← J (i)∇L(f (i)) # Apply Jacobian of (2)

5: α← ‖∇L(f (i))‖2/‖h‖2 # Compute step length (5)

6: f (i+1) ← f (i) − α∇L(f (i)) # Update filter

7: end for

target region and pools them to the same size as the tar-

get model f . The pooled feature maps are then averaged

over all the samples in Strain to obtain the initial model f (0).

As in Siamese trackers, this approach only utilizes the tar-

get appearance. However, rather than predicting the final

model, our initializer network is tasked with only providing

a reasonable initial estimate, which is then processed by the

optimizer module to provide the final model.

3.4. Learning the Discriminative Learning Loss

Here, we describe how the free parameters in the residual

function (2), defining the loss (1), are learned. Our residual

function includes the label confidence scores yc, the spa-

tial weight function vc and the target mask mc. While such

variables are constructed by hand in current discriminative

online learning based trackers, our approach in fact learns

these functions from data. We parametrize them based on

the distance from the target center. This is motivated by the

radial symmetry of the problem, where the direction to the

sample location relative to the target is of little significance.

In contrast, the distance to the sample location plays a cru-

cial role, especially in the transition from target to back-

ground. Thus, we parameterize yc, mc and vc using radial

basis functions ρk and learn their coefficients φk. For in-

stance, the label yc at position t ∈ R
2 is given by

yc(t) =
N−1
∑

k=0

φy
kρk(‖t− c‖) . (6)

We use triangular basis functions ρk, defined as

ρk(d) =

{

max(0, 1− |d−k∆|
∆), k < N − 1

max(0,min(1, 1 + d−k∆
∆)), k = N − 1

(7)

The above formulation corresponds to a continuous piece-

wise linear function with a knot displacement of ∆. Note

that the final case k = N−1 represents all locations that are

far away from the target center and thus can be treated iden-

tically. We use a small ∆ to enable accurate representation

of the regression label at the target-background transition.

The functions vc and mc are parameterized analogously us-

ing coefficients φv
k and φm

k respectively in (6). For the tar-

0 1 2 3 4 5 6 7 8 9 10

Distance from target center

0

0.5

1

1.5

V
a

lu
e

Figure 3. Plot of the learned regression label (yc), target mask

(mc), and spatial weight (vc). The markers show the knot loca-

tions. The initialization of each quantity is shown in dotted lines.

get mask mc, we constrain the values to the interval [0, 1]
by passing the output from (6) through a Sigmoid function.

We use N = 100 basis functions and set the knot dis-

placement to ∆ = 0.1 in the resolution of the deep feature

space X . For offline training, the regression label yc is ini-

tialized to the same Gaussian zc used in the offline classifi-

cation loss, described in section 3.6. The weight function vc
is initialized to constant vc(t) = 1. Lastly, we initialize the

target mask mc using a scaled tanh function. The coeffi-

cients φk, along with λ, are learned as part of the model pre-

diction network D (see section 3.6). The initial and learned

values for yc, mc and vc are visualized in figure 3. Notably,

our network learns to increase the weight vc at the target

center and reduce it in the ambiguous transition region.

3.5. Bounding Box Estimation

We utilize the overlap maximization strategy introduced

in [6] for the task of accurate bounding box estimation.

Given a reference target appearance, the bounding box esti-

mation branch is trained to predict the IoU overlap between

the target and a set of candidate boxes on a test image. The

target information is integrated into the IoU prediction by

computing a modulation vector from the reference appear-

ance of the target. The computed vector is used to modu-

late the features from the test image, which are then used

for IoU prediction. The IoU prediction network is differen-

tiable w.r.t. the input box co-ordinates, allowing the candi-

dates to be refined during tracking by maximizing the pre-

dicted IoU. We use the same network architecture as in [6].

