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Abstract

Generative models for 3D geometric data arise in many

important applications in 3D computer vision and graph-

ics. In this paper, we focus on 3D deformable shapes that

share a common topological structure, such as human faces

and bodies. Morphable Models and their variants, despite

their linear formulation, have been widely used for shape

representation, while most of the recently proposed non-

linear approaches resort to intermediate representations,

such as 3D voxel grids or 2D views. In this work, we intro-

duce a novel graph convolutional operator, acting directly

on the 3D mesh, that explicitly models the inductive bias

of the fixed underlying graph. This is achieved by enforc-

ing consistent local orderings of the vertices of the graph,

through the spiral operator, thus breaking the permutation

invariance property that is adopted by all the prior work

on Graph Neural Networks. Our operator comes by con-

struction with desirable properties (anisotropic, topology-

aware, lightweight, easy-to-optimise), and by using it as a

building block for traditional deep generative architectures,

we demonstrate state-of-the-art results on a variety of 3D

shape datasets compared to the linear Morphable Model

and other graph convolutional operators.

1. Introduction

The success of deep learning in computer vision and im-

age analysis, speech recognition, and natural language pro-

cessing, has driven the recent interest in developing simi-

lar models for 3D geometric data. Generalisations of suc-

cessful architectures such as convolutional neural networks

(CNNs) to data with non-Euclidean structure (e.g. mani-

folds and graphs) is known under the umbrella term Ge-

ometric deep learning [10]. In applications dealing with

3D data, the key challenge of geometric deep learning is

a meaningful definition of intrinsic operations analogous to
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convolution and pooling on meshes or point clouds. Among

numerous advantages of working directly on mesh or point

cloud data is the fact that it is possible to build invariance

to shape transformations (both rigid and nonrigid) into the

architecture, as a result allowing to use significantly sim-

pler models and much less training data. So far, the main

focus of research in the field of geometric deep learning has

been on analysis tasks, encompassing shape classification

and segmentation [35, 37], local descriptor learning, corre-

spondence, and retrieval [31, 9, 27].

On the other hand, there has been limited progress in

representation learning and generation of geometric data

(shape synthesis). Obtaining descriptive and compact repre-

sentations of meshes and point clouds is essential for down-

stream tasks such as classification and 3D reconstruction,

when dealing with limited labelled training data. Addition-

ally, geometric data synthesis is pivotal in applications such

as 3D printing, computer graphics and animation, virtual

reality, and game design, and can heavily assist graphics

designers and speed-up production. Furthermore, given the

high cost and time of acquiring quality 3D data, geomet-

ric generative models can be used as a cheap alternative for

producing training data for geometric ML algorithms.

Most of the previous approaches in this direction rely

on intermediate representations of 3D shapes, such as point

clouds [1], voxels [44] or mappings to a flat domain [32, 4]

instead of direct surface representations, such as meshes.

Despite the success of such techniques, they either suffer

from high computational complexity (e.g. voxels) or ab-

sence of smoothness of the data representation (e.g. point

clouds), while usually pre- and post-processing steps are

needed in order to obtain the output surface model. Learn-

ing directly on the mesh was only recently explored in

[25, 38, 43, 22] for shape completion, non-linear facial mor-

phable model construction and 3D reconstruction from sin-

gle images, respectively.

In this paper, we propose a novel representation learning

and generative framework for fixed topology meshes. For

this purpose, we formulate an ordering-based graph convo-
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Figure 1: Illustration of our Neural3DMM architecture

lutional operator, contrary to the permutation invariant oper-

ators in the literature of Graph Neural Networks. In partic-

ular, similarly to image convolutions, for each vertex on the

mesh, we enforce an explicit ordering of its neighbours, al-

lowing a “1-1” mapping between the neighbours and the pa-

rameters of a learnable local filter. The order is obtained via

a spiral scan, as proposed in [24], hence the name of the op-

erator, Spiral Convolution. This way we obtain anisotropic

filters without sacrificing computational complexity, while

simultaneously we explicitly encode the fixed graph con-

nectivity. The operator can potentially be generalised to

other domains that accept implicit local orderings, such as

arbitrary mesh topologies and point clouds, while it is nat-

urally equivalent to traditional grid convolutions. Via this

equivalence, common CNN practices, such as dilated con-

volutions, can be easily formulated for meshes.

