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Abstract

Estimating the metric height of a person from monocular

imagery without additional assumptions is ill-posed. Exist-

ing solutions either require manual calibration of ground

plane and camera geometry, special cameras, or reference

objects of known size. We focus on motion cues and exploit

gravity on earth as an omnipresent reference ’object’ to

translate acceleration, and subsequently height, measured

in image-pixels to values in meters. We require videos of

motion as input, where gravity is the only external force.

This limitation is different to those of existing solutions that

recover a person’s height and, therefore, our method opens

up new application fields. We show theoretically and em-

pirically that a simple motion trajectory analysis suffices

to translate from pixel measurements to the person’s metric

height, reaching a MAE of up to 3.9 cm on jumping mo-

tions, and that this works without camera and ground plane

calibration.

1. Introduction

Estimating metric scale from a monocular image or

video recordings is a fundamental problem in computer

vision [5, 14] and important for determining distances in

forensics, autonomous driving, person re-identification, and

structure-from-motion (SfM). In general, object size and

distance cancel in perspective projection—which makes the

problem ill-posed. However, solutions exist if cameras and

ground floor are manually calibrated [12, 31, 18], special

cameras for depth-of-field sweeping are available [10], or

reference objects of known scale are present [30, 14, 30,

20]. Some solutions studied relationships that are particu-

lar for persons, such as height, appearance, facial features,

body proportions [3, 13]. However, only uncertain and bi-

ased predictions could be obtained.

This paper aims at a new approach to estimating a per-

son’s height using motion cues in videos. The main idea is

to use the omnipresent gravity on earth as a reference ’ob-

ject’. Newton’s second equation of motion dictates that the

trajectory of an object is a parabola, a function of time, its

Gravity as a reference

for translation

Figure 1. Idea. We exploit gravity as a reference object for map-

ping image height measurements in pixel [px] to metric height [m].

initial speed and position, with the curvature determined by

the acceleration induced by constant external forces [22].

To this end, we restrict ourselves to cases where gravitation

is the only source of external acceleration and the camera

is static, so that acceleration in the image can be uniquely

attributed to gravity. By relating acceleration in the image

and to gravity on earth, we can then translate measurements

in pixels to metric height in meters, as sketched in Figure 1.

Although this strategy restricts the application to scenar-

ios entailing free-fall motions, it applies to any video of

a person jumping or running, where air friction and other

sources of acceleration are negligible. Because this limita-

tion is orthogonal to those of existing solutions, our method

opens up new application fields, such as metric monocular

SfM, automatic person re-identification in videos with un-

known camera geometry, and metric human pose estimation

from a single camera, as demonstrated in Figure 2.

Our method is inspired by approaches that estimate the

3D trajectory of rigid objects in free fall [16, 23, 24, 17, 29].

All these methods assume a calibrated camera, known grav-

ity direction, rigid objects and focus on object position in-

stead of scale estimation. In contrast, we show that our strat-

egy for height estimation is applicable without knowing or

constraining the initial object speed or position, that it can

be generalized to account for the internal forces present in

articulated person motion, and does not require knowledge

of any camera parameters nor ground plane position.
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Figure 2. Application to metric 3D pose estimation. Left: Input

and output of LCRNet, a 3D human pose estimation method [25],

which does not recover the correct scales (marked in red). Right:

Our height estimate from directed on-spot jumping recover the

scale and relative depth of the hip locations (marked in green).

We validate our findings on a new test set containing

12 persons performing seven different jumping and running

motions at two distances. Our obtained mean absolute error

(MAE) of 3.9 cm, is nearly half of the 6.5 cm MAE by [13],

which demonstrates the success our our method and the im-

portance of geometric and physical constraints. Our code

and dataset is available at https://cvlab.epfl.ch/

articulated-free-fall-dataset.

2. Related Work

Multiple approaches for estimating the size of a person

or object have been proposed in the literature. We list the

most important ones, focusing on the existing conditions

used to make monocular height estimation well-posed.

Height from camera geometry. Without external scale

information, object size and distance is ambiguous accord-

ing to the basic pinhole camera model. In practice, lenses

have a limited depth of field, which shape-from-defocus

techniques exploit [21, 27]. While it can be used to guess

depth orderings in a single image, a focal sweep across mul-

tiple images or a specialized camera [10] is required for

metric scale reconstruction. These constraints preclude ap-

plications to monocular height estimation from single im-

ages and videos recorded with consumer cameras.