3.6. Offline Training

Here, we describe our offline training procedure. In

Siamese approaches, the network is trained with image

pairs, using one image to predict the target template and

the other for evaluating the tracker. In contrast, our model

prediction network D inputs a set Strain of multiple data

samples from the sequence. To better exploit this advan-

tage, we train our full tracking architecture on pairs of sets

(Mtrain,Mtest). Each set M = {(Ij , bj)}
Nframes

j=1 consists of

images Ij paired with their corresponding target bounding

boxes bj . The target model is predicted using Mtrain and

then evaluated on the test frames Mtest. Uniquely, our train-

6186

ing allows the model predictor D to learn how to better uti-

lize multiple samples. The sets are constructed by sampling

a random segment of length Tss in the sequence. We then

construct Mtrain and Mtest by sampling Nframes frames each

from the first and second halves of the segment respectively.

Given the pair (Mtrain,Mtest), we first pass the images

through the backbone feature extractor to construct the train

Strain and test Stest samples for our target model. Formally,

the train set is obtained as Strain = {(F (Ij), cj) : (Ij , bj) ∈
Mtrain}, where cj is the center coordinate of the box bj . This

is input to the target predictor f = D(Strain). The aim is to

predict a model f that is discriminative and that generalizes

well to future unseen frames. We therefore only evaluate

the predicted model f on the test samples Stest, obtained

analogously using Mtest. Following the discussion in sec-

tion 3.1, we compute the regression errors using a hinge for

the background samples,

ℓ(s, z) =

{

s− z , z > T

max(0, s) , z ≤ T
. (8)

Here, the threshold T defines the target and background re-

gion based on the label confidence value z. For the target

region z > T we take the difference between the predicted

confidence score s and the label z, while we only penalize

positive confidence values for the background z ≤ T .

The total target classification loss is computed as the

mean squared error (8) over all test samples. However, in-

stead of only evaluating the final target model f , we average

the loss over the estimates f (i) obtained in each iteration i
by the optimizer (see alg. 1). This introduces intermedi-

ate supervision to the target prediction module, benefiting

training convergence. Furthermore, we do not aim to train

for a specific number of recursions, but rather be free to set

the desired number of optimization recursions online. It is

thus natural to evaluate each iterate f (i) equally. The target

classification loss used for offline training is given by,

Lcls =
1

Niter

Niter
∑

i=0

∑

(x,c)∈Stest

∥

∥

∥
ℓ
(

x ∗ f (i), zc
)

∥

∥

∥

2

. (9)

Here, regression label zc is set to a Gaussian function cen-

tered as the target c. Note that the output f (0) from the filter

initializer (section 3.3) is also included in the above loss.

Although not denoted explicitly to avoid clutter, both x and

f (i) in (9) depend on the parameters of the feature extrac-

tion network F . The model iterates f (i) additionally depend

on the parameters in the model predictor network D.

For bounding box estimation, we extend the training pro-

cedure in [6] to image sets by computing the modulation

vector on the first frame in Mtrain and sampling candidate

boxes from all images in Mtest. The bounding box estima-

tion loss Lbb is computed as the mean squared error between

the predicted IoU overlaps in Mtest and the ground truth. We

train the full tracking architecture by combining this with

the target classification loss (9) as Ltot = βLcls + Lbb.

Training details: We use the training splits of the Track-

ingNet [26], LaSOT [10], GOT10k [16] and COCO [23]

datasets. The backbone network is initialized with the

ImageNet weights. We train for 50 epochs by sampling

20,000 videos per epoch, giving a total training time of

less than 24 hours on a single Nvidia TITAN X GPU.

We use ADAM [19] with learning rate decay of 0.2 every

15th epoch. The target classification loss weight is set to

β = 102 and we use Niter = 5 optimizer module recursions

in (9) during training. The image patches in (Mtrain,Mtest)
are extracted by sampling a random translation and scale

relative to the target annotation. We set the base scale to 5

times the target size to incorporate significant background

information. For each sequence, we sample Nframes = 3 test

and train frames, using a segment length of Tss = 60. The

label scores zc are constructed using a standard deviation of

1/4 relative to the base target size, and we use T = 0.05 for

the regression error (8). We employ the ResNet architecture

for the backbone. For the model predictor D, we use fea-

tures extracted from the third block, having a spatial stride

of 16. We set the kernel size of the target model f to 4× 4.