We use spiral convolution as a basic building block for

hierarchical intrinsic mesh autoencoders, which we coin

Neural 3D Morphable Models. We quantitatively eval-

uate our methods on several popular datasets: human

faces with different expressions (COMA [38]) and identities

(Mein3D [7]) and human bodies with shape ad pose varia-

tion (DFAUST [6]). Our model achieves state-of-the-art re-

construction results, outperforming the widely used linear

3D Morphable Model [5] and the COMA autoencoder [38],

as well other graph convolutional operators, including the

initial formulation of the spiral operator [24]. We also qual-

itatively assess our framework showing ‘shape arithmetic’

in the latent space of the autoencoder and by synthesising

facial identities via a spiral convolution Wasserstein GAN.

2. Related Work

Generative models for arbitrary shapes: Perhaps the

most common approaches for generating arbitrary shapes

are volumetric CNNs [45, 36, 28] acting on 3D voxels.

For example, voxel regression from images [19], denois-

ing autoencoders [40] and voxel-GANs [44] have been pro-

posed. Among the key drawbacks of volumetric meth-

ods are their inherent high computational complexity and

that they yield coarse and redundant representations. Point

clouds are a simple and lightweight alternative to volu-

metric representation recently gaining popularity. Several

methods have been proposed for representation learning of

fixed-size point clouds [1] using the PointNet [35] architec-

ture. In [46], point clouds of arbitrary size can be synthe-

sised via a 2D grid deformation. Despite their compactness,

point clouds are not popular for realistic and high-quality

3D geometry generation due to their lack of an underly-

ing smooth structure. Image-based methods have also been

proposed, such as multi-view [3] and flat domain mappings

such as UV maps [32, 4], however they are computation-

ally demanding, require pre- and post-processing steps and

usually produce undesirable artefacts. It is also worth men-

tioning the recently introduced implicit-surface based ap-

proaches [29, 13, 33], that can yield accurate results, though

with the disadvantage of slow inference (dense sampling of

the 3D space followed by marching cubes).

Morphable models: In the case of deformable shapes, such

as faces, bodies, hands etc., where a fixed topology can be

obtained by establishing dense correspondences with a tem-

plate, the most popular methods are still statistical models

given their simplicity. For Faces, the baseline is the PCA-

based 3D Morphable Model (3DMM) [5]. The Large Scale

Face Model (LSFM) [7] was proposed for facial identity

and made publicly available, [12, 23] were proposed for fa-

cial expression, while for the entire head a large scale model

was proposed in [34]. For Body & Hand, the most well

known models are the skinned vertex-based models SMPL

[26] and MANO [39], respectively. SMPL and MANO are

non-linear and require (a) joint localisation and (b) solv-

ing special optimisation problems in order to project a new

shape to the space of the models. In this paper, we take a dif-

ferent approach introducing a new family of differentiable

Morphable Models, which can be applied on a variety of

objects, with strong (i.e. body) and less strong (i.e. face) ar-

ticulations. Our methods have better representational power

and also do not require any additional supervision.

Geometric Deep Learning is a set of recent methods try-

ing to generalise neural networks to non-Euclidean do-

mains such as graphs and manifolds [10]. Such meth-

ods have achieved promising results in geometry process-

ing and computer graphics [27, 9], computational chemistry

[16, 18], and network science [21, 31]. Multiple approaches

have been proposed to construct convolution-like opera-

tions, including spectral methods [11, 15, 21, 47], local

charting based [27, 9, 31, 17, 24] and soft attention [41, 42].

Finally, graph or mesh coarsening techniques [15, 48] have

been proposed, equivalent to image pooling.
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3. Spiral Convolutional Networks

3.1. Spiral Convolution

For the following discussion, we assume to be given a

manifold, discretised as a triangular mesh M = (V, E ,F)
where V = {1, . . . , n}, E , and F denote the sets of vertices,

edges, and faces respectively. Furthermore, let f : V → R,

a function representing the vertex features.

