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Abstract

Despite well-established baselines, learning of scene

depth and ego-motion from monocular video remains an on-

going challenge, specifically when handling scaling ambi-

guity issues and depth inconsistencies in image sequences.

Much prior work uses either a supervised mode of learning

or stereo images. The former is limited by the amount of

labeled data, as it requires expensive sensors, while the lat-

ter is not always readily available as monocular sequences.

In this work, we demonstrate the benefit of using geomet-

ric information from synthetic images, coupled with scene

depth information, to recover the scale in depth and ego-

motion estimation from monocular videos. We developed

our framework using synthetic image-depth pairs and unla-

beled real monocular images. We had three training objec-

tives: first, to use deep feature alignment to reduce the do-

main gap between synthetic and monocular images to yield

more accurate depth estimation when presented with only

real monocular images at test time. Second, we learn scene

specific representation by exploiting self-supervision com-

ing from multi-view synthetic images without the need for

depth labels. Third, our method uses single-view depth and

pose networks, which are capable of jointly training and

supervising one another mutually, yielding consistent depth

and ego-motion estimates. Extensive experiments demon-

strate that our depth and ego-motion models surpass the

state-of-the-art, unsupervised methods and compare favor-

ably to early supervised deep models for geometric under-

standing. We validate the effectiveness of our training ob-

jectives against standard benchmarks thorough an ablation

study.

1. Introduction

Depth sensing and ego-motion estimation from image

and videos play an important role in 3D scene geometry un-

derstanding and are widely applicable to many real-world

Figure 1. System overview of the proposed SynDeMo. It consists

of two data streams, the upper stream takes multi-view synthetic

image-depth pairs as input, while the lower stream takes unlabeled

monocular frames as input during training. At test time, we use

only the lower stream within the dashed line. SynDeMo can si-

multaneously estimate ego-motion and depth using only monocu-

lar video by resolving the scale ambiguity.

domains, such as navigation systems [9, 7], video analysis

[39] and autonomous driving platforms [4]. Although deep

models using a supervised mode of learning [38, 29, 8, 30]

have been widely used for understanding a scene geometry,

it is typically difficult and expensive to obtain geometry-

related labels in practice. Due to this limitation, unsuper-

vised methods [13, 49, 16, 25] have been focused on esti-

mating scene depth and camera motion, which have been

formulated as self-supervised learning using photometric

warp error. However, learning the entangled information

of the depth and ego-motion for a monocular video suf-

fers from the per frame scale confusion. This limitation is

compounded by the fact that these methods do not general-

ize well to new datasets and scenes. Some recent methods

[46, 32, 49, 27] have incorporated stereo image pairs in the

training stage to address this issue. Nonetheless, stereo im-
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ages are not as readily available as monocular video, which

hinders their wider application.

Learning from synthetic data can mitigate the issue. In

particular, recent advances in computer graphics [11] have

made it possible to generate a large set of synthetic 3D

scenes, from which we can render multiple synthetic images

from different viewpoints and their corresponding depth

maps. However, learning from synthetic images can be

problematic due to the distribution discrepancy between

them and real monocular images. In this paper, we propose

a solution to exploit geometry information from synthetic

images, when trained jointly with unlabeled monocular im-

ages (see Fig. 1).

Contributions. Our contributions are as follows:

• We aim to exploit the heterogeneous synthetic images

with a large diversity of urban scenes and unlabeled

real monocular images to improve our depth estima-

tor when presented with only real monocular images at

test time. To do so, we use a synergistic deep feature

alignment to minimize the distance between the inner

feature representations for both real and synthetic im-

ages;

• We train a view decoder for the synthetic images to

synthesize an image seen from one viewpoint from an

image rendered from a different view. This helps to

capture 3D scene structure in the latent space. When

this latent representation space is aligned with latent

space of the real images, it can help to improve predic-

tions for real monocular images by retaining the scene

geometry present in the synthetic images;

• The more accurate depth map estimation from our

SynDeMo helps to constrain the output of the pose

estimator through the temporal self-supervised loss,

recovering the scale and consistent geometry predic-

tions.