Scale from scene and camera geometry. One method for

estimating height from images it to place several reference

objects nearby the target object [30, 20]. Placing multiple

references is cumbersome and has been overcome by relat-

ing a single reference to other points in the scene through

vanishing points of the ground plane [5, 14, 30]. An alter-

native is to manually calibrate the camera height and orien-

tation in relation to the ground plane [12, 31, 18]. Thereby,

the height of standing people can be inferred by locating the

head and foot position in a single image, triangulating the

3D foot position on the known ground plane, and scaling

the head-foot distance to this 3D position. These methods

do not require to alter the scene but they are not applicable

to legacy videos and require an expert to calibrate.

Height from statistics. Dey et al. [7] propose a unique

solution that exploits statistics across a group of people by

measuring relative heights in group pictures and connecting

these in large image collections. Absolute height is then es-

timated from the resulting network of relative heights by

enforcing consistency with the average human. Medical

studies determined a correlation of human height and ratios

of limb proportions [1] and the ratio of head to shoulders

[28, 15], but these are difficult to estimate from images. Re-

cent methods have attempted to capture such statistical re-

lations directly from anthropometric measurements [3, 11]

and collection of images [13, 6] though black-box regres-

sion using linear regression and deep learning, respectively.

We show that these statistical methods suffer from errors

and bias towards the average human height, as monocular

scale estimation is ill-posed without geometric constraints.

Physics-based trajectory modeling. Physical constraints

are widely used for refining and estimating trajectories of

rigid objects. Kim et al. [16] recover the 3D positions of

a soccer ball in relation to the known height of a player

or goalpost by exploiting that the ball trajectory follows a

parabola in free flight. Ohno et al. [23] model gravity and

air drag explicitly to recover metric 3D football trajectories

from a calibrated camera. This strategy has also been shown

to generalize to other projectiles [24]. Kumar et al. [17] an-

alyze tennis and use physics to fill-in frames for which no

multi–view triangulation of the ball is available. All of these

methods assume a calibrated camera, rigid object, focus on

object position, and, thereby, do not address our aim of re-

covering a person’s height from uncalibrated video.

3. Theory

Gravitation is omnipresent and roughly constant on the

earth’s surface, with an acceleration of g ≈ 9.81m/s2 to-

wards the center of the planet and the variation across the

surface below four percent. 1

A rigid object in free-fall, where gravitation is the only

acceleration, is explained by Newton’s equation of motion:

p(t) =
1

2
gt2 + v0t+ p0, (1)

where p0 and v0 are 3D-vectors capturing the initial po-

sition and velocity, respectively, t the elapsed time, and

g = ng the acceleration in direction n (vertically, depend-

ing on the chosen coordinate system).

The underlying idea is to measure motion in video and

relate the quantities estimated in pixel units to metric me-

ters through Eq. 1. Figure 1 sketches this relation graphi-

cally. For example, in the special case of v0 = 0, Newton’s

1Extremes are, e.g., 9.78m/s2 in Singapore and 9.83m/s2 in Oslo.
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equation dictates that an object moves 4.9m after one sec-

ond of free fall. Hence, estimating a motion of |ppx| pixels

(px) over a video of length t = 1s yields 1px = 1

|ppx|4.9m,

uniquely determining the px to meter ratio, which in turn al-

lows to translate height measurements of the moving object

in the image to metric units in 3D world coordinates. Next,

we derive this relation formally with respect to the camera

position and orientation. We first derive them for the case

of rigid objects and then for articulated motion.

3.1. Computing a Rigid Object’s Height

In this section we derive a linear relation, the factor q,

that maps the distances measured in the image, e.g., height

hpx measured from upper to lower object extend, to corre-

sponding height in meters, h = hpxq. Notably, this factor

can be computed for unknown distance d, focal length f ,

and gravity direction, by relating the gravitational constant

g to the measured image acceleration apx.