One of the key challenges in developing convolution-like

operators on graphs or manifolds is the lack of a global sys-

tem of coordinates that can be associated with each point.

The first intrinsic mesh convolutional architectures such as

GCNN [27], ACNN [9] or MoNet [31] overcame this prob-

lem by constructing a local system of coordinates u(x, y)
around each vertex x of the mesh, in which a set of local

weighting functions w1, . . . , wL is applied to aggregate in-

formation from the vertices y of the neighborhood N (x).
This allows to define ‘patch operators’ generalising the slid-

ing window filtering in images:

(f ⋆ g)x =
L
∑

ℓ=1

gℓ
∑

y∈N (x)

wℓ(u(x, y))f(y) (1)

where
∑

y∈N (x) wℓ(u(x, y))f(y) are ‘soft pixels’ (L in to-

tal), f are akin to pixel intensity in images, and gℓ the filter

weights. The problem of the absence of a global coordinate

system is equivalent to the absence of canonical ordering of

the vertices, and the patch-operator based approaches can

be also interpreted as attention mechanisms, as in [41] and

[42]. In particular, the absence of ordering does not allow

the construction of a “1-1” mapping between neighbouring

features f(y) and and filter weights gℓ, thus a “all-to-all”

mapping is performed via learnable soft-attention weights

wℓ(u(x, y)). In the Euclidean setting, such operators boil

down to the classical convolution, since an ordering can be

obtained via the global coordinate system.

Besides the lack of a global coordinate system, an-

other motivation for patch-operator based approaches when

working on meshes, is the need for insensitivity to meshing

of the continuous surface, i.e. ideally, each patch operator

should be independent of the underlying graph topology.

Figure 2: Spiral ordering on a mesh and an image patch

However, all the methods falling into this family, come

at the cost of high computational complexity and parame-

ter count and can be hard to optimise. Moreover, patch-

operator based methods specifically designed for meshes,

require hand-crafting and pre-computing the local systems

of coordinates. To this end, in this paper we make a cru-

cial observation in order to overcome the disadvantages of

the aforementioned approaches: the issues of the absence

of a global ordering and insensitivity to graph topology are

irrelevant when dealing with fixed topology meshes. In par-

ticular, one can locally order the vertices and keep the order

fixed. Then, graph convolution can be defined as follows:

(f ⋆ g)x =

L
∑

ℓ=1

gℓf(xℓ). (2)

where {x1, . . . , xL} denote the neighbours of vertex x or-

dered in a fixed way. Here, in analogy with the patch oper-

ators, each patch operator is a single neighbouring vertex.

In the Euclidean setting, the order is simply a raster scan

of pixels in a patch. On meshes, we opt for a simple and

intuitive ordering using spiral trajectories inspired by [24].

Let x ∈ V be a mesh vertex, and let Rd(x) be the d-ring,

i.e. an ordered set of vertices whose shortest (graph) path to

x is exactly d hops long; Rd
j (x) denotes the jth element in

the d-ring (trivially, R0
1(x) = x). We define the spiral patch

operator as the ordered sequence

S(x) = {x,R1
1(x), R

1
2(x), . . . , R

h
|Rh|}, (3)

where h denotes the patch radius, similar to the size of the

kernel in classical CNNs. Then, spiral convolution is:

(f ∗ g)x =

L
∑

ℓ=1

gℓ f
(

Sℓ(x)
)

. (4)

The uniqueness of the ordering is given by fixing two de-

grees of freedom: the direction of the rings and the first ver-

tex R1
1(x). The rest of the vertices of the spiral are ordered

inductively. The direction is chosen by moving clockwise

or counterclockwise, while the choice of the first vertex, the

reference point, is based on the underlying geometry of the

shape to ensure the robustness of the method. In particular,

we fix a reference vertex x0 on a template shape and choose

the initial point for each spiral to be in the direction of the

shortest geodesic path to x0, i.e.

R1
1(x) = argmin

y∈R1(x)

dM(x0, y), (5)

where dM is the geodesic distance between two vertices on

the mesh M. In order to allow for fixed-sized spirals, we

choose a fixed length L as a hyper-parameter and then either

truncate or zero-pad each spiral depending on its size.

