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Abstract

We present a method to improve the visual realism of

low-quality, synthetic images, e.g. OpenGL renderings.

Training an unpaired synthetic-to-real translation network

in image space is severely under-constrained and produces

visible artifacts. Instead, we propose a semi-supervised

approach that operates on the disentangled shading and

albedo layers of the image. Our two-stage pipeline first

learns to predict accurate shading in a supervised fash-

ion using physically-based renderings as targets, and fur-

ther increases the realism of the textures and shading with

an improved CycleGAN network. Extensive evaluations

on the SUNCG indoor scene dataset demonstrate that our

approach yields more realistic images compared to other

state-of-the-art approaches. Furthermore, networks trained

on our generated “real” images predict more accurate

depth and normals than domain adaptation approaches,

suggesting that improving the visual realism of the images

can be more effective than imposing task-specific losses.

1. Introduction

Deep learning-based image synthesis methods are gen-

erating images with increasingly higher visual quality [11,

18, 21, 36, 37] even from minimal input like latent codes or

semantic segmentation maps. While impressive, one chal-

lenge with these approaches is the lack of fine-grained con-

trol over the layout and appearance of the synthesized im-

ages. On the other hand, it is possible to compose 3D scenes

with a desired layout and appearance and render them to

create photo-realistic images. However, this requires high-

quality scene assets (geometries, materials, lighting) and

compute-heavy physically-based rendering.

The goal of this work is to combine the advantages of

these two approaches. Given a low-quality synthetic image

of a scene—the coarse models in the SUNCG indoor scene

dataset [32] rendered with a simple rendering engine like

OpenGL—we train a deep neural network to translate it to a

high-quality realistic image. One approach to this problem

would be to train an unpaired image-to-image translation

network, like CycleGAN [43], from synthetic OpenGL im-

(a) OpenGL image (b) CycleGAN result

(c) Our predicted real image (a) (b) (c)

Figure 1: Our two-stage adversarial framework translates an

OpenGL rendering (a) to a realistic image (c). Compared to

single-stage prediction with CycleGAN (b), our result has

more realistic illumination and better preserves texture de-

tails, as shown in the insets. (Best viewed in digital).

ages to real photographs. However, the unpaired nature of

this problem—it is not clear how we would create a dataset

of synthetic images with their “real” counterparts—makes

it challenging and results in images with signficiant artifacts

like implausible lighting and texture distortions (Fig. 1(b)).

In contrast, our result retains the layout and coarse appear-

ance of the original image, but introduces realistic lighting

including global illumination, improves the quality of the

scene textures, and removes effects like aliasing (Fig. 1(c)).

Improving the realism of a synthetic image requires im-

proving the quality of both illumination and texture. More-

over, these two aspects need to be handled in different ways:

illumination needs to be synthesized globally while textures

can be modified locally. To this end, we propose disen-

tangling a synthetic image into its constituent shading and

albedo layers—i.e., an intrinsic image decomposition [1]—

and training separate translation networks for each of them.

We leverage the intrinsic images disentanglement to

change this problem from a purely unpaired setting to a
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two-stage paired-unpaired setting. We render the synthetic

scenes with a physically-based renderer (“PBR”) to simu-

late realistic illumination and create paired OpenGL-PBR

shading data. In the first stage of our pipeline, we use this

data to train an OpenGL-to-PBR shading translation net-

work that synthesizes realistic shading. We combine this

new shading with the original OpenGL textures to recon-

struct our intermediate PBR images.

In the second stage, we translate these PBR images to

the real image domain in an unsupervised manner using a

CycleGAN-like network. We train individual PBR-to-real

generators for the shading and albedo layers; we use an

encoder-decoder architecture for shading to increase global

context, and a purely convolutional network, with no down-

sampling/unsampling for albedo. As in CycleGAN, the

quality of this translation is best with a backward real-to-

PBR cycle, and a cycle-consistency loss. In the absence

of the disentangled shading-albedo layers for real images,

we accomplish this with an asymmetric architecture and a

PBR-domain intrinsic image decomposition network.

While our focus is on improving visual quality, our

method can be used for domain adaptation. Deep networks

can be trained on large-scale, labeled synthetic datasets [28,

41] and prior work has looked at adapting them to im-

prove their performance on real data [9, 30, 25]. Many of

these methods impose a task-specific loss on this adapta-

tion [14, 26, 42]. In contrast, we show that by improving

the overall visual realism of synthetic data, we can achieve

similar improvements in real image performance on tasks

such as normal and depth estimation without the need for

task-specific losses, as demonstrated in Table 2 and Table 3.

