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Abstract
We present Neural-Guided RANSAC (NG-RANSAC), an

extension to the classic RANSAC algorithm from robust op-

timization. NG-RANSAC uses prior information to improve

model hypothesis search, increasing the chance of finding

outlier-free minimal sets. Previous works use heuristic side

information like hand-crafted descriptor distance to guide

hypothesis search. In contrast, we learn hypothesis search

in a principled fashion that lets us optimize an arbitrary

task loss during training, leading to large improvements on

classic computer vision tasks. We present two further ex-

tensions to NG-RANSAC. Firstly, using the inlier count it-

self as training signal allows us to train neural guidance

in a self-supervised fashion. Secondly, we combine neural

guidance with differentiable RANSAC to build neural net-

works which focus on certain parts of the input data and

make the output predictions as good as possible. We evalu-

ate NG-RANSAC on a wide array of computer vision tasks,

namely estimation of epipolar geometry, horizon line esti-

mation and camera re-localization. We achieve superior or

competitive results compared to state-of-the-art robust esti-

mators, including very recent, learned ones.

1. Introduction

Despite its simplicity and time of invention, Random

Sample Consensus (RANSAC) [12] remains an important

method for robust optimization, and is a vital component

of many state-of-the-art vision pipelines [39, 40, 29, 6].

RANSAC allows accurate estimation of model parameters

from a set of observations of which some are outliers. To

this end, RANSAC iteratively chooses random sub-sets of

observations, so called minimal sets, to create model hy-

potheses. Hypotheses are ranked according to their consen-

sus with all observations, and the top-ranked hypothesis is

returned as the final estimate.

The main limitation of RANSAC is its poor performance

in domains with many outliers. As the ratio of outliers in-

creases, RANSAC requires exponentially many iterations

to find an outlier-free minimal set. Implementations of

RANSAC therefore often restrict the maximum number of

iterations, and return the best model found so far [7].
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Figure 1. RANSAC vs. NG-RANSAC. We extract 2000 SIFT cor-

respondences between two images. With an outlier rate of 88%,

RANSAC fails to find the correct relative transformation (green

correct and red wrong matches). We use a neural network to pre-

dict a probability distribution over correspondences. Over 90% of

the probability mass falls onto 239 correspondences with an out-

lier rate of 33%. NG-RANSAC samples minimal sets according

to this distribution, and finds the correct transformation up to an

angular error of less than 1◦.

In this work, we combine RANSAC with a neural net-

work that predicts a weight for each observation. The

weights ultimately guide the sampling of minimal sets.

We call the resulting algorithm Neural-Guided RANSAC

(NG-RANSAC). A comparison of our method with vanilla

RANSAC can be seen in Fig. 1.
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When developing NG-RANSAC, we took inspiration

from recent work on learned robust estimators [56, 36].

In particular, Yi et al. [56] train a neural network to clas-

sify observations as outliers or inliers, fitting final model

parameters only to the latter. Although designed to re-

place RANSAC, their method achieves best results when

combined with RANSAC during test time, where it would

remove any outliers that the neural network might have

missed. This motivates us to train the neural network in

conjunction with RANSAC in a principled fashion, rather

than imposing it afterwards.

Instead of interpreting the neural network output as soft

inlier labels for a robust model fit, we let the output weights

guide RANSAC hypothesis sampling. Intuitively, the neural

network should learn to decrease weights for outliers, and

increase them for inliers. This paradigm yields substantial

flexibility for the neural network in allowing a certain mis-

classification rate without negative effects on the final fitting

accuracy due to the robustness of RANSAC. The distinc-

tion between inliers and outliers, as well as which misclas-

sifications are tolerable, is solely guided by the minimiza-

tion of the task loss function during training. Furthermore,

our formulation of NG-RANSAC facilitates training with

any (non-differentiable) task loss function, and any (non-

differentiable) model parameter solver, making it broadly

applicable. For example, when fitting essential matrices,

we may use the 5-point algorithm rather than the (differ-

entiable) 8-point algorithm which other learned robust esti-

mators rely on [56, 36]. The flexibility in choosing the task

loss also allows us to train NG-RANSAC self-supervised by

using maximization of the inlier count as training objective.