2. Related Work

We consider prior work within two distinct domains:

deep models for scene geometry understanding (Sec. 2.1)

and cross-domain adaptation methods (Sec. 2.2).

2.1. Deep Models for Geometry Understanding

The deep learning methods using a supervised mode

of learning for scene geometry [5, 10, 29, 44, 8, 30, 45],

have demonstrated great performance against the traditional

Structure from Motion (SfM) approaches. However, these

supervised methods have been trained on large-scale la-

beled datasets, which limits their applicability in a real sce-

nario.

To address this problem, several unsupervised learning

based methods [52, 48, 3, 33, 13, 51, 16] have been pro-

posed. Initial methods [13, 16] focus only on depth esti-

mation using the left-right photometric constraint between

a pair of stereo images. Built upon this idea, some other

methods [51, 33] use the geometric constraints between a

pair of temporal images in monocular video to jointly learn

depth and ego-motion. However, these approaches suf-

fer from scale ambiguity. More recently, some methods

[49, 27] have made use of stereo images, formulating both

spatial and temporal geometric constraints in their learning

framework, to solve the ambiguity. Nonetheless, stereo im-

ages are not as widely available as monocular video.

2.2. CrossDomain Adaptation

Our proposed SynDeMo is related to cross-domain

learning methods. Most of these frameworks [37, 50, 12,

36, 40] aim to minimize the distance between the feature

or image distributions of different domains in order to mit-

igate the performance drop caused by the domain gap. Us-

ing knowledge distillation, Guo et al. [19] presented a deep

stereo matching network as a proxy to learn depth from syn-

thetic data. Zheng et al. [50] proposed T2Net for single-

image depth estimation. It uses an image translation net-

work to improve the realism of synthetic images, followed

by a depth estimator. Atapour et al. [1] proposed a learn-

ing approach based on style transfer and adversarial train-

ing to adapt a depth estimation model trained on synthetic

images into real images. However, their image translation

network introduces undesirable distortions, which degrades

the performance of successive depth estimator and gener-

alizes poorly to unseen data. To overcome this issue, we

propose a learning framework to align the feature distribu-

tions of real and synthetic images without affecting source

images. Moreover, we learn a geometry-aware representa-

tion from multi-view synthetic images to reduce annotated

synthetic images.

3. Method

In this section, we first present our baseline, and then

proceed with the loss terms used in SynDeMo.

3.1. Algorithm Baseline

The backbone of our method for learning a scene’s

geometry is based on a temporal self-supervision signal,

which comes from the task of image reconstruction for two

nearby temporal views. Our network in Fig. 2 consists of

two data streams, one for real unlabeled video, while the

other is for synthetic images. As in [51], the real data stream

includes two sub-networks, a depth CNN for a single-view

depth prediction and a pose CNN for the ego-motion es-

timation. The sub-networks jointly supervise each other

during training. Given a temporal pair of video frames
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Figure 2. Schematic diagram of the proposed SynDeMo during training. At test time, we use only the real data stream, which includes two

sub-networks that can be used independently, one for single-view depth estimation, and one for ego-motion estimation.

(It1, It2) ∈ R
H×W×3, the outputs of both networks are

used to inverse warp the source view It1 to synthesize an ad-

jacent target image in the sequence It2. Knowing the cam-

era intrinsic matrix K ∈ R
3×3 (for simplicity, we assume

K of all the views to be identical), the image synthesis task

can be formulated by,

Iv,t1→t2 = Iv,t1 [proj (Dv,t2, Tt2→t1,K)] (1)

where Tt2→t1 is the relative pose for the source view Iv,t1,

with respect to the target image Iv,t2’s pose taken from a

given viewpoint v. Dv,t2 is the target view’s depth estima-

tion from a viewpoint v. We only use a single image view

and for the sake of simplicity, the index of a viewpoint v is

used. proj is the resulting pixel coordinates of the projected

depth Dv,t2 in Iv,t1 and [·] is the image sampler operator

from the spatial transformer network (STN) [22], which is

sub-differentiable.

Existing self-supervised methods [13, 51, 16] used the

average photometric error across two temporal adjacent

views to estimate the depth as the intermediary variable.