Formally, the observed 2D motion (ppx
1
, . . . ,ppx

T ) on the

image plane across a video of T frames are samples of the

projected 3D motion ppx(t) = Π (p(t)). In this work, we

will approximate the projection process with scaled ortho-

graphic projection, Π. In terms of camera coordinates, with

optical axis pointing towards the third coordinate, the pro-

jected free-fall motion (Eq. 1) is then explained by

ppx(t) =
f

d

[

1 0 0
0 1 0

]

p(t)

=
f

d

[

1 0 0
0 1 0

](

t2

2
g + v0t+ p0

)

, (2)

here d is the object distance to the camera. This projection

formula implies that the image motion is also a parabola,

ppx(t) =
1

2
apxt2 + v

px
0
t+ p

px
0

. (3)

The estimation of apx,vpx
0

and p
px
0

from the input video is

explained in Section 4.3. By relating the quadratic terms in

Eq. 2 and Eq. 3 , we obtain the following relation between

the measured 2D and predicted 3D acceleration,

1

2
apxt2 =

f

d

[

1 0 0
0 1 0

]

t2

2
g

⇔ apx =
f

d

[

1 0 0
0 1 0

]

ng. (4)

This relation is sketched in Fig. 1. Although n, f , and d
are unknown, they are constants. For an object at d, their

combined effect is determined by the acceleration quotient,

q =
d

fnpx
=

g

apx
with npx =

[

1 0 0
0 1 0

]

n, (5)

where g is known, apx is the observed acceleration in Eq. 3.

Note that, vector-scalar operations are here element-wise.

Image plane

3D scene

Projection direction

Figure 3. Projection of height. The projected height, hpx is the

distance between two projected points Π(pu) and Π(pb) that are

aligned with the direction of gravity n in 3D and span height h.

We now turn to the height estimation using q. We define

height as the distance between two 3D points pu and pb that

are in a line with the direction of gravity n, see Figure 3.

The sought function is derived by applying Π on pu and

pb, using the linearity of Π, and substituting q from Eq. 5,

hpx = Π(pu)−Π(pb)

=
f

d

[

1 0 0
0 1 0

]

(pu − pb)

=
f

d

[

1 0 0
0 1 0

]

nh =
h

q
, (6)

where, hpx is the difference between the projected reference

points used for height estimation—in our experiments it is

the head-to-heel vector measured in the image. This relation

provides two solutions for h, respectively for the vertical

and horizontal components of q and apx. This system of

equations could be solved in the least-squares sense.

However, in practice, videos are predominantly captured

upright and the vertical direction will dominante. We there-

fore use the vertical solution directly. In the following, we

denote the vertical components of q,apx and hpx respec-

tively with scalars q, apx and hpx. The translation rule be-

tween hpx in px and metric height is then

h = hpxq . (7)

Note that the gravity direction and camera projection ma-

trix are subsumed in q. Hence, equations hold for any affine

camera model and no ground plane nor camera calibration is

needed. Also the simplified Eq.7 applies to unknown cam-

era orientation, so long vertical acceleration is non-zero.

Only if n and f are known, i.e., when the direction of

gravity, camera intrinsic, and extrinsic parameters are cali-

brated, it is true that q can be further decomposed to com-

pute the object’s distance d and extend in all directions,

which was the focus of previous studies [16, 23, 24, 17, 29].
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3.2. Computing a Person’s Height

A jumping or otherwise moving person is likely to artic-

ulate the arms and other body parts actively. Instead of try-

ing to model the complex interactions between body parts,

we model the human body as a closed system and switch to

Center of Mass (COM) computations. Conveniently, by the

law of conservation of momentum, the center of mass of a

closed system will move at a constant speed even if inter-

nal parts move in other ways, and it also follows Newton’s

equation of motion (Eq. 1) when accelerated by g. More-

over, the (scaled orthographic) projection of the 3D-COM

is the 2D-COM of the individually projected body parts, so

that Eq. 4 holds as well.

To sum up, to estimate the height of a person we propose

to compute the COM trajectory in 2D, solve Eq. 5 for q, and

apply q in Eq. 7 to translate the height hpx from head to heel

measured in pixel units to absolute height h in m.

In the following, we will explain how the needed quanti-

ties, such as COM trajectory can be inferred automatically

from videos without requiring camera calibration.

4. Algorithms

The algorithm splits into four consecutive steps: com-

puting object position and COM per frame, detecting free

fall events, estimating image acceleration, and measuring

height in the image for total height computation.