The idea of using guided sampling in RANSAC is not

new. Tordoff and Murray first proposed to guide the hy-

pothesis search of MLESAC [48], using side information

[47]. They formulated a prior probability of sparse feature

matches being valid based on matching scores. While this

has a positive affect on RANSAC performance in some ap-

plications, feature matching scores, or other hand-crafted

heuristics, were clearly not designed to guide hypothesis

search. In particular, calibration of such ad-hoc measures

can be difficult as the reliance on over-confident but wrong

prior probabilities can yield situations where the same few

observations are sampled repeatedly. This fact was rec-

ognized by Chum and Matas who proposed PROSAC [9],

a variant of RANSAC that uses side information only to

change the order in which RANSAC draws minimal sets.

In the worst case, if the side information was not useful

at all, their method would degenerate to vanilla RANSAC.

NG-RANSAC takes a different approach in (i) learning the

weights to guide hypothesis search rather than using hand-

crafted heuristics, and (ii) integrating RANSAC itself in the

training process which leads to self-calibration of the pre-

dicted weights.

Recently, Brachmann et al. proposed differentiable

RANSAC (DSAC) to learn a camera re-localization

pipeline [4]. Unfortunately, we can not directly use DSAC

to learn hypothesis sampling since DSAC is only differen-

tiable w.r.t. to observations, not sampling weights. How-

ever, NG-RANSAC applies a similar trick also used to make

DSAC differentiable, namely the optimization of the ex-

pected task loss during training. While we do not rely on

DSAC, neural guidance can be used in conjunction with

DSAC (NG-DSAC) to train neural networks that predict ob-

servations and observation confidences at the same time.

We summarize our main contributions:

• We present NG-RANSAC, a formulation of RANSAC

with learned guidance of hypothesis sampling. We can

use any (non-differentiable) task loss, and any (non-

differentiable) minimal solver for training.

• Choosing the inlier count itself as training objective

facilitates self-supervised learning of NG-RANSAC.

• We use NG-RANSAC to estimate epipolar geometry

of image pairs from sparse correspondences, where it

surpasses competing robust estimators.

• We combine neural guidance with differentiable

RANSAC (NG-DSAC) to train neural networks that

make accurate predictions for parts of the input, while

neglecting other parts. These models achieve compet-

itive results for horizontal line estimation, and state-

for-the-art for camera re-localization.

2. Related Work

RANSAC was introduced in 1981 by Fischler and Bolles

[12]. Since then it was extended in various ways, see e.g. the

survey by Raguram et al. [35]. Combining some of the most

promising improvements, Raguram et al. created the Uni-

versal RANSAC (USAC) framework [34] which represents

the state-of-the-art of classic RANSAC variants. USAC in-

cludes guided hypothesis sampling according to PROSAC

[9], more accurate model fitting according to Locally Op-

timized RANSAC [11], and more efficient hypothesis veri-

fication according to Optimal Randomized RANSAC [10].

Many of the improvements proposed for RANSAC could

also be applied to NG-RANSAC since we do not require

any differentiability of such add-ons. We only impose re-

strictions on how to generate hypotheses, namely according

to a learned probability distribution.

RANSAC is not often used in recent machine learning-

heavy vision pipelines. Notable exceptions include geo-

metric problems like object instance pose estimation [3, 5,

21], and camera re-localization [41, 51, 28, 8, 46] where

RANSAC is coupled with decision forests or neural net-

works that predict image-to-object correspondences. How-

ever, in most of these works, RANSAC is not part of the

training process because of its non-differentiability. DSAC

[4, 6] overcomes this limitation by making the hypothesis
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selection a probabilistic action which facilitates optimiza-

tion of the expected task loss during training. However,

DSAC is limited in which derivatives can be calculated.

DSAC allows differentiation w.r.t. to observations. For ex-

ample, we can use it to calculate the gradient of image coor-

dinates for a sparse correspondence. However, DSAC does

not model observation selection, and hence we cannot use

it to optimize a matching probability. By showing how to

learn neural guidance, we close this gap. The combination

with DSAC enables the full flexibility of learning both, ob-

servations and their selection probability.

Besides DSAC, a differentiable robust estimator, there

has recently been some work on learning robust estima-

tors. We discussed the work of Yi et al. [56] in the intro-

duction. Ranftl and Koltun [36] take a similar but itera-

tive approach reminiscent of Iteratively Reweighted Least

Squares (IRLS) for fundamental matrix estimation. In each

iteration, a neural network predicts observation weights for

a weighted model fit, taking into account the residuals of

the last iteration. Both, [56] and [36], have shown consid-

erable improvements w.r.t. to vanilla RANSAC but require

differentiable minimal solvers, and task loss functions. NG-

RANSAC outperforms both approaches, and is more flexi-

ble when it comes to defining the training objective. This

flexibility also enables us to train NG-RANSAC in a self-

supervised fashion, possible with neither [56] nor [36].