However, using average photometric error results in arti-

facts in the presence of occluded regions, which are visible

in one image but not the other. Here, per-pixel minimum of

source image is used to enhance the occlusion boundaries,

as proved by [17]. We use a combination of SSIM [43] and

l1 as a photometric error loss function ρ in the training pro-

cess,

Lp = min
t1

ρ (Iv,t2, Iv,t1→t2) ,

ρ (Ia, Ib) = α
1− SSIM (Ia, Ib)

2
+ (1− α) ‖Ia − Ib‖1

(2)

In addition, following [21, 16], to regularize the depth es-

timates in texture-less image regions, we incorporate the

edge-aware smoothness loss that takes the gradients of the

corresponding image into account,

Ls =

W,H
∑

i,j

|∂xdi,j | e
−|∂xIi,j | + |∂ydi,j | e

−|∂yIi,j | (3)

where di,j is the inverse depth map. ∂x (·) and ∂y (·) denote

gradients in horizontal and vertical direction, respectively.

Scale Ambiguity. A common issue in estimating depth

and pose from monocular video, as pointed out in previ-

ous work [49, 46, 3], is scale ambiguity. In the absence of

other source of information, the camera translations’ abso-

lute scaling between any two adjacent frames is not fully

known. In addition, any two disparity values differing only

in scale are equivalent in the projective space. Thus, pho-

tometric warp error used for image reconstruction is scale-

invariant. We exploit the additional geometric information

from the synthetic images and their corresponding depth

maps to improve both depth and ego-motion estimation for

single-view monocular video.

3.2. Learning from Synthetic Data

Our method builds on the observation that using a new

auxiliary supervision signal, we can learn scene geometry

from synthetic imagery and learn to align synthetic images

with real monocular images. The use of synthetic images

rendered from different views enables a network to learn a

geometry-aware representation of multi-view images, and
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constrains the camera motion and scene depth. Inference

(i.e. ego-motion estimation and depth) without any scale

confusion is then possible using only monocular video.

Our training stage consists of two steps. First, we pre-

train the depth estimation part (modules f and h) of the

network, in Fig. 2 with synthetic data stream, only. Second,

to adapt the learned depth estimator to real data with no

corresponding ground-truth depth maps, we propose learn-

ing the whole model jointly with both data streams. This

step includes two auxiliary tasks. (1) The first task is to

reduce the domain discrepancy between unlabeled real im-

ages and synthetic images. (2) The second task is to retain

the scene geometry present in the synthetic input images.

Finally, for inference at test time, we only use single-view

real data stream of the network that takes monocular video

sequences as input and uses depth and camera motion esti-

mators to estimate depth and ego-motion, respectively. Be-

low, we describe the loss terms used for training our frame-

work.

Task Loss. Our depth estimator is based on an encoder-

decoder architecture. The feature extraction module f is a

convolutional neural network that maps an input image to

its latent representation. The decoder module h is a sub-

pixel convolutional neural network that generates a depth

map of the input image when giving its latent representa-

tion. The synthetic data stream takes synthetic images as

input, while the real data stream takes monocular color im-

ages as input and uses the mapping network m to map the

real images to the synthetic images in the latent space. The

parameters of the feature extractor f and depth decoder h

are shared between two data streams. Since we only have

access to the ground truth depth maps of synthetic images

during training, we train the depth estimator part of the net-

work to measure per-pixel difference between the predicted

depth map D̂ = h (f (Is)) and the synthetic (ground truth)

depth map as our task loss,

Lt =
∑

k

∥

∥

∥
D̂k −Dk

∥

∥

∥

1

(4)

where Dk is the ground truth and D̂k is the depth predic-

tion for the kth synthetic image Is. k ranges over all the

synthetic images of a sequence taken from all viewpoints.