4.1. Measuring the COM

For algorithmic validation, we analyze the ideal projec-

tile trajectory of a rigid and uniformly colored ball. In this

toy example, the image position measurements can easily

be automated. We segment the ball from the background

through color thresholding and determine the object center,

ppx(t), by fitting a circle to the segmentation contour.

For articulated human motion, we detect the person’s

body parts with AlphaPose [8], a neural network that has

been trained to predict person keypoints in the input image.

Given a set of T RGB images I ∈ R
3×W×H represent-

ing the T frames of the original video, AlphaPose outputs

J = 17 person 2D joint positions (ppx,j
t )Jj=1

for each frame

t. Examples are shown in Fig. 4. If multiple persons are de-

tected, we select the largest one, the one in the foreground.

To compute the needed COM position, p
px
t =

∑J

j=0
rjp

px,j
t , of the J parts at positions p

px,j
t , one needs

to know the ratio rj between the weight of body part j in

relation to the total weight. For persons, the absolute weight

varies significantly and it appears to be at least as hard to es-

timate weight as to recover the sought height. However, the

relative weight of bodyparts varies little across individuals.

We took the mean mass distribution estimated in a large-

scale study in [4], which has been widely used for COM

computation in the past.

Figure 4. Bodypart keypoint detections using AlphaPose on

frontal and lateral motion, displayed as colored skeleton overlay.

Figure 5. COM trajectory for on-spot jumping, with the poly-

nomial fit,detected start, maximum, and end points marked.

4.2. Detecting FreeFall

We assume that gravity is the only external force applied

on the person (neglecting air friction). However, this is only

true during jumps and other free-fall phases. Thus, we de-

rive a simple yet effective algorithm for distinguishing flight

and ground contact phases. First, we localize maxima in the

trajectory, the highest points M = {m|ppx
m > ppx

t for t ∈
[m − 10, . . . ,m + 10]} in the trajectory of vertical pixel

locations ppx
t . Second, we compute the position of contact,

ppx
floor as the median across the first 100 frames, expecting

that the motion starts in a standing pose. We then select the

frame interval Sm = [ppx
s , . . . ,ppx

e ] such that all p
px
t ∈ Sm

are at least 15 % above the ground in relation to the jump

peak ppx
m. This procedure ensures the points belonging to the

jump initiation are excluded, those where the body is accel-

erated and in contact with the ground. A selection example

is visualized in Figure 5.

For lateral motion the ground contact point varies de-

pendent on the position in the image, lense distortion, and

camera orientation. For these, we switch to an alternative

approach and determine the distance between a maxima and

the two neighboring minimum values and select only those

points that are in the upper half.
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4.3. Estimating Acceleration

A key challenge is the estimation of apx from the COM

trajectory. Without loss of generality, we assume that the

camera roll is small and, hence, acceleration is predomi-

nantly vertical. This can be ensured by rotating the image

in the direction of maximal acceleration. Moreover, we read

the camera frame rate from the video meta data, to mea-

sure acceleration in pixel per seconds instead of number of

frames. We propose two ways of estimating the image ac-

celeration:

Baseline-distance-based. At the highest point of a jump

the velocity is zero. Hence, the linear term in Eq. 1 must be

zero. Therefore, motion in the video after this turning point

till inception with the ground can be uniquely attributed to

gravitational acceleration. Taking the highest point pm and

the last point before ground contact, ppx
e , we can easily solve

ppx
e − ppx

m = 1

2
apx(e−m)2 for apx since v

px
0

is zero and ppx
0

constant. Here (e − m) is the time difference in seconds.

However, these point estimates are prone to error and the

highest point might happen to be in-between two samples.

Ours. Under the free-fall assumption, the COM trajectory

must follow a second order polynomial, with the quadratic

term representing the acceleration and the linear term the

velocity in pixels. Therefore, we fit a polynomial of de-

gree two on the curve in the least squares sense. Since the

COM trajectory is estimated through AlphaPose, wrong and

inaccurate detections occur. We test two measures to coun-

teract. First, we utilize the confidence output of AlphaPose

and exclude points where the score drops below 2. Second,

we apply random sample consensus (RANSAC) [9] on top.

The fitting process and the effect of outliers rejection is

exemplified in Figure 6. The acceleration apx is then simply

two-times the quadratic coefficient of the curve fit. Note

that the image acceleration needs to be measured in pixels

per seconds squared using the video frame rate information.