3. Method

Preliminaries. We address the problem of fitting model

parameters h to a set of observations y ∈ Y that are con-

taminated by noise and outliers. For example, h could be

a fundamental matrix that describes the epipolar geometry

of an image pair [16], and Y could be the set of SIFT cor-

respondences [27] we extract for the image pair. To calcu-

late model parameters from the observations, we utilize a

solver f , for example the 8-point algorithm [15]. However,

calculating h from all observations will result in a poor es-

timate due to outliers. Instead, we can calculate h from a

small subset (minimal set) of observations with cardinality

N : h = f(y1, . . . ,yN ). For example, for a fundamental

matrix N = 8 when using the 8-point algorithm. RANSAC

[12] is an algorithm to chose an outlier-free minimal set

from Y such that the resulting estimate h is accurate. To

this end, RANSAC randomly chooses M minimal sets to

create a pool of model hypotheses H = (h1, . . . ,hM ).
RANSAC includes a strategy to adaptively choose M ,

based on an online estimate of the outlier ratio [12]. The

strategy guarantees that an outlier-free set will be sampled

with a user-defined probability. For tasks with large outlier

ratios, M calculated like this can be exponentially large, and

is usually clamped to a maximum value [7]. For notational

simplicity, we take the perspective of a fixed M but do not

restrict the use of an early-stopping strategy in practice.

RANSAC chooses a model hypothesis as the final esti-

mate ĥ according to a scoring function s:

ĥ = argmax
h∈H

s(h,Y). (1)

The scoring function measures the consensus of an hypoth-

esis w.r.t. all observations, and is traditionally implemented

as inlier counting [12].

Neural Guidance. RANSAC chooses observations uni-

formly random to create the hypothesis pool H. We aim

at sampling observations according to a learned distribu-

tion instead that is parametrized by a neural network with

parameters w. That is, we select observations according to

y ∼ p(y;w). Note that p(y;w) is a categorical distribution

over the discrete set of observations Y , not a continuous dis-

tribution in observation space. We wish to learn parameters

w in a way that increases the chance of selecting outlier-

free minimal sets, which will result in accurate estimates ĥ.

We sample a hypothesis pool H according to p(H;w) by

sampling observations and minimal sets independently, i.e.

p(H;w) =

M
∏

j=1

p(hj ;w), with p(h;w) =

N
∏

i=1

p(yi;w).

(2)

From a pool H, we estimate model parameters ĥ with

RANSAC according to Eq. 1. For training, we assume

that we can measure the quality of the estimate with a task

loss function ℓ(ĥ). The task loss can be calculated w.r.t.

a ground truth model h∗, or self-supervised, e.g. by using

the inlier count of the final estimate: ℓ(ĥ) = −s(ĥ,Y).
We wish to learn the distribution p(H;w) in a way that we

receive a small task loss with high probability. Inspired by

DSAC [4], we define our training objective as the minimiza-

tion of the expected task loss:

L(w) = EH∼p(H;w)

[

ℓ(ĥ)
]

. (3)

We compute the gradients of the expected task loss w.r.t. the

network parameters as

∂

∂w
L(w) = EH

[

ℓ(ĥ)
∂

∂w
log p(H;w)

]

. (4)

Integrating over all possible hypothesis pools to calculate

the expectation is infeasible. Therefore, we approximate

the gradients by drawing K samples Hk ∼ p(H;w):

∂

∂w
L(w) ≈

1

K

K
∑

k=1

[

ℓ(ĥ)
∂

∂w
log p(Hk;w)

]

. (5)

Note that gradients of the task loss function ℓ do not appear

in the expression above. Therefore, differentiability of the
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task loss ℓ, the robust solver ĥ (i.e. RANSAC) or the min-

imal solver f is not required. These components merely

generate a training signal for steering the sampling proba-

bility p(H;w) in a good direction. Due to the approxima-

tion by sampling, the gradient variance of Eq. 5 can be high.

We apply a standard variance reduction technique from re-

inforcement learning by subtracting a baseline b [45]:

∂

∂w
L(w) ≈

1

K

K
∑

k=1

[

[ℓ(ĥ)− b]
∂

∂w
log p(Hk;w)

]

. (6)

We found a simple baseline in the form of the average loss

per image sufficient, i.e. b = ℓ̄. Subtracting the baseline will

move the probability distribution towards hypothesis pools

with lower-than-average loss for each training example.