3.7. Online Tracking

Given the first frame with annotation, we employ data

augmentation strategies [3] to construct an initial set Strain

containing 15 samples. The target model is then obtained

using our discriminative model prediction architecture f =
D(Strain). For the first frame, we employ 10 steepest de-

scent recursions, after the initializer module. Our approach

allows the target model to be easily updated by adding a

new training sample to Strain whenever the target is pre-

dicted with sufficient confidence. We ensure a maximum

memory size of 50 by discarding the oldest sample. During

tracking, we refine the target model f by performing two

optimizer recursions every 20 frames, or a single recursion

whenever a distractor peak is detected. Bounding box esti-

mation is performed using the same settings as in [6].

4. Experiments

Our approach is implemented in Python using PyTorch,

and operates at 57 FPS with a ResNet-18 backbone and 43

FPS with ResNet-50 on a single Nvidia GTX 1080 GPU.

4.1. Analysis of our Approach

Here, we perform an extensive analysis of the proposed

model prediction architecture. Experiments are performed

on a combined dataset containing the entire OTB-100 [42],

NFS (30 FPS version) [12] and UAV123 [25] datasets. This

pooled dataset contains 323 diverse videos to enable thor-

ough analysis. The trackers are evaluated using the AUC

6187

Init GD SD

AUC 58.2 61.6 63.8

Table 1. Analysis of different model prediction architectures on

the combined OTB-100, NFS and UAV123 datasets. The architec-

ture using only the target information for model prediction (Init)

achieves an AUC score of 58.2%. The proposed steepest descent

based architecture (SD) provides the best results, outperforming

the gradient descent method (GD) by over 2.2% AUC score.

SD +Init +FT +Cls +Loss

AUC 58.7 60.0 62.6 63.3 63.8

Table 2. Analysis of the impact of initializer module (+Init), train-

ing the backbone (+FT), using extra conv. block (+Cls) and offline

learning of the loss (+Loss), by incrementally adding them one at

a time. The baseline SD constitutes our steepest descent based

optimizer module along with a ResNet-18 trained on ImageNet.

[42] metric. Due to the stochastic nature of the tracker, we

always report the average AUC score over 5 runs. We em-

ploy ResNet-18 as the backbone network for this analysis.

Impact of optimizer module: We compare our proposed

method, utilizing the steepest descent (SD) based architec-

ture, with two alternative approaches. Init: Here, we only

use the initializer module to predict the final target model,

which corresponds to removing the optimizer module in our

approach. Thus, similar to the Siamese approaches, only

target appearance information is used for model prediction,

while background information is discarded. GD: In this ap-

proach, we replace steepest descent with the gradient de-

scent (GD) algorithm using learned coefficient-wise step-

lengths α in (3). All networks are trained using the same

settings. The results for this analysis are shown in table 1.

The model predicted by the initializer network, which

uses only target information, achieves an AUC score of

58.2%. The gradient descent approach, which can exploit

background information, provides a substantial improve-

ment, achieving an AUC score of 61.6%. This highlights

the importance of employing discriminative learning for

model prediction. Our steepest descent approach obtains

the best results, outperforming GD by 2.2%. This is due

to the superior convergence properties of steepest descent,

important for offline learning and fast online tracking.