Comparison to Lim et al. [24]: The authors choose the

starting point of each spiral at random, for every mesh sam-

ple, every vertex, and every epoch during training. This
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choice prevents us from explicitly encoding the fixed con-

nectivity, since corresponding vertices in different meshes

will not undergo the same transformation (as in image con-

volutions). Moreover, single vertices also undergo different

transformations every time a new spiral is sampled. Thus,

in order for the network to obtain robustness to different

spiral samples, it inevitably has to become invariant to dif-

ferent rotations of the neighbourhoods, thus it has reduced

capacity. To this end, we emphasise the need of consistent

orderings across different meshes.

Moreover, in [24], the authors model the vertices on the

spiral via a recurrent network, which has higher computa-

tional complexity, is harder to optimise and does not take

advantage of the stationary properties of the 3D shape (lo-

cal statistics are repeated across different patches), which

are treated by our spiral kernel with weight sharing.

Comparison to spectral filters: Spectral convolutional op-

erators developed in [15, 21] for graphs and used in [38]

for mesh autoencoders, suffer from the fact that the are

inherently isotropic. This is a side-effect when one, un-

der the absence of a canonical ordering, needs to design

a permutation-invariant operator with small number of pa-

rameters. In particular, spectral filters rely on the Lapla-

cian operator, which performs a weighted averaging of the

neighbour vertices :

(∆f)x =
∑

y:(x,y)∈E
wxy

(

f(y)− f(x)
)

, (6)

where wxy denotes an edge weight. A polynomial of degree

r with learnable coefficients θ0, . . . , θr is then applied to

∆. Then, the graph convolution amounts to filtering the

Laplacian eigenvalues, p(∆) = Φp(Λ)Φ⊤. Equivalently:

(f ∗ g) = p(∆)f =

r
∑

ℓ=0

θℓ∆
ℓf, (7)

While a necessary evil in general graphs, spectral filters

on meshes are rather weak given that they are locally

rotationally-invariant. On the other hand, spiral convolu-

tional filters leverage the fact that on a mesh one can canon-

ically order the neighbours. Thus, they are anisotropic by

construction and as will be shown in the experimental sec-

tion 4 they are expressive by using just one-hop neighbour-

hoods, contrary to the large receptive fields used in [38].

In Fig 3 we visualise the impulse response (centred on a

vertex on the forehead) of a selected laplacian polynomial

filter from the architecture of [38] (left) and from a spiral

convolutional filter with h = 1 (right).

Finally, the equivalence of spiral convolutions to image

convolutions allows the use of long-studied practices in the

computer vision community. For example, small patches

can be used, leading to few parameters and fast computa-

tion. Furthermore, dilated convolutions [49] can also be

adapted to the spiral operator by simply sub-sampling the

Figure 3: Activations of ChebNet vs spiral convolutions

spiral. Finally, we argue here that our operator could be

applied to other domains, such as point clouds, where an

ordering of the data points can be enforced.

3.2. Neural 3D Morphable Models

Let F = [f0|f1|...,fN ], fi ∈ R
d∗m the matrix of all the

signals defined on a set of meshes in dense correspondence

that are sampled from a distribution D, where d the dimen-

sionality of the signal on the mesh (vertex position, texture

etc.) and m the number of vertices. A linear 3D Morphable

Model [5] represents arbitrary instances y ∈ D as a linear

combination of the k largest eigenvectors of the covariance

matrix of F by making a gaussianity assumption:

y ≈ f̄ +

k
∑

i

αi

√

divi (8)

where f̄ the mean shape, vi is the ith principal component,

di the respective eigenvalue and αi the linear weight co-

efficient. Given its linear formulation, the representational

power of the 3DMM is constrained by the span of the eigen-

vectors, while its parameters scale linearly w.r.t the number

of the eigencomponents used, leading to large parametrisa-

tions for meshes of high resolution.