4.4. Converting Length Estimates to Human Height

To estimate the total height of a person, we need to know

the pixel location of the top of the head to the heel in a stand-

ing pose. Unfortunately, no such off-the-shelf detectors ex-

ist. The most utmost locations that AlphaPose returns are

the nose and ankle points. As a stop-gap solution, we pro-

pose to infer a correction factor to go from nose-to-ankle to

total height. We compute the mean ratio, c = 1.17 ± 0.03,

between the person’s pixel height and ankle-nose distance,

determined by AlphaPose, over 29 images taken from the

web. The low standard deviation suggests that this linear

approximation is accurate.

In practice, we measure the pixel height at the first

frames of the video, assuming an upright stance. The final

height is subsequently recovered by translating that image

Figure 6. Outlier removal example. The red diamond marks the

outlier and the red curve is the one that excludes it during fitting,

leading to significantly improved fits.

height measurements to meters with Eq. 7 and multiplying

the result with c.

5. Experimental Evaluation

We first study the attainable accuracy of the gravity-

based height estimation at hand of rigid objects, where au-

tomatic detection is easy and reliable. Subsequently, we

analyze the feasibility of estimating a person’s height dur-

ing jumps and runs of varying complexity and compare it

to ground truth measurements and to the appearance-based

solution proposed in [13]. We introduce new tests sets for

both setups:

• FallingBall. We drop a tennisball at several distances

to the camera, spaced 50cm apart, as sketched in Fig-

ure 7. Two bounces of the ball are recorded at 120 Hz,

the second one is about 50% lower due to the absorbed

energy at inception with the ground. The introduced

ball detection algorithm is used to calculate the ball di-

ameter in pixels. The ground truth diameter is 7.3 cm.

• ArticulatedFreeFall. We recorded 12 subjects, at 30

Hz, located at four and seven meter distance to the

camera. Examples are shown in Figure 8. Seven mo-

tions are tested: low, high, jumping jack, and funny

on-spot jumps, as well as lateral running, exagger-

ated running, and jumping with swinging arms. Funny

jumps are undirected and participants chose asymmet-

ric, articulated poses, see Figure 9 for examples. The

dataset is available at https://cvlab.epfl.ch/

articulated-free-fall-dataset.

On top of this, we test human height estimation on com-

munity videos downloaded from YouTube. We chose a par-

cour clip with movements of varying complexity in differ-

ent outdoor scenes. Qualitative results of these, including

limitations, are shown in the supplemental video.
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Figure 7. Illustration of the tennisball experiment. The ball is

dropped in front of the camera so that it is still in the field of view.
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Figure 8. Examples from our new ArticulatedFreeFall dataset,

that is captured at 4 and 7 m distance s and features lateral running,

jumping and on-spot jumping.

Figure 9. Example of funny and jumping jack poses. The

wooden reference object is used to estimate relative errors of q.

For quantitative evaluation of estimated height ĥ and

conversion factor q̂ we compute absolute and signed errors

to report:

• accuracy across trials as the Mean Absolute Error

(MAE) between predicted and estimated quantities.

• bias across trials as the Mean signed Error (ME).

Both measures are computed for absolute and relative er-

rors since relative errors are easier to grasp for the small

values of q. For consistency analysis, we report the Stan-

dard Deviation (SD) for absolute and signed errors using

the ± notation.

The ground truth ratio q is computed from a reference

object of known height and its height in the images.

Ours (high bounce)

Ours (low bounce)

Baseline-distance-based (high bounce)

Baseline-distance-based (low bounce)

Ours, linear trend (high bounce)

Ours, linear trend (low bounce)

Distance to camera [cm]

A
b

so
lu

te
 e

rr
o

r 
[c

m
]

Figure 10. Absolute size estimation error as a function of the dis-

tance to the camera. The error is small overall, below one centime-

ter for distances up to 4m and follows a linear trend with respect

to the distance. The varied bounce heights do not influence the

accuracy significantly.

5.1. Estimating a Rigid Object’s Height

This experiment analyzes height estimation accuracy on

a tennis ball being thrown from varying heights and dis-

tances to the camera. Figure 10 plots the absolute error

with respect to the distance to the camera. Overall, the

error is small and below one centimeter for distances up

to four meters. Acceleration estimation with curve fitting,

Ours, slightly outperforms the simpler distance-based strat-

egy, Baseline-distance-based. This marginal difference

can be explained with the high accuracy of the ball detec-

tion, larger differences can be seen in the subsequent evalu-

ation on persons.