Spatial Self-Supervised Loss. We propose using syn-

thetic images rendered from different views to capture 3D

geometry-aware latent space, without requiring any depth

annotation. We train an image view decoder g to predict

the appearance of a synthetic image Isv′ rendered from view

v′ given a synthetic image Isv rendered from view v by

enforcing spatial consistency between them. The crux of

this self-supervised learning is that if the decoder is able

to reconstruct another view of the image solely from the

latent representation, the latent representation must cap-

ture scene geometry information. When this latent rep-

resentation space is aligned with the latent space of real

data, it can help to improve geometry predictions by con-

straining the sub-networks used for real data. Doing so,

given a geometry-aware feature representation of the syn-

thetic image z = f (Isv) rendered from view v, we learn

a view decoder g to reconstruct the image’s appearance

Îsv′ = g (f (Isv)) of view v′. We employ a spatial self-

supervised loss,

Lg =
∑

k

∥

∥

∥
Isv′,k − Îsv′,k

∥

∥

∥

1

(5)

where Isv′,k is the synthetic image rendered from view v′

and Îsv′,k is the model prediction for the kth image of view

v′. However, using self-supervised loss for synthetic data

alone cannot guarantee that the joint latent representation of

real and synthetic data retains geometry information as the

feature distributions of these two domains can split apart.

Below, we will show how we address this issue.

Synergistic Loss. To apply the depth estimator to real im-

ages, we train a mapping network m to map the features ex-

tracted from real images to the features extracted from syn-

thetic images. However, it is difficult to obtain many one-

to-one corresponding real and synthetic images to mimic

the discrepancy between real and synthetic data. To address

this, we apply the GAN loss [18] to the shared latent repre-

sentation space to bridge the gap between transformed fea-

tures of real images and features of synthetic images. As

a consequence, images with similar pose and geometry are

embedded to similar latent space, apart from whether the

images are real or synthetic.

We added a discriminator p, which is trained to iden-

tify the real and fake images using the latent representation.

The feature mapping function m has to play two roles: fool-

ing the discriminator by making the latent representation of

real images indistinguishable from the latent representation

of synthetic images; and minimizing the distance between

these two feature representations directly in the presence of

one-to-one correspondence between real and synthetic im-

ages. We substituted the vanilla formulation of the GAN

with a least-squares loss GAN [34], which has proven to

be more stable during learning. As input, the discriminator

function p takes a joint latent representation z and outputs a

scalar ŷ = p (z) between [0, 1], which should be yr = 1 for

real and ys = 0 for synthetic images. Thus, the discrimina-

tor is learned to minimize deviations from target values for

predictions on synthetic and real images,

Ldis =
∑

k∈R

(ŷk − yr)
2
+

∑

k∈S

(ŷk − ys)
2

(6)
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where R and S denote the set of real and synthetic images,

respectively. Eventually the mapping function m is trained

to meet the requirements as discussed above. We define our

synergistic loss Lsyn,

Lsyn =
∑

k∈C

‖f (Isk)−m (f (Irk))‖
2

2
+ λr

∑

k∈R

(ŷk − ys)
2

(7)

where C is the set of available corresponding real and syn-

thetic images and Isk and Irk are the kth synthetic and real

image, respectively. λr is the trade-off weight to balance

GAN related loss term.

Overall Objective. Finally, the proposed training loss L
joins the synergistic loss Lsyn to align feature distribution

of real and synthetic images, task loss Lt for synthetic data

only, spatial self-supervised loss Lg to leverage multi-view

synthetic images, smoothness loss term Ls and the photo-

metric loss Lp,

L = Lsyn + λtLt + λgLg + λsLs + λpLp (8)

where λt, λg , λs and λp are weighting terms.

4. Experiments

In this section, we verify the effectiveness of our Syn-

DeMo and its components in isolation through extensive

experiments. More results are given in the supplementary

material.

4.1. Datasets

Synthetic dataset for pre-training. We pre-train the

depth estimation part (modules f and h) of the network us-

ing Virtual KITTI (vKITTI) [11], a synthetic dataset, which

serves as a proxy to the real KITTI dataset [14]. This dataset

contains 21,260 image-depth paired frames generated under

different environmental conditions.

Datasets for joint training. After the pre-training stage,

we train the whole model (Eq. 8) jointly with real and

synthetic data. For unlabeled real data, we use the KITTI

dataset [14] as the main training and validation dataset. We

only use a single-view monocular video and follow the same

training protocol as in [51]; about 40k frames for train-

ing and 4k for validation. In addition, for a fair compari-

son with state-of-the-art methods [52, 48], we also use the

CityScapes dataset [6] with the same training setting as in

[51] for training our model including both depth and pose

sub-networks.