2. Related Work

Image-to-Image Translation. To improve the realism of

synthetic images, Johnson et al. [20] retrieve similar patches

to the input from real image collections to synthesize re-

alistic imagery. Recently deep neural networks have been

widely used for this task. When paired training data is

available, previous methods have proposed training condi-

tional generative models with a combination of supervised

reconstruction losses and adversarial losses (pix2pix [18],

StackGAN [40]). Such mappings are challenging to learn

in the unsupervised setting with only adversarial losses,

and prior work has utilized cycle-consistency losses (Cy-

cleGAN [43]) or a shared latent space for the two domains

(UNIT [24]). These approaches have been extended to han-

dle multi-modal output (BicyleGAN [44], MUNIT [15]),

multiple domains [5], higher-resolution images (pix2pix-

HD [36]), and videos [35]. These methods—especially the

unsupervised approaches—can introduce undesired struc-

tural changes and artifacts when there is a large domain dif-

ference, as there is between synthetic OpenGL images and

real images. We handle this by working in a disentangled

shading-albedo space. This allows us to a) use a two-stage

pipeline that goes from OpenGL images to PBR images and

then to the real domain, and b) design separate shading and

albedo networks to avoid artifacts.

Domain adaptation. Domain adaptation methods seek to

generalize the performance of a “task” network, trained

on one domain, to another domain; for example, to train

networks on large-scale labeled synthetic datasets and ap-

ply them on real images. Feature-space domain adaptation

methods either match the distributions of source and target

domain features [33] or learn to produce domain-agnostic

features using feature-space adversarial losses [7, 8, 34].

Instead, image-space domain adaptation methods seek

to match image distributions. The key challenge here is

to avoid changing image content in ways that will impair

the performance of the task network. This can be handled

by using paired source-target data to regularize the transla-

tion [9]. In the unpaired setting, prior work has constrained

the translated images to be close to the source images [30]

but this only works for small domain shifts. Most current

methods use a combination of task-specific losses (i.e., pre-

serving the task network’s output after translation) [25],

image-space and feature-space adversarial losses, cycle-

consistency losses, and semantic losses (i.e., preserving the

semantics of the image after translation) [14, 26, 42].

Our contributions are orthogonal to this direction of

work. We demonstrate that translating images in the

shading-albedo space leads to higher visual quality, which

improves performance on real data. We do this without us-

ing task-specific or semantic losses and are thus not con-

strained to a specific task. Our work can be combined with

other domain adaptation ideas to further improve results.

3. Method

Our goal is to improve the visual realism of a low-quality

synthetic image. In particular, we focus on translating im-

ages of indoor scenes, Io, from the domain of OpenGL-

rendered images O, to the domain of real photographs, R.

This is an unpaired problem and has to be learned without

direct supervision. The translation has to handle two as-

pects: first, simple rendering engines like OpenGL do not

model complex, real-world lighting, and second, synthetic

scenes usually do not have realistic real-world materials and

textures. We propose handling this by explicitly manipulat-

ing the synthetic shading and albedo separately. Moreover,

we find that directly translating from OpenGL to real im-

ages is challenging due to the large domain gap between

them; changing OpenGL shading to real-world shading re-

quires large non-local transformations that are challenging

to learn in an unsupervised manner. However, synthetic

scenes can be rendered with physically-based renderers that

can generate more realistic shading. We leverage this to pro-

pose a two-stage translation. First, we translate the OpenGL
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(a) OpenGL to PBR (b) PBR to Real

Figure 2: The framework of our two-stage OpenGL to real translations.

image Io to the physically-based rendering (PBR) domain,

P , by transforming only the shading using paired OpenGL-

PBR images. We then translate these PBR images to the

real domain, R, by refining both the albedo and shading

using two separate networks; this is done in an unsuper-

vised manner. Figure 2 shows an overview of our two-stage

framework, and we describe them in following sections.