Analysis of model prediction architecture: Here, we an-

alyze the impact of key aspects of the proposed discrimi-

native online learning architecture, by incrementally adding

them one at a time. The results are shown in table 2. The

baseline SD constitutes our steepest descent based opti-

mizer module along with a fixed ResNet-18 network trained

on ImageNet. That is, similar to the current state-of-the-art

discriminative approaches, we do not fine-tune the back-

bone. Instead of learning the discriminative loss, we em-

ploy the regression error (8) in the optimizer module. This

baseline approach achieves an AUC score of 58.7%. By

adding the model initializer module (+Init), we achieve a

No update Model averaging Ours

AUC 61.7 61.7 63.8

Table 3. Comparison of different model update strategies on the

combined OTB-100, NFS and UAV123 datasets.

DRT RCO UPDT DaSiam- MFT LADCF ATOM SiamRPN++ DiMP-18 DiMP-50

[37] [20] [3] RPN [45] [20] [43] [6] [21]

EAO 0.356 0.376 0.378 0.383 0.385 0.389 0.401 0.414 0.402 0.440

Robustness 0.201 0.155 0.184 0.276 0.140 0.159 0.204 0.234 0.182 0.153

Accuracy 0.519 0.507 0.536 0.586 0.505 0.503 0.590 0.600 0.594 0.597

Table 4. State-of-the-art comparison on the VOT2018 dataset in

terms of expected average overlap (EAO), accuracy & robustness.

significant gain of 1.3% in AUC score. Further training

the entire network, including backbone feature extractor,

(+FT) leads to a major improvement of 2.6% in AUC score.

This demonstrates the advantages of learning specialized

features suitable for tracking through end-to-end learning.

Using an additional convolutional block to extract classifi-

cation specific features (+Cls) yields a further improvement

of 0.7% AUC score. Finally, learning the discriminative

loss (2) itself (+Loss), as described in section 3.4, improves

the AUC score by another 0.5%. This shows the benefit of

learning the implicit online loss by maximizing the gener-

alization capabilities of the model on future frames.

Impact of online model update: Here, we analyze the im-

pact of updating the target model online, using information

from previous tracked frames. We compare three different

model update strategies. i) No update: The model is not

updated during tracking. Instead, the model predicted in

the first frame by our model predictor D, is employed for

the entire sequence. ii) Model averaging: In each frame,

the target model is updated using the linear combination of

the current and newly predicted model, as commonly em-

ployed in tracking [15, 18, 40]. iii) Ours: The target model

is obtained using the training set constructed online, as de-

scribed in section 3.7. The naı̈ve model averaging fails to

improve over the baseline method with no updates (see ta-

ble 3). In contrast, our approach obtains a significant gain of

about 2% in AUC score over both methods, indicating that

our approach can effectively adapt the target model online.

4.2. State­of­the­art Comparison

We compare our proposed approach DiMP with the

state-of-the-art methods on seven challenging tracking

benchmarks. Results for two versions of our approach are

shown: DiMP-18 and DiMP-50 employing ResNet-18 and

ResNet-50 respectively as the backbone network.

VOT2018 [20]: We evaluate our approach on the 2018

version of the Visual Object Tracking (VOT) challenge con-

sisting of 60 challenging videos. Trackers are evaluated us-

ing the measures accuracy (average overlap over success-

fully tracked frames) and robustness (failure rate). Both

these measures are combined to get the EAO (Expected

Average Overlap) score used to rank trackers. The re-

sults are shown in table 4. Among previous approaches,

6188

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

O
v
e
rl
a
p
 P

re
c
is

io
n
 [
%

]

Success plot

DiMP-50 [56.9]

DiMP-18 [53.2]

ATOM [51.5]

SiamRPN++ [49.6]

MDNet [39.7]

VITAL [39.0]

SiamFC [33.6]

StructSiam [33.5]

DSiam [33.3]

ECO [32.4]

Figure 4. Success plot on the LaSOT dataset.

SiamRPN++ achieves the best accuracy and EAO. How-

ever, it attains much inferior robustness compared to the

discriminative learning based approaches, such as MFT

and LADCF. Similar to the aforementioned approaches,

SiamRPN++ employs ResNet-50 for feature extraction.