In contrast, in this paper, we use spiral convolutions as a

building block to build a fully differentiable non-linear Mor-

phable Model. In essence, a Neural 3D Morphable Model

is a deep convolutional mesh autoencoder, that learns hier-

archical representations of a shape. An illustration of the

architecture can be found in Fig 1. Leveraging the connec-

tivity of the graph with spiral convolutional filters, we al-

low for local processing of each shape, while the hierarchi-

cal nature of the model allows learning in multiple scales.

This way we manage to learn semantically meaningful rep-

resentations and considerably reduce the number of parame-

ters. Furthermore, we bypass the need to make assumptions

about the distribution of the data.

Similar to traditional convolutional autoencoders, we

make use of series of convolutional layers with small re-

ceptive fields followed by pooling and unpooling, for the

encoder and the decoder respectively, where a decimated or

upsampled version of the mesh is obtained each time and
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the features of the existing vertices are either aggregated or

extrapolated. We follow [38] for the calculation of the fea-

tures of the added vertices after upsampling, i.e. through in-

terpolation by weighting the nearby vertices with barycen-

tric coordinates. The network is trained by minimising the

L1 norm between the input and the predicted output.

3.3. Spiral Convolutional GAN

In order to improve the synthesis of meshes of high reso-

lution, thus increased detail, we extend our framework with

a distribution matching scheme. In particular, we propose

a mesh Wasserstein GAN [2] with gradient penalty to en-

force the Lipschitz constraint [20], that is trained to min-

imise the wasserstein divergence between the real distribu-

tion of the meshes and the distribution of those produced by

the generator network. The generator and discriminator ar-

chitectures, have the same structure as the decoder and the

encoder of the Neural3DMM respectively. Via this frame-

work, we obtain two additional properties that are inher-

ently absent from the autoencoder: high frequency detail

and a straightforward way to sample from the latent space.

4. Evaluation

In this section, we showcase the effectiveness of our pro-

posed method on a variety of shape datasets. We conduct a

series of ablation studies in order to compare our operator

to other Graph Neural Networks, by using the same autoen-

coder architecture. Fist, we demonstrate the inherent higher

capacity of spiral convolutions compared to ChebNet (spec-

tral). Moreover, we discuss the advantages of our method

compared to soft-attention based Graph Neural Networks,

such as patch-operator based. Finally, we show the impor-

tance of the consistency of the ordering by comparing our

method to different variants of the method proposed in [24].

Furthermore, we quantitatively show that our method

can yield better representations than the linear 3DMM and

COMA, while maintaining a small parameter count and

frequently allowing a more compact latent representation.

Moreover, we proceed with a qualitative evaluation of our

method by generating novel examples through vector space

arithmetic. Finally, we assess our intrinsic GAN in terms of

its ability to produce high resolution realistic examples.

For all the cases, we choose as signal on the mesh the

normalised deformations from the mean shape, i.e. for ev-

ery vertex we subtract its mean position and divide with

the standard deviation. In this way, we encourage sig-

nal stationarity, thus facilitating optimisation. The code

is available at https://github.com/gbouritsas/

neural3DMM.

4.1. Datasets

COMA. The facial expression dataset from Ranjan et al.

[38], consisting of 20K+ 3D scans (5023 vertices) of twelve

unique identities performing twelve types of extreme facial

expressions. We used the same data split as in [38].

DFAUST. The dynamic human body shape dataset from

Bogo et al. [6], consisting of 40K+ 3D scans (6890 vertices)

of ten unique identities performing actions such as leg and

arm raises, jumps, etc. We randomly split the data into a

test set of 5000, 500 validation, and 34,5K+ train.

MeIn3D. The 3D large scale facial identity dataset from

Booth et al. [8], consisting of more than 10,000 distinct

identity scans with 28K vertices which cover a wide range

of gender ethnicity and age. For the subsequent experi-

ments, the MeIn3D dataset was randomly split within de-

mographic constraints to ensure gender, ethnic and age di-

versity, into 9K train and 1K test meshes.

For the quantitative experiments of sections 4.3 and 4.4

the evaluation metric used is generalisation, which mea-

sures the ability of a model to represent novel shapes from

the same distribution as it was trained on. More specifi-

cally we evaluate the average per sample and per vertex eu-

clidean distance in the 3D space (in millimetres) between

corresponding vertices in the input and its reconstruction.