4.2. Implementation Details

In the following subsection, we provide more detail

about the network architecture and experimental setup used

for training.

Architecture. We relied on successful architecture in [51]

for our pose CNN (sub-network vo). The pose CNN re-

ceives monocular temporal frames concatenated along their

color channels and then outputs the 6-DoF ego-motion. Our

depth CNN is based on encoder-decoder architecture with

skip-connections. For an encoder (module f ), we use the

ResNet50-1by2 as a variant of ResNet50 [20]. Our depth

decoder, h, consists of sub-pixel convolution layers fol-

lowed by instance normalization [2]. The parameters of the

modules f and h are shared between two streams. For both

view decoder g and depth decoder h, we use the same archi-

tecture except for the last prediction layer. We feed the last

features from the depth encoder f into the mapping module

m, which is a fully-connected network with two residual

blocks. Each block consists of two hidden layers of dimen-

sion 512 with a ReLU activation function in between. The

discriminator p has the same architecture as the mapping

module m with an additional linear layer to return a single

output.

Details for experimental setup. We pre-train the depth

estimation part using the vKITTI dataset for about

150k iterations and subsequently train the whole net-

work jointly with real monocular frames and synthetic im-

ages for 130k iterations. We use Adam optimizer [24]

(β1 = 0.5, β2 = 0.999) with a base learning rate of 2e-4.

We train our network with a mini-batch size of 6. For each

mini-batch, we independently sample a set of synthetic im-

ages and a set of temporal consecutive image pairs from a

video. We experimentally found the weights of different

loss components in Eq. 7 and Eq. 8 and set λr = 0.01,

λt = 0.05, λg = 0.1, λs = 0.01 and λp = 0.5. We also

set α = 0.85 in Eq. 2. The input images are resized to

608 × 160. Our depth CNN outputs inverse depth and we

convert the predicted inverse depth to depth map for eval-

uation. Following [48], we clipped our depth maps from

within 0.001m to 80m. To reduce our reliance on the cor-

responding set of images C between domains, we only use

images of sequence 02 (road in urban area) from vKITTI.

4.3. Experimental Evaluation

Single-view depth estimation. We conduct quantitative

comparisons with state-of-the-art methods for single-view

depth estimation task using KITTI test split [8]. We use

evaluation protocol adopted by prior work [51]. The ground

truth depth maps were produced by projecting 3D Velo-

dyne LiDAR points on to the image plane. Only pixels

with ground truth depth values are used for evaluation. In

Table 1 we show that our full SynDeMo model surpasses

the state-of-the-art unsupervised methods, which are sub-

stantially trained on the KITTI dataset. Our model also

achieves competitive performance with respect to super-

vised learning methods [25, 45] trained either with stereo
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image pairs or with real depth ground truth. Qualitative

results are shown in Fig. 3. Our SynDeMo can produce

pleasing results with fine structures.

Odometry estimation. We used the official KITTI vi-

sual odometry split [15] to evaluate the performance of

our method. For a fair comparison with the baselines,

we followed the odometry split and evaluation protocol

as in [51] to train and evaluate our model. Following

[51], we measured the Absolute Trajectory Error (ATE)

[35] averaged over every 5-frame snippets as the perfor-

mance metric. First, the result was compared to a well-

established SLAM framework, ORB-SLAM [35], which in-

volves global bundle adjustment and loop closure detection.

Here we use two variants of monocular ORB-SLAM: “The

ORB- SLAM (short)”, which runs on 5-frame snippets, and

“ORB- SLAM (full)”, which uses the whole sequence to re-

cover odometry. As shown in Table 2, our method surpasses

the state-of-the-art unsupervised learning methods on two

test sequences. It also shows superior performance with re-

spect to ORB-SLAM, even though our method uses a rather

short sequence. This reveals that our method takes advan-

tage of geometric information from synthetic data that al-

lows us to improve single-view depth estimation, and con-

sequently constrains the output of pose CNN, yielding to

recover scale-consistent odometry using only a single-view

video at test time.