To analyze the overall behavior we show the linear fit of

errors from Ours as black lines in Figure 10. The error in-

creases with respect to the distance from the camera. This is

expected, as the projected object size and motion decrease

in scale proportionally to the distance while the image es-

timation error stays constant due to the pixel discretization.

We analyzed two different bounce heights. Although the

lower bounce is roughly 50% smaller, we found no signifi-

cant influence on the scale estimation accuracy. This can be

seen on the linear fits in Figure 10.

5.2. Estimating a Person’s Height

Qualitative results and exemplar videos from the new

ArticulatedFreeFall dataset are shown in the supplemen-

tal video. Here we analyze the accuracy quantitatively. All

videos are processed with the described COM computation

and automatic flight-phase detection using per-frame Al-

phaPose estimates.
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Table 1. Error analysis per subject for on-spot jumps. We compute the median prediction across the four jumps of each subject and

report the relative errors, absolute errors, as well as the bias (ME) and accuracy (MAE) across all subjects. Estimates are accurate and, in

contrast to [13], unbiased with 3.9 MAE and 0.8 ME.
Detailed results using Ours:

Subjects 4m distance 7m distance Combined 4m and 7m

ID Height Sex Error Rel. Error Rel. Error Rel. Error Rel. Error Rel.

[cm] [f or m] [cm] [%] [cm/px] [%] [cm] [%] [cm/px] [%] [cm] [%]

S1 163.0 m -2.4 -1.5 -0.015 -3.7 3.0 1.8 0.035 4.8 1.3 0.8

S2 178.0 m -1.0 -0.6 0.000 0.0 -3.3 -1.9 0.030 4.1 -2.4 -1.4

S3 175.0 m 0.6 0.3 0.000 0.0 2.6 1.5 -0.025 -3.4 1.3 0.7

S4 159.0 f -7.4 -4.7 -0.030 -7.3 2.3 1.5 0.005 0.7 -2.6 -1.6

S5 175.0 m 0.3 0.2 0.010 2.4 -9.1 -5.2 -0.040 -5.5 -2.8 -1.6

S6 157.0 f 0.8 0.5 0.000 0.0 1.1 0.7 0.005 0.7 1.1 0.7

S7 188.0 m -5.4 -2.9 -0.005 -1.2 -2.2 -1.2 0.025 3.4 -4.7 -2.5

S8 183.0 m -3.2 -1.8 0.010 2.4 -11.2 -6.1 -0.015 -2.1 -6.1 -3.3

S9 163.0 f 23.4 14.4 0.050 12.2 -0.4 -0.3 -0.010 -1.4 13.2 8.1

S10 170.0 f 4.9 2.9 0.000 0.0 10.1 6.0 0.015 2.1 7.9 4.7

S11 173.0 m -3.9 -2.3 -0.025 -6.1 2.6 1.5 0.025 3.4 0.0 0.0

S12 173.0 m 0.2 0.1 0.005 1.2 7.9 4.5 0.025 3.4 3.4 2.0

Bias (ME±STD) across subjects:

Ours 0.6±7.9 0.4±4.8 0.00±0.02 0±4.9 0.3±6.1 0.2±3.5 0.01±0.02 0.9±3.3 0.8±5.4 0.6±3.2

Baseline-distance-based -7±21.3 4.3±12.5 0.02±0.05 4±13.1 -5.7±21.1 3.3±12 0.02±0.09 2.2±12.2 -7.7±16.5 4.5±9.5

Baseline-population-mean n/a n/a n/a n/a n/a n/a n/a n/a -2.5±9.5 n/a

Gunel et al. [13] 3.7±6.8 2.3±4 n/a n/a 3.6±6.9 2.3±4.1 n/a n/a 3.7±6.7 2.3±4

Accuracy (MAE±STD) across subjects:

Ours 4.5±6.4 2.7±3.9 0.01±0.02 3±3.8 4.6±3.8 2.7±2.1 0.02±0.01 2.9±1.6 3.9±3.7 2.3±3.2