3.1. OpenGLtoPBR Image Translation

While rendering scenes with OpenGL is computationally

fast, the resulting images have low visual realism (e.g., see

Figure 1(a)). One of the reasons is that standalone OpenGL

only supports simple lighting models (such as directional or

point lights) and does not model complex lighting effects

like global illumination. In comparison, a physically based

renderer can generate images with photorealistic shading by

simulating the propagation of light through a scene, albeit

at the cost of significantly more processing time. Therefore,

we render the same scene with OpenGL and a physically

based renderer Mitsuba [19] respectively. Both these im-

ages have the same geometry and material properties, and

differ only in the quality of the shading. We train a neu-

ral network on these image pairs to translate the OpenGL

image to the PBR domain; this network thus learns to syn-

thesize more realistic shading from a simple OpenGL scene,

bypassing the cost of physically-based rendering.

We use paired conditional generative adversarial net-

works [18, 36] for this task. Let Io, Ip be a pair of images in

the OpenGL and PBR domains, respectively. Since both the

images differ only in their shading components, we decom-

pose them into albedo and shading layers and train a shad-

ing generator, GS
o→p(·), that transforms OpenGL shading,

So, to PBR shading, Sp. Instead of using only the OpenGL

shading as input, we use the auxiliary buffers of the syn-

thetic scene including albedo Ao and surface normals, No,

as the input to the generator. These additional buffers en-

(a) Without (b) With 

Figure 3: With the shading discriminator, our network is

able to predict more accurate shading images and get rid of

problems such as inconsistent colors.

code semantic (via albedo) and geometric (via normals and

shading) information about the synthetic scene and aid in

the translation. Finally, we multiply the synthesized PBR

shading, S̄p, with the original OpenGL albedo, Ao, to re-

construct the PBR image Īp:

S̄p = GS
o→p(So, Ao, No), Īp = S̄p ∗Ao (1)

Our intrinsic image model assumes Lambertian shading.

While this is an approximation to real world reflectance, it is

sufficient for many regions of indoor images, and is widely

used [2, 3, 23]. To recover high dynamic shading values,

we predict the shading in the logarithmic space.

Similar to pix2pixHD [36], we use a combination of a

perceptual reconstruction loss (based on VGG features) and

adversarial losses. We utilize adversarial losses via a dis-

criminator on the predicted image, DI
o→p, as well as one

on the predicted shading, DS
o→p. This ensures that both the

generated images and shadings are aligned with the distri-

bution of PBR images and shading. We used conditional

discriminators that also take albedo and normals as input.

By translating only the shading and multiplying it with
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the original albedo, we ensure that the textural structure of

the albedo is explicitly preserved. Synthesizing the shad-

ing separately is also an easier task for the network because

the shading component is spatially smooth and does not

have the high-frequency details of the image. Moreover,

this also allows us to incorporate the shading discriminator,

DS
o→p, that provides stronger supervision for training. As

shown in Figure 3, without the shading discriminator the

network predicts unrealistic illumination with inconsistent

colors while our full network avoids this problem.

3.2. PBRtoReal Image Translation

The first stage of our pipeline generates images with

more physically accurate shading and global illumination.

However, these images may still have a domain shift from

real photographs. The albedos are still from the low-quality

scenes and may have unrealistic colors. The shading is also

still a function of the synthetic scenes and might not align

with the intensity, color, contrast and spatial distribution of

real-world scenes. In the second stage, we seek to bridge

this remaining domain gap to a target real image dataset.

Unlike the first stage, there is no one-to-one correspon-

dence between predicted PBR images and real images. Zhu

et al. [43] introduced the CycleGAN framework to tackle

such unpaired problems and we build on their framework

for our second stage. Different from the original CycleGAN

network which performs the translation in image space, we

propose translating the albedo and shading components sep-

arately with different generators. This novel design is based

on the insight that the albedo contains high frequency de-

tails, and should be modified locally to better preserve struc-

tural details. On the other hand, shading is a global phe-

nomenon (as it is a function of scene and light source ge-

ometry) and should take global context into consideration.

Similar observations have been made in [10], which uses

different operators for global irradiance and local radiosity.