The qualitative odometry results for the KITTI odome-

try testing sequence 09 are shown in Fig. 4. The results are

compared with the powerful stereo based odometry learning

method, deep feature reconstruction network (DFR-Net)

[49] and ORB-SLAM [35] (with and without loop closure).

We post-process the scale for the ORB-SLAM method as it

suffers from a scale ambiguity. The estimated trajectories

of our method without any post processing are qualitatively

closest to the ground truth among all the methods. These

qualitative results align well with the quantitative numbers

in Table 2. We also report the average translational error

and average rotational error for the complete test sequences

in the supplementary material.

4.4. Ablation Study

We investigate the effectiveness of our contributions by

comparing our full model with the baselines based on the

same experimental setting. For each ablation experiment,

we turn-off some of the loss terms in the final objective

function and then generate the related results for evaluation.

Our baselines are:

• Baseline: Baseline model (Sec. 3.1) trained with a

temporal photometric loss and a smoothness loss (Lp+
Ls) only on monocular sequences;

• SynDeMo (Real&Synth⊖| Feat Align+View): Syn-

DeMo trained jointly with unlabeled synthetic and real

images by adding multi-view self-supervised loss and

synergistic loss to the first baseline (Lp + Ls + Lg +
Lsyn) ;

• SynDeMo (Real&Synth. | Feat Align): SynDeMo

trained using labeled synthetic images and real monoc-

ular images by adding the task loss and the synergistic

loss to the first baseline (Lp + Ls + Lt + Lsyn);

• SynDeMo (Real&Synth. | View): SynDeMo trained

using both data streams by adding only multi-view

self-supervised loss for labeled synthetic images to the

first baseline (Lp + Ls + Lt + Lg);

• SynDeMo (Real&Synth. | Full): SynDeMo trained

with the full training objectives.

Scene geometry to solve motion and scale confusion.

Our SynDeMo trained with each of the proposed loss terms,

resulting in a notable performance gain in both depth (Ta-

ble 1) and odometry estimation (Table 2) compared to our

Baseline, which is trained solely with temporal photomet-

ric loss and smoothness loss on real monocular images. In

particular, our full model trained on KITTI resulted in an

improvement over all depth evaluation metrics, e.g., a gain

of about 14% in accuracy for δ < 1.25, compared to our

Baseline.

Another challenging scenario for monocular trained ap-

proaches is the moving object. In particular, in the “car

following” scenario, when the car moves at the same speed

as the camera, the car is usually projected into infinite depth

(Fig. 5, bottom row), yielding small photometric error dur-

ing training. Fig. 5 shows examples of dynamic scenes

from the Cityscapes dataset, which contains many moving

objects. Our monocular trained Baseline fails for moving

objects. However, if we incorporate additional scene ge-

ometry information from synthetic data into our learning

framework (Real&Synth. | View), such motion confusion

can be alleviated jointly with monocular videos. Finally,

if we take advantage of both loss terms in our final model,

SynDeMo (Real&Synth. | Full), depth prediction quality

further improves.

Domain independence. We also apply our fully trained

model (without fine-tuning) to the Make3D dataset [38] to

see how our SynDeMo generalizes over unseen data do-

mains. Table 3 shows that our SynDeMo significantly out-

performs all previous depth estimation methods, whether

pre-trained in an unsupervised mode or with cross-domain

synthetic data [1, 50] with corresponding depth ground

truth. We also observe that using our full training objec-
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Method Dataset Supervision
Error Metric ↓ Accuracy Metric ↑

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [8] (NeurIPS 2014) K Real Depth 0.203 1.548 6.307 0.246 0.702 0.890 0.958

Godard et al. [16] (CVPR 2017) K Stereo 0.133 1.140 5.527 0.229 0.830 0.936 0.970

Godard et al. [16] (CVPR 2017) CS+K Stereo 0.121 1.032 5.200 0.215 0.854 0.944 0.973

Zhan et al. [49] (CVPR 2018) K Stereo 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Kuznietsov et al. [25] (CVPR 2017) K Stereo+Real Depth 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Yang et al. [45] (ECCV 2018) K Stereo DSO [42] 0.097 0.734 4.442 0.187 0.888 0.958 0.980