Our approach DiMP-50, employing the same backbone net-

work, significantly outperforms SiamRPN++ with a rela-

tive gain of 6.3% in terms of EAO. Further, compared to

SiamRPN++, our approach has a 34% lower failure rate,

while achieving similar accuracy. This shows that discrimi-

native model prediction is crucial for robust tracking.

LaSOT [10]: We evaluate our approach on the test set

consisting of 280 videos. The success plots are shown in

figure 4. Compared to other datasets, LaSOT has longer

sequences, with an average of 2500 frames per sequence.

Thus, online model adaption is crucial for this dataset. The

previous best approach ATOM [6] employs online discrim-

inative learning with with pre-trained ResNet-18 features.

Our end-to-end trained approach, using the same backbone

architecture, outperforms ATOM with a relative gain of

3.3%, showing the impact of end-to-end training. DiMP-50

further improves the results with an AUC score of 56.9%.

These results demonstrate the powerful model adaption ca-

pabilities of our method on long sequences.

TrackingNet [26]: We evaluate our approach on the test

set of the large-scale TrackingNet dataset. The results are

shown in table 5. SiamRPN++ achieves an impressive AUC

score of 73.3%. Our approach, with the same ResNet-

50 backbone as in SiamRPN++, outperforms all previous

methods by achieving AUC score of 74.0%.

GOT10k [16]: This is large-scale dataset containing over

10, 000 videos, 180 of which form the test set used for eval-

uation. Interestingly, there is no overlap in object classes

between the train and test splits, promoting the importance

of generalization to unseen object classes. To ensure fair

evaluation, the trackers are forbidden from using external

datasets for training. We follow this protocol by retrain-

ing our trackers using only the GOT10k train split. Results

are shown in table 6. ATOM achieves an average overlap

(AO) score of 55.6%. Our ResNet-18 version outperforms

ATOM with a relative gain of 4.1%. Our ResNet-50 version

achieves the best AO score of 61.1%, verifying the strong

generalization abilities of our tracker.

ECO SiamFC CFNet MDNet UPDT DaSiam- ATOM SiamRPN++ DiMP-18 DiMP-50

[7] [2] [40] [29] [3] RPN [45] [6] [21]

Precision (%) 49.2 53.3 53.3 56.5 55.7 59.1 64.8 69.4 66.6 68.7

Norm. Prec. (%) 61.8 66.6 65.4 70.5 70.2 73.3 77.1 80.0 78.5 80.1

Success (AUC) (%) 55.4 57.1 57.8 60.6 61.1 63.8 70.3 73.3 72.3 74.0

Table 5. State-of-the-art comparison on the TrackingNet test set in

terms of precision, normalized precision, and success.

MDNet CF2 ECO CCOT GOTURN SiamFC SiamFCv2 ATOM DiMP-18 DiMP-50

[29] [24] [7] [9] [14] [2] [40] [6]

SR0.50 (%) 30.3 29.7 30.9 32.8 37.5 35.3 40.4 63.4 67.2 71.7

SR0.75 (%) 9.9 8.8 11.1 10.7 12.4 9.8 14.4 40.2 44.6 49.2

AO (%) 29.9 31.5 31.6 32.5 34.7 34.8 37.4 55.6 57.9 61.1

Table 6. State-of-the-art comparison on the GOT10k test set in

terms of average overlap (AO), and success rates (SR) at overlap

thresholds 0.5 and 0.75.

ECOhc DaSiam- ATOM CCOT MDNet ECO SiamRPN++ UPDT DiMP-18 DiMP-50

[7] RPN [45] [6] [9] [29] [7] [21] [3]

NFS - - 58.4 48.8 42.2 46.6 - 53.7 61.0 62.0

OTB-100 64.3 65.8 66.9 68.2 67.8 69.1 69.6 70.2 66.0 68.4

UAV123 50.6 58.6 64.4 51.3 52.8 52.5 61.3 54.5 64.3 65.4

Table 7. State-of-the-art comparison on the NFS, OTB-100 and

UAV123 datasets in terms of AUC score.