The output of the first stage is the predicted PBR im-

age, Īp. As noted before, this is the product of the pre-

dicted (OpenGL-to-PBR) shading, S̄p, and the original

scene albedo, Ap (which is the same as Ao). As shown in

Figure 2, to translate from the PBR domain to the real do-

main (p → r), we use two generators GA
p→r(·) and GS

p→r(·)

to synthesize the real albedo and shading, Ār and S̄r, re-

spectively. The final predicted real image, Īr, can then be

reconstructed as:

Ār = GA
p→r(Ap), S̄r = GS

p→r(S̄p), Īr = Ār ∗ S̄r (2)

We use different architectures for GA
p and GS

p . For the

albedo, we use a fully convolutional network without down-

sampling or upsampling blocks. This results in a small re-

ceptive field for the network and better preserves the texture

details while avoiding large structural changes [16, 17]. As

shown in Figure 6, allowing downsampling blocks in the

Figure 4: To finish the backward cycle, the real image is first

translated to the PBR domain. Afterwards we use the pre-

trained intrinsic decomposition network H to decompose it

into its albedo and shading, which are further fed to corre-

sponding generators. Finally we multiply the output albedo

and shading to reconstruct the original real image.

albedo generator leads to serious high-frequency artifacts

in the textures. Our architecture removes this problem and

achieves results with higher quality. In contrast, the shading

generator uses downsampling blocks for a larger receptive

field in order to allow global changes.

Similar to CycleGAN, we constrain the forward p → r

translation using a backward r → p translation. Unlike the

PBR domain, we do not have access to albedo and shading

layers for real images. Therefore, we use an image-space

generator Gr→p(·) that transforms real images to the PBR

domain. We utilize two discriminators, Dr and Dp, to dis-

tinguish real and fake samples in real and PBR domains re-

spectively. Here, Dr distinguishes between the PBR images

translated to the real domain (Īr from Equation 2) and real

images. Dp on the other hand discriminates between PBR

image (synthesized from the first stage), Īp, and real im-

ages translated to the PBR domain, Gr→p(Ir). Note that

while the generators for the p → r direction are applied to

albedo and shading, the discriminator is applied to the im-

age computed as their product. We train the network by op-

timizing the standard GAN loss LGAN(G
A
p→r, G

S
p→r, Dr)

and LGAN(Gr→p, Dp) for the forward translation p → r

and backward translation r → p, respectively.

Only having the GAN loss is not sufficient for learning

meaningful translations because of the lack of pixel-level

correspondence [39]. Similar to CycleGAN, we also in-

clude forward and backward cycle consistency losses. The

forward cycle consistency, p → r → p is trivial: we project

the predicted real image Īr back to the PBR domain by feed-

ing it to the generator Gr→p, and minimize the L1 loss be-

tween the output and the PBR source image Īp:

Lfor(G
A
p→r, G

S
p→r, Gr→p) = ||Gr→p(Īr)− Īp||1

= ||Gr→p(G
A
p→r(Ap) ∗G

S
p→r(S̄p))− Īp||1 (3)

Specifying the backward cycle is more challenging. We
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can map a real image Ir to the PBR domain as Gr→p(Ir).
However, translating it back to the real domain via the for-

ward p → r translation requires an albedo-shading separa-

tion that we do not have for these images—we only have

them for our original synthetic images. We tackle this by

training an intrinsic decomposition network [23, 3, 4] to

predict the albedo and shading layers for PBR images.

Let H be the intrinsic decomposition network. Given a

PBR image I and corresponding albedo AI and shading SI ,

H is trained by optimizing the following loss function:

L(H) = ||HA(I)−AI ||
2

2
+ ||HS(I)− SI ||

2

2
, (4)

where HA(I) and HS(I) are the predicted albedo and shad-

ing by the network H . We adopt the network architecture

used in Li et al. [23], which contains one encoder and two

decoders with skip connections. While they use a scale-

invariant mean square error (MSE) loss, we use MSE be-

cause we require the product of the albedo and shading to

be identical to the original image. The intrinsic decomposi-

tion network H is pretrained on the predicted PBR images

from the first stage, Īp, where we have ground truth albedo

and shading. Afterwards, it is fixed during the training of

the image translation networks.

We use the intrinsic decomposition network, H , to de-

compose Gr→p(Ir) into its albedo and shading. Then we

can translate each component via the forward p → r trans-

lation to synthesize the result of the full backward cycle,

leading to the following backward cycle consistency loss:

I ′p = Gr→p(Ir)

I ′′r = GS
p→r

(

HS(I
′

p)) ∗G
A
p→r(HA(I

′

p))
)

Lback(G
A
p→r, G

S
p→r, Gr→p) = ||I ′′r − Ir||1 (5)

Figure 4 shows the formulation of our backward cycle.