Zhou et al. [51] (CVPR 2017) K Monocular 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Mahjourian et al. [33] (CVPR 2018) K Monocular 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yang et al. [47] (CVPR 2018) K Monocular 0.162 1.352 6.276 0.252 - - -

Yin et al. [48] (CVPR 2018) K Monocular 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Godard et al. [16] (CVPR 2017) K Monocular 0.154 1.218 5.699 0.231 0.798 0.932 0.973

Zou et al. [52] (ECCV 2018) K Monocular 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Wang et al. [41] (CVPR 2018) K Monocular 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Zheng et al. [50] (ECCV 2018) K+vK Monocular+Synthetic Depth 0.169 1.230 4.717 0.245 0.769 0.912 0.965

Baseline K+vK Monocular 0.196 1.695 6.454 0.273 0.719 0.903 0.964

SynDeMo (Real&Synth⊖| Feat Align+View) K+vK Monocular 0.145 1.401 5.873 0.248 0.801 0.925 0.967

SynDeMo (Real&Synth. | Feat Align) K+vK Monocular+Synthetic Depth 0.126 1.105 5.402 0.221 0.843 0.939 0.969

SynDeMo (Real&Synth. | View) K+vK Monocular+Synthetic Depth 0.123 1.056 5.298 0.219 0.850 0.942 0.971

SynDeMo (Real&Synth. | Full) K+vK Monocular+Synthetic Depth 0.116 0.746 4.627 0.194 0.858 0.952 0.977

Zhou et al. [51] (CVPR 2017) CS+K Monocular 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Mahjourian et al. [33] (CVPR 2018) CS+K Monocular 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Yang et al. [47] (CVPR 2018) CS+K Monocular 0.159 1.345 6.254 0.247 - - -

Yin et al. [48] (CVPR 2018) CS+K Monocular 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Zou et al. [52] (ECCV 2018) CS+K Monocular 0.146 1.182 5.215 0.213 0.818 0.943 0.978

Wang et al. [41] (CVPR 2018) CS+K Monocular 0.148 1.187 5.496 0.226 0.812 0.938 0.975

Casser et al. [3] (AAAI 2019) CS+K Monocular 0.108 0.825 4.750 0.186 0.873 0.957 0.982

Baseline CS+K+vK Monocular 0.190 1.635 6.415 0.268 0.801 0.927 0.969

SynDeMo (Real&Synth⊖| Feat Align+View) CS+K+vK Monocular 0.143 1.379 5.721 0.239 0.806 0.932 0.971

SynDeMo (Real&Synth. | Feat Align) CS+K+vK Monocular+Synthetic Depth 0.121 1.039 5.272 0.216 0.855 0.946 0.973

SynDeMo (Real&Synth. | View) CS+K+vK Monocular+Synthetic Depth 0.113 0.743 4.623 0.189 0.861 0.954 0.979

SynDeMo (Real&Synth. | Full) CS+K+vK Monocular+Synthetic Depth 0.112 0.740 4.619 0.187 0.863 0.958 0.983

Table 1. Evaluation of depth estimation results for the KITTI test set [8]. For datasets used for training, K is the real KITTI dataset [14],

CS is Cityscapes [6] and vK is the virtual KITTI dataset [11]. The overall best results are shown in bold and the best results within each

block are underlined.

Zhou et al. Yin et al. Wang et al. Godard et al. Ours Ground-truth 

Original image 

Figure 3. Qualitative comparison of different depth estimation methods for the KITTI dataset [8]. Best viewed in color.
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Figure 4. Qualitative results on visual odometry of our SynDeMo (Real&Synth. | Full) compared with ORB-SLAM [35] (with and without

loop closure), DFR-Net [49] and the ground truth on the KITTI testing sequence 09. From left to right: pose trajectories, pose statistics,

and the violin histogram poses.