4.2. Implementation Details

We denote as SC(h,w) a spiral convolution of h hops

and w filters, DS(p) and US(p) a downsampling and an

upsampling by a factor of p, respectively, FC(d) a fully

connected layer, l the number of vertices after the last down-

sampling layer. The simple Neural3DMM for COMA and

DFAUST datasets is the following:

Enc :SC(1, 16) → DS(4) → SC(1, 16) → DS(4) →
SC(1, 16) → DS(4) → SC(1, 32) → DS(4) → FC(d)

Dec :FC(l ∗ 32) → US(4) → SC(1, 32) → US(4) →
SC(1, 16) → US(4) → SC(1, 16) → US(4) →
SC(1, 3)

For Mein3D, due to the high vertex count, we modi-

fied the COMA architecture for our simple Neural3DMM

by adding an extra convolution and an extra downsam-

pling/upsampling layer in the encoder and the decoder re-

spectively (encoder filter sizes: [8,16,16,32,32], decoder:

mirror of the encoder). The larger Neural3DMM follows

the above architecture, but with an increased parameter

space. For COMA, the convolutional filters of the encoder

had sizes [64,64,64,128] and for Mein3D the sizes were

[8,16,32,64,128], while the decoder is a mirror of the en-

coder. For DFAUST, the sizes were [16,32,64,128] and

[128,64,32,32,16] and dilated convolutions with h = 2 hops

and dilation ratio r = 2 were used for the first and the

last two layers of the encoder and the decoder respectively.

We observed that by adding an additional convolution at

the very end (of size equal to the size of the input feature

space), training was accelerated. All of our activation func-

tions were ELUs [14]. Our learning rate was 10−3 with a

decay of 0.99 after each epoch, and our weight decay was
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Figure 4: Quantitative evaluation of our Neural3DMM against the baselines, in terms of generalisation and # of parameters

5× 10−5. All models were trained for 300 epochs.

Figure 5: Spiral vs ChebNet (spectral) filters

4.3. Ablation Studies

4.3.1 Isotropic vs Anisotropic Convolutions

For the purposes of this experiment we used the architec-

ture deployed by the authors of [38]. The number of pa-

rameters in our case is slightly larger due to the fact that

the immediate neighbours, that affect the size of the spiral,

range from 7 to 10, while the polynomials used in [38] go

up to the 6th power of the Laplacian. For both datasets, as

clearly illustrated in Fig 5, spiral convolution-based autoen-

coders consistently outperform the spectral ones for every

latent dimension, in accordance with the analysis made in

section 3.1. Additionally, increasing the latent dimensions,

our model’s performance increases at a higher rate than its

counterpart. Notice that the number of parameters scales

the same way as the latent size grows, but the spiral model

makes better use of the added parameters especially looking

at dimensions 16, 32, 64, and 128. Especially on the COMA

dataset, the spectral model seems to be flattening between

64 and 128 while the spiral is still noticeably decreasing.

4.3.2 Spiral vs Attention based Convolutions

In this experiment we compare our method with cer-

tain state-of-the-art soft-attention based Graph Neural Net-

works: MoNet: the patch-operator based model of [31],

where the attention weights are the learnable parameters

of gaussian kernels defined on a pseudo-coordinate space1,

FeastNet [42] and Graph Attention [41], where the atten-

tion weights are learnable functions of the input features.

In table 1, we provide results on COMA dataset, using

the simple Neural3DMM architecture with latent size 16.

We choose the number of attention heads (gaussian ker-

nels in [31]) to be either 9 (equal to the size of the spiral

in our method, for a fair comparison) or 25 (as in [31],

to showcase the effect of over-parametrisation). When it

comes to similar number of parameters our method man-

ages to outperform its counterparts, while compared to

over-parametrised soft attention networks it either outper-

forms them, or achieves slightly worse performance. This

shows that the spiral operator can make more efficient use of

the available learnable parameters, thus being a lightweight

alternative to attention-based methods without sacrificing

performance. Also, its formulation allows for fast compu-

tation; in table 1 we measure per mesh inference time in ms

(on a GeForce RTX 2080 Ti GPU).