Combination with DSAC. Brachmann et al. [4] proposed

a RANSAC-based pipeline where a neural network with pa-

rameters w predicts observations y(w) ∈ Y(w). End-to-

end training of the pipeline, and therefore learning the ob-

servations y(w), is possible by turning the argmax hypoth-

esis selection of RANSAC (cf. Eq. 1) into a probabilistic

action:

ĥDSAC = hj ∼ p(j|H) =
exp s(hj ,Y(w))

∑M
k=1 exp s(hk,Y(w))

. (7)

This differentiable variant of RANSAC (DSAC) chooses

a hypothesis randomly according to a distribution calcu-

lated from hypothesis scores. The training objective aims

at learning network parameters such that hypotheses with

low task loss are chosen with high probability:

LDSAC(w) = Ej∼p(j) [ℓ(hj)] . (8)

In the following, we extend the formulation of DSAC with

neural guidance (NG-DSAC). We let the neural network

predict observations y(w) and, additionally, a probability

associated with each observation p(y;w). Intuitively, the

neural network can express a confidence in its own predic-

tions through this probability. This can be useful if a certain

input for the neural network contains no information about

the desired model h. In this case, the observation prediction

y(w) is necessarily an outlier, and the best the neural net-

work can do is to label it as such by assigning a low proba-

bility. We combine the training objectives of NG-RANSAC

(Eq. 3) and DSAC (Eq. 8) which yields:

LNG-DSAC(w) = EH∼p(H;w)Ej∼p(j|H) [ℓ(hj)] , (9)

where we again construct p(H;w) from individual

p(y;w)’s according to Eq. 2. The training objective of NG-

DSAC consists of two expectations. Firstly, the expectation

w.r.t. sampling a hypothesis pool according to the probabili-

ties predicted by the neural network. Secondly, the expecta-

tion w.r.t. sampling a final estimate from the pool according

to the scoring function. As in NG-RANSAC, we approxi-

mate the first expectation via sampling, as integrating over

all possible hypothesis pools is infeasible. For the second

expectation, we can calculate it analytically, as in DSAC,

since it integrates over the discrete set of hypotheses hj in

a given pool H. Similar to Eq. 6, we give the approximate

gradients ∂
∂w

L(w) of NG-DSAC as:

1

K

K
∑

k=1

[

[Ej [ℓ]− b]
∂

∂w
log p(Hk;w) +

∂

∂w
Ej [ℓ]

]

,

(10)

where we use Ej [ℓ] as a stand-in for Ej∼p(j|Hk) [ℓ(hj)].
The calculation of gradients for NG-DSAC requires the

derivative of the task loss (note the last part of Eq. 10)

because Ej [ℓ] depends on parameters w via observations

y(w). Therefore, training NG-DSAC requires a differen-

tiable task loss function ℓ, a differentiable scoring function

s, and a differentiable minimal solver f . Note that we in-

herit these restrictions from DSAC. In return, NG-DSAC al-

lows for learning observations and observation confidences,

at the same time.

4. Experiments

We evaluate neural guidance on multiple, classic com-

puter vision tasks. Firstly, we apply NG-RANSAC to es-

timating epipolar geometry of image pairs in the form of

essential matrices and fundamental matrices. Secondly, we

apply NG-DSAC to horizon line estimation and camera re-

localization. We present the main experimental results here,

and refer to the supplement for details about network archi-

tectures, hyper-parameters and further experimental analy-

sis. Our implementation is based on PyTorch [32], and we

will make the code publicly available1.

4.1. Essential Matrix Estimation

Epipolar geometry describes the geometry of two images

that observe the same scene [16]. In particular, two image

points x and x′ in the left and right image corresponding to

the same 3D point satisfy x′⊤Fx = 0, where the 3× 3 ma-

trix F denotes the fundamental matrix. We can estimate F

uniquely (but only up to scale) from 8 correspondences, or

from 7 correspondences with multiple solutions [16]. The

essential matrix E is a special case of the fundamental ma-

trix when the calibration parameters K and K ′ of both cam-

eras are known: E = K ′⊤FK. The essential matrix can be

estimated from 5 correspondences [31]. Decomposing the

essential matrix allows to recover the relative pose between

the observing cameras, and is a central step in image-based

3D reconstruction [40]. As such, estimating the fundamen-

tal or essential matrices of image pairs is a classic and well-

researched problem in computer vision.

1vislearn.de/research/neural-guided-ransac/
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Figure 2. Essential Matrix Estimation. We calculate the relative pose between outdoor and indoor image pairs via the essential matrix.