Baseline-distance-based 18.3±11.9 10.8±7 0.05±0.03 11.7±6.4 13.6±16.7 7.8±9.5 0.05±0.07 7.2±9.9 15.5±8.8 9±5

Baseline-population-mean n/a n/a n/a n/a n/a n/a n/a n/a 8.1±5.0 n/a

Gunel [13] 6.5±4 3.8±2.5 n/a n/a 6.5±3.9 3.8±2.5 n/a n/a 6.5±3.9 3.8±2.4

Table 2. Error analysis per on-spot jump type. We compute the accuracy (MAE) and bias (ME) across all 12 subjects. Estimation

accuracy is roughly the same for all jump heights, with outliers in each class leading to high mean errors and standard deviations. This

highlights the importance of taking multiple measurements.
4m distance 7m distance

Error in h Relative error in q Error in h Relative error in q

Bias [cm] Accuracy [cm] Bias [%] Accuracy [%] Bias [cm] Accuracy [cm] Bias [%] Accuracy [%]

(ME±STD) (MAE±STD) (ME±STD) (MAE±STD) (ME±STD) (MAE±STD) (ME±STD) (MAE±STD)

J1 (low) -0.3±18.5 13.1±12.4 0±11.2 8±7.5 -14.8±37.3 20.7±34 -7.2±21 11.1±19

J2 (high) -0.6±12.4 8.0±9.1 -0.1±8.1 5.8±5.4 1.6±7.9 6.5±4.2 2±4.8 4.4±2.4

J3 (jack) 1.1±8 5.6±5.6 1.1±5.1 3.5±3.8 0.2±7 5.3±4.3 1.3±4.3 3.1±3.1

J4 (funny) 0.4±11.9 9.4±6.8 0.8±6.8 5.2±4.2 4±14 11.6±8.1 3.6±8.1 7.7±3.9

Accuracy analysis. The introduced error metrics are

evaluated in Table 1. The predictions from all four on-spot

jumps are accumulated taking the median, independently

for each of the 12 subjects. The overall height estimation

accuracy of 3.9 cm (MAE) is quite good given the large dis-

tance of 4 to 7 meters. Notably is also the low bias of 0.8
cm. Accuracies vary across subjects, but without apparent

correlation to subject gender and height. For instance, S4

and S9 have the same height (159 and 163 cm) and gen-

der but largely different errors. Moreover, the largest errors

are distributed across all heights, e.g., S7 (188 cm) and S9

(163 cm) have both an error above 4.5 cm. As for the tennis

ball experiment, results are slightly more accurate and have

lower standard deviation for jumps closer to the camera.

Table 2 sheds light on the performance in terms of jump

complexity. Low jumps have the highest error, presumably

due to their short duration and resulting low numbers of

samples. High and simple jumps are most accurate, fol-

lowed by the symmetric jumping jack. In general, occa-

sional AlphaPose failures occur during all jump types, re-

sulting in relatively high MAE and SD. However, taking the

median prediction across all jumps, including the difficult

funny poses, increases prediction accuracy and SD signifi-

cantly, as analyzed before.

Lateral jumping and running motions are more difficult

to capture due to the occluded body side. Therefore, Alpha-

Pose exhibits many false joint detections, leading to tempo-

ral jitter in the derived COM trajectories. Table 3 reports

the accuracy and bias across all subjects and independently

for slow run, fast run, and jumping. While Jumping is still

acceptable with a MAE of 6.6 cm, the reconstructions of

runs are noisy. Part of the error comes from the fact that

flight phases during running are very short and thereby pro-

vide little data points. The difference between complex and

simple jumps can be seen on the example trajectory in Fig-

ure 11. This problem could be mitigated by recording with

frame rates larger than the 30 Hz used here. Another rea-

son could be the athletic articulation leading to errors in

the COM computation. We discuss alternative counter mea-

sures in the subsequent limitation and future work section.

Quantitative comparison. We compare our approach to

the only existing method for estimating height from monoc-

ular and uncalibrated footage [13]. Since that method re-

gresses height with a neural network from single images,

we apply it to all video frames and compute error values

on the median prediction across all frames, to be compara-

ble. [13] shows large errors for tall and short persons, high
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Table 3. Error analysis per subject for lateral motion. Dynamic running and jumping motions lateral to the camera are hard to capture

due to self-occlusions of half of the body, leading to unreliable COM trajectories and increased errors compared to the tested frontal jumps.