Method Seq. 09 Seq. 10

ORB-SLAM (full) [35] (IEEE T-RO 2015) 0.014±0.008 0.012 ±0.011

ORB-SLAM (short) [35] (IEEE T-RO 2015) 0.064±0.141 0.064±0.130

Mean Odom. 0.032±0.026 0.028±0.023

Zhou et al. [51] (CVPR 2017) 0.021±0.017 0.020±0.015

Yin et al. [48] (CVPR 2018) 0.012±0.007 0.012±0.009

Mahjourian et al. [33] (CVPR 2018) 0.013±0.010 0.012±0.011

Zou et al. [52] (ECCV 2018) 0.017±0.007 0.015±0.009

Luo et al. [32] (arXiv 2018) 0.012±0.006 0.012±0.008

Baseline 0.019±0.015 0.018±0.016

SynDeMo (Real&Synth⊖| Feat Align+View) 0.014±0.008 0.013±0.015

SynDeMo (Real&Synth. | Feat Align) 0.013±0.010 0.012±0.025

SynDeMo (Real&Synth. | View) 0.012±0.005 0.012±0.007

SynDeMo (Real&Synth. | Full) 0.011±0.007 0.011±0.015

Table 2. Absolute Trajectory Error (ATE) on KITTI odometry

dataset. The results of other baselines are taken from [52].

Input Baseline 

SynDeMo  
(Real&Synth. | View) 

SynDeMo  
(Real&Synth. | Full) 

Figure 5. Ablation study. From left to right: input raw im-

ages, depth estimation results of the algorithm baseline, SynDeMo

(Real&Synth. | View) and SynDeMo (Real&Synth. | Full).

tive is helpful in recovering scene geometry structure, when

testing across different data domains.

Method Supervision
Error Metric ↓

Abs Rel Sq Rel RMSE RMSE log

Train set mean - 0.876 12.98 12.27 0.307

Karsch et al. [23] (IEEE PAMI 2014) depth 0.428 5.079 8.389 0.149

Liu et al. [31] (CVPR 2014) depth 0.475 6.562 10.05 0.165

Laina et al. [26] (3DV 2016) depth 0.204 1.840 5.683 0.084

Li et al. [28] (CVPR 2018) depth 0.176 - 4.260 0.069

Zhou et al. [51] (CVPR 2017) none 0.383 5.321 10.47 0.478

Godard et al. [16] (CVPR 2017) pose 0.544 10.94 11.76 0.193

Zou et al. [52] (ECCV 2018) none 0.331 2.698 6.890 0.416

Wang et al. [41] (CVPR 2018) none 0.387 4.720 8.09 0.204

Baseline none 0.375 5.305 10.15 0.445

SynDeMo (Real&Synth⊖| Feat Align+View) none 0.330 2.692 6.850 0.412

Zheng et al. [50] (ECCV 2018) synthetic depth 0.508 6.589 8.935 0.574

Atapour et al. [1] (CVPR 2018) synthetic depth 0.423 9.343 9.002 0.122

SynDeMo (Real&Synth. | Feat Align) synthetic depth 0.314 2.450 6.150 0.385

SynDeMo (Real&Synth. | View) synthetic depth 0.311 2.440 6.137 0.379

SynDeMo (Real&Synth. | Full) synthetic depth 0.295 2.155 5.874 0.115

Table 3. Results on the Make3D dataset [38]. Our results were

obtained by the model trained on vKITTI + KITTI without training

on Make3D data itself. Following the evaluation protocol of [16],

the errors are only calculated, where ground truth depth is less than

70 meters. The overall best performance and the best results within

each block are highlighted as bold or underlined, respectively.

5. Conclusion

We presented our SynDeMo for joint monocular depth

and ego-motion estimation from video, which does not re-

quire any real ground truth depth samples or stereo image

pairs for training. The estimated depth and pose from Syn-

DeMo are both scaled thanks to the use of additional scene

geometry information from synthetic images, a powerful

cue for alleviating the domain gap. We propose a syner-

gistic deep feature alignment by matching the feature distri-

bution between real and synthetic domains. Our SynDeMo

achieves state-of-the-art performance among unsupervised

and cross-domain learning methods on both tasks of depth

and visual odometry estimation.

The current limitation of our approach is that we are not

modeling articulated objects or non-rigidity of the scene. A

possible future extension of this work would be to model

scene dynamics and articulated objects.
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