We measure the AUC of the cumulative angular error up to a threshold of 5◦, 10◦ or 20◦. a) We use no side information about the sparse

correspondences. b) We use side information in the form of descriptor distance ratios between the best and second best match. We use it to

filter correspondences with a threshold of 0.8 (+Ratio), as an additional input for our network (+SI), and as additional input for USAC [34].

c) We train NG-RANSAC in a self-supervised fashion by using the inlier count as training objective.

In the following, we firstly evaluate NG-RANSAC for

the calibrated case and estimate essential matrices from

SIFT correspondences [27]. For the sake of comparabil-

ity with the recent, learned robust estimator of Yi et al. [56]

we adhere closely to their evaluation setup, and compare to

their results.

Datasets. Yi et al. [56] evaluate their approach in outdoor

as well as indoor settings. For the outdoor datasets, they

select five scenes from the structure-from-motion (SfM)

dataset of [19]: Buckingham, Notredame, Sacre Coeur, St.

Peter’s and Reichstag. They pick two additional scenes

from [44]: Fountain and Herzjesu. They reconstruct each

scene using a SfM tool [53] to obtain ‘ground truth’ cam-

era poses, and co-visibility constraints for selecting image

pairs. For indoor scenes Yi et al. choose 16 sequences from

the SUN3D dataset [54] which readily comes with ground

truth poses captured by KinectFusion [30]. See the supple-

ment for a listing of all scenes. Indoor scenarios are typi-

cally very challenging for sparse feature-based approaches

because of texture-less surfaces and repetitive elements (see

Fig. 1 for an example). Yi et al. train their best model us-

ing one outdoor scene (St. Peter’s) and one indoor scene

(Brown 1), and test on all remaining sequences (6 outdoor,

15 indoor). Yi et al. kindly provided us with their exact

data splits, and we will use their setup. Note that training

and test is performed on completely separate scenes, i.e. the

neural network has to generalize to unknown environments.

Evaluation Metric. Via the essential matrix, we recover

the relative camera pose up to scale, and compare to the

ground truth pose as follows. We measure the angular error

between the pose rotations, as well as the angular error be-

tween the pose translation vectors in degrees. We take the

maximum of the two values as the final angular error. We

calculate the cumulative error curve for each test sequence,

and compute the area under the curve (AUC) up to a thresh-

old of 5◦, 10◦ or 20◦. Finally, we report the average AUC

over all test sequences (but separately for the indoor and

outdoor setting).

Implementation. Yi et al. train a neural network to classify

a set of sparse correspondences in inliers and outliers. They

represent each correspondence as a 4D vector combining

the 2D coordinate in the left and right image. Their network

is inspired by PointNet [33], and processes each correspon-

dence independently by a series of multilayer perceptrons

(MLPs). Global context is infused by using instance and

batch normalization [49, 20] in-between layers. We re-build

this architecture in PyTorch, and train it according to NG-

RANSAC (Eq. 3). That is, the network predicts weights to

guide RANSAC sampling instead of inlier class labels. We

use the angular error between the estimated relative pose,

and the ground truth pose as task loss ℓ. As minimal solver

f , we use the 5-point algorithm [31]. To speed up training,

we initialize the network by learning to predict the distance

of each correspondence to the ground truth epipolar line, see

the supplement for details. We initialize for 75k iterations,

and train according to Eq. 3 for 25k iterations. We optimize

using Adam [23] with a learning rate of 10−5. For each

training image, we extract 2000 SIFT correspondences, and

sample K = 4 hypothesis pools with M = 16 hypothe-

ses. We use a low number of hypotheses during training to

obtain variation when sampling pools. For testing, we in-

crease the number of hypotheses to M = 103. We use an

inlier threshold of 10−3 assuming normalized image coor-

dinates using camera calibration parameters.

Results. We compare NG-RANSAC to the inlier classifi-

cation (InClass) of Yi et al. [56]. They use their approach

with SIFT as well as LIFT [55] features. We include results

for DeMoN [50], a learned SfM pipeline, and GMS [2], a

semi-dense approach using ORB features [38]. As classi-

cal baselines, we compare to vanilla RANSAC [12] and

USAC [34]. See Fig. 2 a) for results. RANSAC achieves

poor results across all thresholds, scoring as the weakest

method. In this experiment, we assume no side information

is available about the quality of correspondences. There-

fore, USAC performs similar to RANSAC, since it can-

not use guided sampling. Coupling RANSAC with neu-
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Figure 3. Qualitative Results. We compare fitted models for RANSAC and NG-RANSAC. For the indoor and outdoor image pairs, we fit

essential matrices, and for the Kitti image pair we fit the fundamental matrix. We draw final model inliers in green if they adhere to the

ground truth model, and red otherwise. We also measure the quality of each estimate, see the main text for details on the metrics.

ral guidance (NG-RANSAC) elevates it to the leading posi-

tion. Different from USAC, NG-RANSAC deduces useful

guiding weights solely from the spatial distribution of cor-

respondences. See also Fig. 3 for qualitative results.