Still, jumping is adequate with 6.6 cm MAE.
Jumping, 4m Slow Run, 4m Fast Run, 4m

h q (= 0.0041) h q (= 0.0041) h q (GT: = 0.0041)

Error Rel. Error Rel. Error Rel. Error Rel. Error Rel. Error Rel.

[cm] [%] [cm/px] [%] [cm] [%] [cm/px] [%] [cm] [%] [cm/px] [%]

Bias (ME+STD) 0.4±7.5 0.2±4.4 -0.01±0.02 -1.2±4.2 11.7±19.7 6.8±11.8 -0.02±0.04 -5.4±9.7 11.4±8.5 6.6±5 -0.01±0.02 -3.2±4.5

Accuracy (MAE+STD) 6.6±3 3.9±1.8 0.01±0.01 3.3±2.8 18.9±12.2 11.2±7.3 0.03±0.03 7.2±8.3 12.3±7 7.1±4.1 0.02±0.02 4±3.7
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Figure 11. COM trajectory comparison, for 3 on-spot jumps

(left) and 6 running steps (right). Running has shorter flight phases

and contains temporal jitter around the peaks.

MAE of 6.5 cm, and strong bias of 3.7 cm, see bottom of

Table 1[13]. This can be explained with a tendency to the

mean person height due to the uncertainty of visual cues.

The naive Baseline-population-mean, predicting the pop-

ulation mean height of 168.9 m, is largely outperformed.

Ablation study. We now turn to analyzing independent

model components and alternatives. The negligible bias of

0.5 cm (in Table 1) towards overestimating height shows

that the simple linear translation from ankle-nose to total

height works well. This is further evidenced by the similar

relative errors of q, which depends only on the accuracy of

apx, compared to that of h, that includes both steps.

To validate the importance of outlier rejection, we dis-

able the confidence-based outlier removal. Without any

rejection, strong outliers in the pose estimation distort the

curve fitting, shown for one jump in Figure 6. Using

RANSAC on top helps to reduce some errors, but worsens

others. In total it increases the MAE of h to 7.4 cm.

Finally, we repeat the comparison of the curve fitting,

Ours, to the simpler Baseline-distance-based approach.

Unlike for the ball experiment, Baseline-distance-based

performs significantly worse, see the bottom part of Table 1.

This is because Ours can tolerate moderate AlphaPose er-

rors by fitting to the entire jump, while Baseline-distance-

based is sensitive to the peak and end frame pair.

The distance dependent error due to the assumed scaled-

orthographic projection model is analyzed in the supple-

mental document using a simulation. The document further

contains an analysis on the resilience to camera rotation.

6. Limitations and Future Work

Although our results are up to two times better than the

one of Günel et al., there are multiple technical constraints.

Besides requiring free-flight motion, which restricts the ap-

plication scenarios, the assumption of a static camera is

the strongest limitation. However, we believe that exist-

ing video stabilization [19], video panorama [2], and SfM

techniques [26] could be applied to resolve this constraint

by registering moving videos to a static frame. In fact, our

strategy could be integrated into SfM methods and provide

the scale information missing in monocular reconstruction.

Detecting free-flight, is a challenge that we only touched

in this study. Currently the flight and ground contact phases

can only be distinguished within a hand-selected snippet

that must contain flight phases. While sufficient for many

tasks such as forensics and analyzing legacy videos, de-

veloping fully-automatic techniques, perhaps by analyzing

foot-ground contact visually, poses an important future re-

search direction for domains that require automation.

It is important to reinforce that our method recovers met-

ric height, the absolute extend of an object in the direction

of gravity, but no other extends. Computing scales in arbi-

trary directions, such as object width, would require knowl-

edge of the 3D gravity direction and camera calibration to

disentangle the effects of foreshortening and pixel extend.

7. Conclusion

We have explored a new approach for estimating the

height of a person jumping and running. It is applicable

to monocular videos of persons and objects alike, whenever

free-fall with negligible air friction is present. We hope that

this approach will enable new applications, as its limitations

are complementary to those of existing monocular height

estimation approaches. The precision is high, attaining up

to 3.9 cm MAE on our new ArticulatedFreeFall dataset.

In the future, we expect that advances in person keypoint

detection will further improve the proposed gravity-based

height estimation strategy.
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