4.3.3 Comparison to Lim et al. [24]

In order to showcase how the operator behaves when the

ordering is not consistent, we perform experiments under

four scenarios: the original formulation of [24], where

1here we display the best obtained results when choosing the pseudo-

coordinates to be local cartesian.
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GAT FeastNet MoNet Ours

kernels 9 25 9 25 9 25 -

error 0,762 0,732 0,750 0,623 0,708 0,583 0,635

params 50K 101K 49K 98K 48K 95K 48K

time 12,77 15,37 9,04 9,66 10,55 10,96 8,18

Table 1: Spirals vs soft-attention operators

each spiral is randomly oriented for every mesh and every

epoch (rand mesh & epoch); choosing the same orienta-

tion across all the meshes randomly at every epoch (rand

epoch); choosing different orientations for every mesh, but

keeping them fixed across epochs (rand mesh); and fixed

ordering (Ours). We compare the LSTM-based approach of

[24] and our linear projection formulation (Eq (2)). The ex-

perimental setting and architecture is the same as in the pre-

vious section. The proposed approach achieves over 28%

improved performance compared to [24], which substanti-

ates the benefits of passing corresponding points through

the same transformations.

operation rand mesh & epoch rand mesh rand epoch fixed ordering

LSTM 0.888 [24] 0.880 0,996 0.792

lin. proj. 0.829 0.825 0.951 0.635 (Ours)

Table 2: Importance of the ordering consistency

4.4. Neural 3D Morphable models

Figure 6: Colour coding of the per vertex euclidean error of

the reconstructions produced by PCA (2nd), COMA (3rd),

and our Neural3DMM (bottom). Top row is ground truth.

4.4.1 Quantitative results

In this section, we compare the following methods for dif-

ferent dimensions of the latent space: PCA, the 3D Mor-

phable Model [5], COMA, the ChebNet-based Mesh Au-

toencoder, Neural3DMM (small), ours spiral convolution

autoencoder with the same architecture as in COMA, Neu-

ral3DMM (ours), our proposed Neural3DMM framework,

where we enhanced our model with a larger parameter space

(see Sec. 4.2). The latent sizes were chosen based on the

variance explained by PCA (explained variance of roughly

85%, 95% and 99% of the total variance).

As can be seen from the graphs in Fig 4, our Neu-

ral3DMM achieves smaller generalisation errors in every

case it was tested on. For the COMA and DFAUST datasets

all hierarchical intrinsic architectures outperform PCA for

small latent sizes. That should probably be attributed to the

fact that the localised filters used allow for effective recon-

struction of smaller patches of the shape, such as arms and

legs (for the DFAUST case), whilst PCA attempts a more

global reconstruction, thus its error is distributed equally

across the entire shape. This is well shown in Fig 6, where

we compare exemplar reconstructions of samples from the

test set (latent size 16). It is clearly visible that PCA pri-

oritises body shape over pose resulting to body parts in the

wrong locations (for example see the right leg of the woman

on the leftmost column). On the contrary COMA places the

vertices in approximately correct locations, but struggles to

recover the fine details of the shape leading to various arte-

facts and deformities; our model on the other hand seem-

ingly balances these two difficult tasks resulting in quality

reconstructions that preserve pose and shape.

Comparing to [38], it is again apparent here that our

spiral-based autoencoder has increased capacity, which to-

gether with the increased parameter space, makes our larger

Neural3DMM outperform the other methods by a consid-

erably large margin in terms of both generalisation and

compression. Despite the fact that for higher dimensions,

PCA can explain more than 99% of the total variance, thus

making it a tough-to-beat baseline, our larger model still

manages to outperform it. The main advantage here is the

substantially smaller number of parameters of which we

make use. This is clearly seen in the comparison for the

MeIn3D dataset, where the large vertex count makes non-

local methods as PCA impractical. It is necessary to men-

tion here, that larger latent space sizes are not necessarily

desirable for an autoencoder because they might lead to less

semantically meaningful and discriminative representation

for downstream tasks.

4.4.2 Qualitative results

Here, we assess the representational power of our models

by the common practice of testing their ability to perform

linear algebra in their latent spaces.