NG-RANSAC outperforms InClass of Yi et al. [56] de-

spite some similarities. Both use the same network archi-

tecture, are based on SIFT correspondences, and both use

RANSAC at test time. Yi et al. [56] train using a hy-

brid classification-regression loss based on the 8-point al-

gorithm, and ultimately compare essential matrices using

squared error. Therefore, their training objective is very dif-

ferent from the evaluation procedure. During evaluation,

they use RANSAC with the 5-point algorithm on top of

their inlier predictions, and measure the angular error. NG-

RANSAC incorporates all these components in its training

procedure, and therefore optimizes the correct objective.

Using Side Information. The evaluation procedure of Yi

et al. [56] is designed to test a robust estimator in high-

outlier domains. However, it underestimates what classical

approaches can achieve on these datasets. The distance ratio

of the best and second-best SIFT match is often an indica-

tor of correspondence quality. This side information can be

used by USAC [34] to guide hypothesis sampling according

to the PROSAC strategy [9]. Furthermore, Lowe’s ratio cri-

terion [27] removes ambiguous matches with a distance ra-

tio above a threshold (we use 0.8) before running RANSAC.

We denote the ratio filter as +Ratio in Fig. 2 b), and ob-

serve a drastic improvement for all methods. Both classic

approaches, RANSAC and USAC, outperform all learned

methods of Fig. 2 a). RootSIFT normalization of SIFT

descriptors [1] improves accuracy further. NG-RANSAC

easily incorporates side information. For best accuracy,

we train it on ratio-filtered RootSIFT correspondences, us-

ing distance ratios as additional network input (denoted as

+SI). See the supplement for a detailed comparison of NG-

RANSAC and USAC with varying hypothesis count M .

Self-supervised Learning. We train NG-RANSAC self-

supervised by defining a task loss ℓ to assess the quality

of an estimate independent of a ground truth model h∗. A

natural choice is the inlier count of the final estimate. We

found the inlier count to be a very stable training signal,

even in the beginning of training such that we require no

special initialization of the network. We report results of

self-supervised NG-RANSAC in Fig. 2 c). It outperforms

all competitors except USAC [34] which it matches in accu-

racy. Unsupervised NG-RANSAC achieves slightly worse

accuracy than supervised NG-RANSAC. A supervised task

loss allows NG-RANSAC to adapt more precisely to the

evaluation measure used at test time. For the datasets used

so far, the process of image pairing uses co-visibility infor-

mation, and therefore a form of supervision. In the next sec-

tion, we learn NG-RANSAC fully self-supervised by using

the ordering of sequential data to assemble image pairs.

4.2. Fundamental Matrix Estimation

We apply NG-RANSAC to fundamental matrix estima-

tion, comparing it to the learned estimator of Ranftl and

Koltun [36], denoted Deep F-Mat. They propose an iter-

ative procedure where a neural network estimates observa-

tion weights for a robust model fit. Residuals of the last iter-

ation are an additional input to the network in the next iter-

ation. The network architecture is similar to the one of [56].

Correspondences are represented as 4D vectors, and they

use distance ratios as additional inputs. A series of MLPs

processes each correspondence with instance normalization

interleaved. Deep F-Mat was published very recently, and

the code is not yet available. We follow the evaluation pro-

cedure described in [36] and compare to their results.

Datasets. Ranftl and Koltun [36] evaluate their method

on various datasets that involve custom reconstructions not

publicly available. Therefore, we compare to their method

on the Kitti dataset [14], which is online. Ranftl and Koltun

[36] train their method on sequences 00-05 of the Kitti
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Training 

Objective
% Inliers F-score Mean Median

RANSAC - 21.85 13.84 0.35 0.32

USAC [34] - 21.43 13.90 0.35 0.32

Deep F-Mat [36] Mean 24.61 14.65 0.32 0.29

NG-RANSAC Mean 25.05 14.76 0.32 0.29

NG-RANSAC F-score 24.13 14.72 0.33 0.31

NG-RANSAC %Inliers 25.12 14.74 0.32 0.29

Figure 4. Fundamental Matrix Estimation. We measure the av-

erage percentage of inliers of the estimated model, the alignment

of estimated and ground truth inliers (F-score), and the mean and

median distance of estimated inliers to ground truth epilines. For

NG-RANSAC, we compare the performance after training with

different objectives. %Inliers is a self-supervised objective.

odometry benchmark, and test on sequences 06-10. They

form image pairs by taking subsequent images within a se-

quence. For each pair, they extract SIFT correspondences

and apply Lowe’s ratio filter [27] with a threshold of 0.8.