Note that our network is asymmetric; the forward trans-

lation takes our PBR albedo and shading layers, translates

and combines them to construct the result. Our backward

translation does the opposite; it first translates real images

to the PBR domain and then decomposes them there. This

allows us to bypass the requirement for real albedo-shading

data, and instead train a PBR albedo-shading decomposi-

tion for which we have ground truth supervision. As can be

seen in Figure 5, utilizing this novel backward consistency

cycle significantly reduces artifacts and improves the visual

quality of our PBR-to-real translations.

Our final loss function for PBR-to-real translation is a

combination of the two GAN losses (from discriminators

Dp and Dr), and the forward and backward cycle consis-

tency losses (Equations 3 and 5).

4. Implementation

OpenGL-to-PBR. Our first stage network architecture is

based on pix2pixHD [36]. We use a 70×70 PatchGAN [18]

(a) Without Lback (b) With Lback

Figure 5: Without the backward cycle, the network tends to

generate outputs with undesired new structures. Adding the

backward cycle with a pretrained intrinsic decomposition

network is able to generate images with higher quality.

(a) With downsampling (b) Without downsampling

Figure 6: Comparison between with and without downsam-

pling blocks in the albedo generator. From the result, we

can see that the generator without downsampling blocks

could better preserve the texture structures of the input.

for the discriminator. The generator GS
o→p contains two

sub-nets including a global and a local network each with

9 and 3 residual blocks as proposed by Wang et al. [12].

While the shading directly predicted by the generator is rea-

sonable, it may have noise, discontinuities or typical GAN

blocking artifacts, which degrade the finale image quality.

We leverage the inherent spatial smoothness of the shading

and remove potential artifacts by applying a guided filter

layer [38] after the output layer of the shading generator.

The guided filter layer h(·) takes the OpenGL shading, So,

and translated OpenGL shading, GS
o→p(So), as input, and

outputs the predicted shading, S̄p. We set radius to 4 and

regularization parameter to 0.01.

PBR-to-Real. For our second stage, we use the same

PatchGAN architecture for the discriminator. Both the

shading generator GS
p→r and real-to-PBR generator Gr→p

have 2 convolutional blocks with stride of 2 to downsam-

ple the input, followed by 4 residual blocks and 2 con-

volutional blocks with upsampling layers. The downsam-

pling/upsampling gives the shading generator a large recep-

tive field allowing it to capture global information about the

scene and make global changes such as adjusting shading

colors and intensity. The albedo generator GA
p→r has a sim-

ilar architecture as GS
p→r, except that it does not have any

downsampling/upsampling. This keeps the receptive field

small and forces the albedo generator to only modify the
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albedo locally thereby preserving textural details.

Training data. For the OpenGL and PBR images we use

the synthetic dataset from Li et al. [23], which contains

about 20000 480 × 640 images of indoor scenes from the

SUNCG dataset [32], rendered with both OpenGL and Mit-

suba [19], a physically based renderer. We use 5000 image

pairs for training the first stage. Then the first-stage net-

work is used to translate another 5000 OpenGL images to

the PBR domain, which are used for second-stage training.

Two real image datasets are used in the second stage: the

real estate dataset from Poursaeed et al. [27] and the NYUv2

dataset [31]. The real estate dataset contains high quality

real images of indoor scenes, and we use it for comparison

on image quality (Section 5.1). The NYUv2 dataset is used

for domain adaptation experiments (Section 5.2). Finally

an extra 5000 OpenGL images are used for testing the full

pipeline. We select the training and testing OpenGL images

from different scenes to avoid overlap.

Training details. Both stages are trained separately. We

use Adam [22] with an initial learning rate of 0.0002 for

training both stages. The networks are trained for 100
epochs, with the first 50 epochs trained with the initial

learning rate, and the remaining 50 epochs with a linearly

decaying learning rate. We randomly crop patches from the

input images for training with a patch size of 400× 400 for

the first stage and 256× 256 for the second stage.

5. Results

In this section, we first show the comparison on vi-

sual quality of translations against baseline methods (Sec-

tion 5.1). Afterwards we show that our two stage pipeline

could boost the performance of network models on real im-

ages when trained with our translated images (Section 5.2).

5.1. Comparison on visual quality

We compare the results of our method against different

baselines for each separate stage and the whole pipeline.