Need for Speed [12]: We evaluate our approach on the 30
FPS version of the dataset, containing challenging videos

with fast-moving objects. The AUC scores over all the 100
videos are shown in table 7. The previous best method

ATOM achieves an AUC score of 58.4% . Our approach

outperforms ATOM with relative gains of 4.4% and 6.2%
using ResNet-18 and ResNet-50 respectively.

OTB-100 [42]: Table 7 shows the AUC scores over all

the 100 videos in the dataset. Among the compared meth-

ods, UPDT achieves the best results with an AUC score of

70.2%. Our DiMP-50 achieves an AUC score of 68.4%,

competitive with the other state-of-the-art approaches.

UAV123 [25]: This dataset consists of 123 low altitude

aerial videos captured from a UAV. Results in terms of

AUC are shown in table 7. Among previous methods,

SiamRPN++ achieves an AUC score of 61.3%. Both DiMP-

18 and DiMP-50 significantly outperform SiamRPN++,

achieving AUC scores of 64.3% and 65.4%, respectively.

5. Conclusions

We propose a tracking architecture that is trained offline

in an end-to-end manner. Our approach is derived from a

discriminative learning loss by applying an iterative opti-

mization procedure. By employing a steepest descent based

optimizer and an effective model initializer, our approach

can predict a powerful model in only a few optimization

steps. Further, our approach learns the discriminative loss

during offline training by minimizing the prediction error on

unseen test frames. Our approach sets a new state-of-the-art

on 6 tracking benchmarks, while operating at over 40 FPS.

Acknowledgments: This work was supported by ETH

General Fund (OK), and Nvidia through a hardware grant.

6189

References

[1] Luca Bertinetto, João F. Henriques, Jack Valmadre, Philip

H. S. Torr, and Andrea Vedaldi. Learning feed-forward one-

shot learners. In NIPS, 2016. 2

[2] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In ECCV workshop, 2016. 1,

2, 8

[3] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fa-

had Shahbaz Khan, and Michael Felsberg. Unveiling the

power of deep tracking. In ECCV, 2018. 6, 7, 8

[4] David S. Bolme, J. Ross Beveridge, Bruce A. Draper, and

Yui Man Lui. Visual object tracking using adaptive correla-

tion filters. In CVPR, 2010. 3

[5] Janghoon Choi, Junseok Kwon, and Kyoung Mu Lee. Deep

meta learning for real-time visual tracking based on target-

specific feature space. CoRR, abs/1712.09153, 2017. 2

[6] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ATOM: Accurate tracking by overlap

maximization. In CVPR, 2019. 2, 3, 5, 6, 7, 8

[7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ECO: efficient convolution operators for

tracking. In CVPR, 2017. 2, 3, 8

[8] Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and

Michael Felsberg. Learning spatially regularized correlation

filters for visual tracking. In ICCV, 2015. 2

[9] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

ECCV, 2016. 2, 8

[10] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

Lasot: A high-quality benchmark for large-scale single ob-

ject tracking. CoRR, abs/1809.07845, 2018. 2, 6, 8

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, 2017. 2

[12] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In ICCV, 2017. 2, 6, 8

[13] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and

Song Wang. Learning dynamic siamese network for visual

object tracking. In ICCV, 2017. 2

[14] David Held, Sebastian Thrun, and Silvio Savarese. Learning

to track at 100 fps with deep regression networks. In ECCV,

2016. 8

[15] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. TPAMI, 37(3):583–596, 2015. 2, 3, 7

[16] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking in

the wild. arXiv preprint arXiv:1810.11981, 2018. 2, 6, 8

[17] Boru Jiang, Ruixua Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. In ECCV, 2018. 4

[18] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey.