Evaluation Metric. Ranftl and Koltun [36] evaluate us-

ing multiple metrics. They measure the percentage of inlier

correspondences of the final model. They calculate the F-

score over correspondences where true positives are inliers

of both the ground truth model and the estimated model.

The F-score measures the alignment of estimated and true

fundamental matrix in image space. Both metrics use an

inlier threshold of 0.1px. Finally, they calculate the mean

and median epipolar error of inlier correspondences w.r.t.

the ground truth model, using an inlier threshold of 1px.

Implementation. We cannot use the architecture of Deep

F-Mat which is designed for iterative application. There-

fore, we re-use the architecture of Yi et al. [56] from the

previous section for NG-RANSAC (also see the supplement

for details). We adhere to the training setup described in

Sec. 4.1 with the following changes. We observed faster

training convergence on Kitti, so we omit the initialization

stage, and directly optimize the expected task loss (Eq. 3)

for 300k iterations. Since Ranftl and Koltun [36] evaluate

using multiple metrics, the choice of the task loss function

ℓ is not clear. Hence, we train multiple variants with dif-

ferent objectives (%Inliers, F-score and Mean error) and

report the corresponding results. As minimal solver f , we

use the 7-point algorithm, a RANSAC threshold of 0.1px,

and we draw K = 8 hypothesis pools per training image

with M = 16 hypotheses each.

Results. We report results in Fig. 4. NG-RANSAC out-

performs the classical approaches RANSAC and USAC.

NG-RANSAC also performs slightly superior to Deep F-

Mat. We observe that the choice of the training objective

has small but significant influence on the evaluation. All

metrics are highly correlated, and optimizing a metric in

training generally also achieves good (but not necessarily

best) accuracy using this metric at test time. Interestingly,

optimizing the inlier count during training performs com-

petitively, although being a self-supervised objective. Fig. 3

shows a qualitative result on Kitti.

AUC (%)

Simon et al. [42] 54.4

Kluger et al. [24] 57.3

Zhai et al. [57] 58.2

Workman et al. [52] 71.2

DSAC 74.1

NG-DSAC 75.2

SLNet [25] 82.3

Figure 5. Horizon Line Estimation. Left: AUC on the HLW

dataset. Right: Qualitative results. We draw the ground truth hori-

zon in green and the estimate in blue. Dots mark the observations

predicted by NG-DSAC, and the dot colors mark their confidence

(dark = low). Note that the horizon can be outside the image.

4.3. Horizon Lines

We fit a parametric model, the horizon line, to a single

image. The horizon can serve as a cue in image understand-

ing [52] or for image editing [25]. Traditionally, this task

is solved via vanishing point detection and geometric rea-

soning [37, 24, 57, 42], often assuming a Manhattan or At-

lanta world. We take a simpler approach and use a general

purpose CNN that predicts a set of 64 2D points based on

the image to which we fit a line with RANSAC, see Fig. 5.

The network has two output branches predicting (i) the 2D

points y(w) ∈ Y(w), and (ii) probabilities p(y;w) for

guided sampling (see the supplement for details).

Dataset. We evaluate on the HLW dataset [52] which is a

collection of SfM datasets with annotated horizon line.

Evaluation Metric. As is common practice on HLW, we

measure the maximum distance between the estimated hori-

zon and ground truth within the image, normalized by im-

age height. We calculate the AUC of the cumulative error

curve up to a threshold of 0.25.

Implementation. We train using the NG-DSAC objective

(Eq. 9) from scratch for 250k iterations. As task loss ℓ, we

use the normalized maximum distance between estimated

and true horizon. For hypothesis scoring s, we use a soft

inlier count [6]. We train using Adam [23] with a learning

rate of 10−4. For each training image, we draw K = 2
hypothesis pools with M = 16 hypotheses. We also draw

16 hypotheses at test time. We compare to DSAC which we

train similarly but disable the probability branch.