Interpolation Fig 7: We choose two sufficiently different

samples x1 and x2 from our test set, encode them in their
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latent representations z1 and z2 and then produce interme-

diate encodings by sampling the line that connects them i.e.

z = az1 + (1− a)z2, where a ∈ (0, 1).

Figure 7: Interpolations between expressions and identities

Extrapolation Fig 8: Similarly, we decode latent represen-

tations that reside on the line defined by z1 and z2, but out-

side the respective line segment, i.e. z = a∗z1+(1−a)∗z2,

where a ∈ (−∞, 0)∪(1,+∞). We choose z1 to be our neu-

tral expression for COMA and neutral pose for DFAUST, in

order to showcase the exaggeration of a specific character-

istic on the shape.

Figure 8: Extrapolation. Left: neutral expression/pose

Shape Analogies Fig 9: We choose three meshes A, B, C,

and construct a D such that it satisfies A:B::C:D using lin-

ear algebra in the latent space as in [30]: e(B) − e(A) =
e(D) − e(C) (e(∗) the encoding), where we then solve for

e(D) and decode it. This way we transfer a specific charac-

teristic using meshes from our dataset.

Figure 9: Analogies in MeIn3D and DFAUST

4.5. GAN evaluation

In figure 10, we sampled several faces from the la-

tent distribution of the trained generator. Notice that they

are realistically looking and, following the statistics of the

dataset, span a large proportion of the real distribution of the

human faces, in terms of ethnicity, gender and age. Com-

pared to the most popular approach for synthesizing faces,

i.e. the 3DMM, our model learns to produce fine details on

the facial structure, making them hard to distinguish from

real 3D scans, whereas the 3DMM, although it produces

smooth surfaces, frequently makes it easy to tell the differ-

ence between real and artificially produced samples. We

direct the reader to the supplementary material to compare

with samples drawn from the 3DMM’s latent space.

Figure 10: Generated identities from our intrinsic 3D GAN

5. Conclusion

In this paper we introduced a representation learning and

generative framework for fixed topology 3D deformable

shapes, by using a mesh convolutional operator, spiral con-

volutions, that efficiently encodes the inductive bias of the

fixed topology. We showcased the inherent representational

power of the operator, as well as its reduced computational

complexity, compared to prior work on graph convolutional

operators and show that our mesh autoencoder achieves

state-of-the-art results in mesh reconstruction. Finally, we

present the generation capabilities of our models through

vector space arithmetic, as well as by synthesising novel fa-

cial identities. Regarding future work, we plan to extend

our framework to general graphs and 3D shapes of arbitrary

topology, as well as to other domains that have capacity for

an implicit ordering of their primitives, such as point clouds.
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Wasserstein generative adversarial networks. In Proceedings

of the 34th International Conference on Machine Learning

(ICML), 2017. 5

[3] Amir Arsalan Soltani, Haibin Huang, Jiajun Wu, Tejas D

Kulkarni, and Joshua B Tenenbaum. Synthesizing 3d shapes

via modeling multi-view depth maps and silhouettes with

deep generative networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 2

[4] Heli Ben-Hamu, Haggai Maron, Itay Kezurer, Gal Avineri,

and Yaron Lipman. Multi-chart generative surface modeling.

In SIGGRAPH Asia 2018 Technical Papers, page 215. ACM,

2018. 1, 2

[5] Volker Blanz, Thomas Vetter, et al. A morphable model for

the synthesis of 3d faces. In SIGGRAPH, 1999. 2, 4, 7

[6] Federica Bogo, Javier Romero, Gerard Pons-Moll, and

Michael J. Black. Dynamic FAUST: Registering human bod-

ies in motion. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017. 2,

5

[7] James Booth, Anastasios Roussos, Allan Ponniah, David

Dunaway, and Stefanos Zafeiriou. Large scale 3d morphable

models. International Journal of Computer Vision (IJCV),

2018. 2

[8] James Booth, Anastasios Roussos, Stefanos Zafeiriou, Allan

Ponniah, and David Dunaway. A 3d morphable model learnt

from 10,000 faces. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

5

[9] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and
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