In addition to qualitative comparisons, we also quantita-

tively measure the visual realism of images generated with

different methods with two metrics. The first is the FID

score [13]which has been shown to be effective in measur-

ing the distance between two distributions and is consis-

tent with image noise and distortion. In addition, we also

conduct a human perceptual study on Amazon Mechanical

Turk. For each task, workers are shown the images output

by different methods, and asked to select the most realistic

result with the fewest artifacts. For each task, we have 100
images, each evaluated by 10 different workers, for a total

of 1000 judgements. We discuss each stage in detail below.

OpenGL to PBR translation. Our proposed network takes

the albedo, normal and OpenGL shading as input to predict

the PBR shading, which is multiplied by the albedo to re-

construct the desired PBR image. We compare our method

(a) OpenGL image (b) PBR image

(c) p2pHD-OpenGL (d) p2pHD-S+A+N (e) Our result

Figure 7: OpenGL to PBR comparison. A PBR renderer

like Mitsuba needs around 20 mins to render a noise-free

image as in (b). In comparison our network can generate

a high quality result in 0.03 secs. (e). Compared to the

pix2pix-HD framework that directly predicts the output im-

ages using OpenGL (c) or auxiliary buffers (d), with incon-

sistent shading such as abrupt highlights on the cabinet, our

method generates images with much higher visual realism.

with two baselines: the pix2pix-HD network [36] that pre-

dicts the PBR image conditioned on the OpenGL image

only (denoted as p2pHD-OpenGL in Table 1 ), and the same

network that takes the same input as ours but directly pre-

dicts the PBR images (p2pHD-S+A+N). Both baselines are

trained with the same generator architecture and parameter

settings as ours. The only differences are the generator in-

puts/outputs and the lack of shading discriminators.

We calculate the FID scores between the predicted PBR

images and ground truth PBR images, and we also conduct

a user study to ask workers to select the most visually re-

alistic PBR predictions among outputs of three methods.

From the results in Table 1 (O → P), we can clearly see

that our method achieves a much lower FID score com-

pared to other baselines, implying that our predictions are

more aligned with the distribution of the ground truth PBR

images. In addition, we obtain a user preference rate of

60.6%, much higher than the other two baselines, demon-

strating that doing predictions in shading space generates

images with much higher quality. A visual comparison is

shown in Figure 7.

PBR to Real translation. In this stage, we train the net-

work to translate the output of the first stage to the real

domain. We compare to the naı̈ve CycleGAN framework

that performs the translations in image space. FID score is

calculated between the translated images and real images

from the real estate dataset. Similarly, from Table 1 we

can see that disentangled translations on albedo and shad-

ing with our proposed framework achieves lower FID scores
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FID
User

Preference

O → P
p2pHD-OpenGL [36] 21.01 10.2%

p2pHD-S+A+N [36] 11.63 29.2%

Ours 7.40 60.6%

P → R
CycleGAN [43] 54.80 27.9 %

Ours 53.48 72.1%

O → R
CycleGAN [43] 59.42 16.9%

T2Net [42] 65.33 4.7%

Ours 53.48 78.4%

Table 1: Comparison on FID and user preference score.

(c) Ours

(a) Predicted PBR (b) CycleGAN

(b) (c)

Figure 8: PBR to Real comparison. Given the predicted

PBR image (a) in the first stage, we further translate it to

real domain. Compared to the original CycleGAN [43] that

performs the translation in image space, our method could

better preserve the structure of the textures and generate im-

ages with many fewer artifacts.

and much higher user preference rate. As shown in Fig-

ure 8, our network is able to modify the albedo and shading

of the input while preserving the texture structures. In con-

trast, the original CycleGAN network introduces obvious

artifacts which degrade image quality.

Full pipeline. We also compare our two-stage translations

to previous methods that translate directly from OpenGL to

real: the CycleGAN method and T2Net [42]. T2Net uses

a single generator and discriminator for synthetic to real

translation. In addition to standard GAN loss, it introduces

an identity loss to guarantee that when real images are fed

to synthetic generator, the outputs are similar to the inputs.

The results show that our full pipeline significantly outper-

forms the single-stage translations used in both baselines.

The visual comparison in Figure 9 shows that single-stage

translation is not able to produce realistic shading and gen-

erates results with noise and artifacts due to the large gap

between OpenGL images and real images, which our pro-

Lower is better Higher is better(%)

Mean Median < 11.25 < 22.5 < 30

O → P
OpenGL 37.73 31.91 17.93 38.36 48.52

Ours-PBR 34.82 27.66 21.16 42.82 53.25

P → R CycleGAN [43] 33.90 27.24 22.28 43.99 54.38

O → R

CycleGAN [43] 36.33 30.25 19.15 39.19 50.15

T2Net [42] 36.93 30.93 18.93 39.23 50.49

Ours-full 33.15 26.27 23.52 44.95 55.28

Real* 28.18 21.95 28.14 52.21 62.35

Table 2: Normal estimation results on NYUv2 dataset.