Results. We report results in Fig. 5. DSAC and NG-

DSAC achieve competitive accuracy on this dataset, rank-

ing among the top methods. NG-DSAC has a small but sig-

nificant advantage over DSAC alone. Our method is only

surpassed by SLNet [25], an architecture designed to find

semantic lines in images. SLNet generates a large number

of random candidate lines, selects a candidate via classifica-

tion, and refines it with a predicted offset. We could couple

SLNet with neural guidance for informed candidate sam-

pling. Unfortunately, the code of SLNet is not online and

the authors did not respond to inquiries.
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b) Learned Representation (Great Court)

DSAC++ NG-DSAC++

Figure 6. Neural Guidance for Camera Re-localization. a) Predicted sampling probabilities of NG-DSAC++ throughout training. b)

Internal representation of the neural network. We predict scene coordinates for each training image, plotting them with their RGB color.

For DSAC++ we choose training pixels randomly, for NG-DSAC++ we choose randomly according to the predicted distribution.

DSAC++ [6]

(VGGNet)

DSAC++

(ResNet)

NG-DSAC++

(ResNet)

Great Court 40.3cm 40.3cm 35.0cm

Kings College 17.7cm 13.0cm 12.6cm

Old Hospital 19.6cm 22.4cm 21.9cm

Shop Facade 5.7cm 5.7cm 5.6cm

St M. Church 12.5cm 9.9cm 9.8cm

Figure 7. Camera Re-Localization. We report median position

error for Cambridge Landmarks [22]. DSAC++ (ResNet) is our

re-implementation of [6] with an improved network architecture.

4.4. Camera ReLocalization

We estimate the absolute 6D camera pose (position and

orientation) w.r.t. a known scene from a single RGB image.

Dataset. We evaluate on the Cambridge Landmarks [22]

dataset. It is comprised of RGB images depicting five land-

mark buildings in Cambridge, UK.Ground truth poses were

generated by running a SfM pipeline.

Evaluation Metric. We measure the median translational

error of estimated poses for each scene.

Implementation. We build on the publicly available

DSAC++ pipeline [6] which is a scene coordinate regres-

sion method [41]. A neural network predicts for each im-

age pixel a 3D coordinate in scene space. We recover the

pose from the 2D-3D correspondences using a perspective-

n-point solver [13] within a RANSAC loop. The DSAC++

pipeline implements geometric pose optimization in a fully

differentiable way which facilitates end-to-end training. We

re-implement the neural network integration of DSAC++

with PyTorch (the original uses LUA/Torch). We also

update the network architecture of DSAC++ by using a

ResNet [18] instead of a VGGNet [43]. As with horizon

line estimation, we add a second output branch to the net-

work for estimating a probability distribution over scene co-

ordinate predictions for guided RANSAC sampling. We de-

note this extended architecture NG-DSAC++. We adhere

to the training procedure and hyperparamters of DSAC++

(see the supplement) but optimize the NG-DSAC objective

(Eq. 9) during end-to-end training. As task loss ℓ, we use

the average of the rotational and translational error w.r.t. the

ground truth pose. We sample K = 2 hypothesis pools

with M = 16 hypotheses per training image, and increase

the number of hypotheses to M = 256 for testing.

Results. We report our quantitative results in Fig. 7. Firstly,

we observe a significant improvement for most scenes when

using DSAC++ with a ResNet architecture. Secondly, com-

paring DSAC++ with NG-DSAC++, we notice a small to

moderate, but consistent, improvement in accuracy. The ad-

vantage of using neural guidance is largest for the Great

Court scene, which features large ambiguous grass ar-

eas, and large areas of sky visible in many images. NG-

DSAC++ learns to ignore such areas, see the visualization

in Fig. 6 a). The network learns to mask these areas solely

guided by the task loss during training, as the network fails

to predict accurate scene coordinates for them. In Fig. 6 b),

we visualize the internal representation learned by DSAC++

and NG-DSAC++ for one scene. The representation of

DSAC++ is very noisy, as it tries to optimize geometric

constrains for sky and grass pixels. NG-DSAC++ learns

a cleaner representation by focusing entirely on buildings.

5. Conclusion

We have presented NG-RANSAC, a robust estimator us-

ing guided hypothesis sampling according to learned prob-

abilities. For training we can incorporate non-differentiable

task loss functions and non-differentiable minimal solvers.

Using the inlier count as training objective allows us to

also train NG-RANSAC self-supervised. We applied NG-

RANSAC to multiple classic computer vision tasks and ob-

serve a consistent improvement w.r.t. RANSAC alone.
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