Learning background-aware correlation filters for visual

tracking. In ICCV, 2017. 2, 7

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2014. 6

[20] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-

berg, Roman Pfugfelder, Luka Cehovin Zajc, Tomas Vojir,

Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, Gus-

tavo Fernandez, and et al. The sixth visual object tracking

vot2018 challenge results. In ECCV workshop, 2018. 2, 7

[21] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. Siamrpn++: Evolution of siamese visual

tracking with very deep networks. In CVPR, 2019. 7, 8

[22] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In CVPR, 2018. 1, 2

[23] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: common objects in context. In ECCV, 2014. 6

[24] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual tracking.

In ICCV, 2015. 2, 8

[25] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In ECCV, 2016.

2, 6, 8

[26] Matthias Müller, Adel Bibi, Silvio Giancola, Salman Al-

Subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

ECCV, 2018. 2, 6, 8

[27] Tsendsuren Munkhdalai and Hongtao Yu. Meta networks.

Proceedings of machine learning research, 70:2554–2563,

2017. 2

[28] Devang Balvantrai Naik and Richard J. Mammone. Meta-

neural networks that learn by learning. [Proceedings 1992]

IJCNN International Joint Conference on Neural Networks,

1:437–442 vol.1, 1992. 2

[29] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In CVPR,

2016. 2, 8

[30] Jorge Nocedal and Stephen J. Wright. Numerical Optimiza-

tion. Springer, 2nd edition, 2006. 4

[31] Eunbyung Park and Alexander C. Berg. Meta-tracker: Fast

and robust online adaptation for visual object trackers. In

ECCV, 2018. 2

[32] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. In ICLR, 2017. 2

[33] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.

Faster R-CNN: towards real-time object detection with re-

gion proposal networks. In NIPS, 2015. 2

[34] Jurgen Schmidhuber. Evolutionary principles in self-

referential learning. on learning now to learn: The meta-

meta-meta...-hook. Diploma thesis, Technische Universitat

Munchen, Germany, 14 May 1987. 2

[35] Jürgen Schmidhuber. Learning to control fast-weight mem-

ories: An alternative to dynamic recurrent networks. Neural

Comput., 4(1):131–139, Jan. 1992. 2

6190

[36] Jonathan R Shewchuk. An introduction to the conjugate gra-

dient method without the agonizing pain. Technical report,

Pittsburgh, PA, USA, 1994. 4

[37] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan

Yang. Correlation tracking via joint discrimination and re-

liability learning. In CVPR, 2018. 7

[38] Ran Tao, Efstratios Gavves, and Arnold W. M. Smeulders.

Siamese instance search for tracking. In CVPR, 2016. 2

[39] Sebastian Thrun and Lorien Pratt, editors. Learning to

Learn. Kluwer Academic Publishers, Norwell, MA, USA,

1998. 2

[40] Jack Valmadre, Luca Bertinetto, João F Henriques, Andrea

Vedaldi, and Philip H. S. Torr. End-to-end representation

learning for correlation filter based tracking. In CVPR, 2017.

2, 7, 8

[41] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming

Hu, and Stephen J. Maybank. Learning attentions: Resid-

ual attentional siamese network for high performance online

visual tracking. In CVPR, 2018. 2

[42] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. TPAMI, 37(9):1834–1848, 2015. 2, 6, 7,

8

[43] Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, and Josef Kit-

tler. Learning adaptive discriminative correlation filters via

temporal consistency preserving spatial feature selection for

robust visual tracking. CoRR, abs/1807.11348, 2018. 7

[44] Yingjie Yao, Xiaohe Wu, Shiguang Shan, and Wangmeng

Zuo. Joint representation and truncated inference learning

for correlation filter based tracking. In ECCV, 2018. 2

[45] Zheng Zhu, Qiang Wang, Li Bo, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In ECCV, 2018. 2, 7, 8

6191