Lower is better Higher is better (%)

RMSE RMSE-log < 1.25 < 1.252 < 1.253

O → P
OpenGL 1.0770 0.3873 43.53 73.60 89.75

Ours-PBR 1.0293 0.3514 46.23 75.41 91.35

P → R CycleGAN [43] 0.9824 0.3394 48.24 78.61 92.25

O → R

CycleGAN [43] 1.0328 0.3726 45.46 75.49 91.13

T2Net [42] 1.0085 0.3548 47.49 77.57 91.94

Our-full 0.9774 0.3328 49.59 79.54 93.14

Real* 0.7070 0.2516 67.76 88.75 96.35

Table 3: Depth estimation results on NYUv2 dataset. Real*

is the model trained on 5000 real images from NYUv2.

posed method addresses satisfactorily.

5.2. Domain adaptation

Network models trained with synthetic images often per-

form poorly on real images due to the domain gap. Our

two-stage network improves the visual realism of synthetic

images, thereby boosting the performance of network mod-

els trained with the translated images. We compare the per-

formance of network models trained with images generated

with different methods on two tasks including normal es-

timation and depth estimation. We train the task networks

on 5000 images from SUNCG dataset after translation to

the real domain, and evaluate them on the test dataset in

NYUv2, which contains 1449 images with ground truth nor-

mal and depth.

Normal estimation. We use a U-Net [29] with 7 downsam-

pling blocks for the normal estimation task, and apply the

inverse dot product between ground truth normal and pre-

dicted normal as the loss function. The network is trained

with an Adam optimizer for 200 epochs with a learning rate

of 2 × 10−4 for the first 100 epochs and a linearly decay-

ing rate for the remaining 100 epochs. We test the network

on the NYUv2 dataset. In Table 2, we report the mean and

median angle between predicted normal and ground truth

normal, as well as the percentage of pixels where the an-

gle is below a certain threshold. From the table we can see

compared to the model trained on OpenGL images, train-

ing on our predicted PBR images significantly reduces the

average angle, and translation to the real domain further re-

duces it to 33.15, which demonstrates that both stages help

reduce the domain gap and help improve network perfor-

mance. In addition, compared to the naı̈ve CycleGAN in
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(a) OpenGL image (b) CycleGAN (c) T2Net (d) Ours

Figure 9: Comparison on the full pipeline from OpenGL to Real against single stage translation with CycleGAN and T2Net.

image space for the second stage, our disentangled design

is also able to achieve higher accuracy. Finally, compared

to going directly from OpenGL to real images with meth-

ods such as CycleGAN and T2Net, our two-stage translation

significantly outperforms them on all metrics.

Depth estimation. We use the network architecture in

Zheng et al. [42] for depth estimation, and adopt the same

training protocol. We evaluate the performance of differ-

ent approaches on the NYUv2 dataset using metrics such

as relative mean squared error (RMSE) between the predic-

tion and ground truth, RMSE in log space as well as the

percentage of pixels whose ratios to ground truth are below

a threshold [6]. Table 3 summarizes the scores of different

network models. From the table we can see that training

with our predicted PBR images achieves much higher ac-

curacy than training on the synthetic OpenGL images, and

our full pipeline further improves the accuracy by translat-

ing the PBR images to real domain. Our two-stage transla-

tion is also able to outperform single-stage translation with

T2Net and CycleGAN and leads to a lower error.

6. Conclusion

We propose a novel two-stage framework to translate

synthetic OpenGL images to the real domain. We achieve

this by manipulating the albedo and shading layers of an

image: we first translate them to the PBR domain by train-

ing on paired data, followed by an unsupervised translation

to the real domain. We have demonstrated that our ap-

proach leads to translations with higher visual quality and

better performance for domain adaptation on scene infer-

ence tasks. We believe that operating on the albedo-shading

decomposition is a way to incorporate physical structure

into generative models and would like to explore applica-

tions of this idea to other tasks like image synthesis, image

editing and style transfer.
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