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Abstract

The performance of multi-task learning in Convolutional

Neural Networks (CNNs) hinges on the design of feature

sharing between tasks within the architecture. The num-

ber of possible sharing patterns are combinatorial in the

depth of the network and the number of tasks, and thus

hand-crafting an architecture, purely based on the human

intuitions of task relationships can be time-consuming and

suboptimal. In this paper, we present a probabilistic ap-

proach to learning task-specific and shared representations

in CNNs for multi-task learning. Specifically, we propose

“stochastic filter groups” (SFG), a mechanism to assign

convolution kernels in each layer to “specialist” or “gener-

alist” groups, which are specific to or shared across differ-

ent tasks, respectively. The SFG modules determine the con-

nectivity between layers and the structures of task-specific

and shared representations in the network. We employ vari-

ational inference to learn the posterior distribution over

the possible grouping of kernels and network parameters.

Experiments demonstrate that the proposed method gen-

eralises across multiple tasks and shows improved perfor-

mance over baseline methods.

1. Introduction

Multi-task learning (MTL) aims to enhance learning effi-

ciency and predictive performance by simultaneously solv-

ing multiple related tasks [3]. Recently, applications of con-

volutional neural networks (CNNs) in MTL have demon-

strated promising results in a wide-range of computer vi-

sion applications, ranging from visual scene understand-

ing [30, 5, 25, 16, 27, 1] to medical image computing

[26, 4, 2, 32].

A key factor for successful MTL neural network models

is the ability to learn shared and task-specific representa-

∗Both authors contributed equally

Manually specified

architecture

x

Age

Gender
Input

Learned architecture

with our method 

Shared

Task 1

Task 2

Figure 1: Figure on the left illustrates a typical multi-task archi-

tecture, while the figure on the right shows an example architecture

that can be learned with our method. We propose Stochastic Filter

Groups, a principled way to learn the assignment of convolution

kernels to task-specific and shared groups.

tions [25]. A mechanism to understand the commonalities

and differences between tasks allows the model to trans-

fer information between tasks while tailoring the predictive

model to describe the distinct characteristics of the indi-

vidual tasks. The quality of such representations is deter-

mined by the architectural design of where model compo-

nents such as features [29] and weights [24] are shared and

separated between tasks. However, the space of possible ar-

chitectures is combinatorially large, and the manual explo-

ration of this space is inefficient and subject to human bi-

ases. For example, Fig. 1 shows a typical CNN architecture

for MTL comprised of a shared “trunk” feature extractor

and task-specific “branch” networks [32, 9, 13, 15, 27, 2].

The desired amount of shared and task-specific representa-

tions, and their interactions within the architecture are de-

pendent on the difficulty of the individual tasks and the re-

lation between them, neither of which are a priori known in

most cases [34]. This illustrates the challenge of handcraft-

ing an appropriate architecture, and the need for an effective

automatic method to learn it from data.

In this paper, we propose Stochastic Filter Groups

(SFGs); a probabilistic mechanism to learn the amount

of task-specific and shared representations needed in each
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layer of MTL architectures (Fig. 1). Specifically, the SFGs

learns to allocate kernels in each convolution layer into

either “specialist” groups or a “shared” trunk, which are

specific to or shared across different tasks, respectively

(Fig. 2). The SFG equips the network with a mechanism

to learn inter-layer connectivity and thus the structures of

task-specific and shared representations. We cast the learn-

ing of SFG modules as a variational inference problem.

We evaluate the efficacy of SFGs on a variety of tasks.

In particular, we focus on two multi-task learning problems:

1) age regression and gender classification from face im-

ages on UTKFace dataset [35] and 2) semantic regression

(i.e. image synthesis) and semantic segmentation on a real-

world medical imaging dataset, both of which require pre-

dictions over all pixels. Experiments show that our method

achieves considerably higher prediction accuracy than base-

lines with no mechanism to learn connectivity structures,

and either higher or comparable performance than a cross-

stitch network [25], while being able to learn meaningful

architectures automatically.

2. Related works

Our work is concerned with the goal of learning where

to share neural network components across different tasks to

maximise the benefit of MTL. The main challenge of such

methods lies in designing a mechanism that determines how

and where to share weights within the network. There are

broadly two categories of methods that determine the nature

of weight sharing and separation in MTL networks.

The first category is composed of methods that optimise

the structures of weight sharing in order to maximise task-

wise performance. These methods set out to learn a set a

vectors that control which features are shared within a layer

and how these are distributed across [20, 24, 25, 29]. They

start with a baseline CNN architecture where they learn ad-

ditional connections and pathways that define the final MTL

model. For instance, Cross-Stitch networks [25] control the

degree of weight sharing at each convolution layer whilst

Soft-Layer Ordering [24] goes beyond the assumption of

parallel ordering of feature hierarchies to allow features to

mix at different layers depending on the task. Routing net

[28] proposes an architecture in which each layer is a set of

function blocks, and learns to decide which composition of

blocks to use given an input and a task.

The second group of MTL methods focuses on weight

clustering based on task-similarity [33, 11, 14, 21, 23]. For

example, [21] employed an iterative algorithm to grow a

tree-like deep architecture that clusters similar tasks hier-

archically or [23] which determines the degree of weight

sharing based on statistical dependency between tasks.

Our method falls into first category, and differentiates it-

self by performing “hard’ partitioning of task-specific and

shared features. By contrast, prior methods are based on

“soft” sharing of features [25, 29] or weights [20, 24].

These methods generally learn a set of mixing coefficients

that determine the weighted sum of features throughout the

network, which does not impose connectivity structures on

the architecture. On the other hand, our method learns a

distribution over the connectivity of layers by grouping ker-

nels. This allows our model to learn meaningful grouping

of task-specific and shared features as illustrated in Fig. 7.

3. Methods

We introduce a new approach for determining where

to learn task-specific and shared representation in multi-

task CNN architectures. We propose stochastic filter

groups (SFG), a probabilistic mechanism to partition ker-

nels in each convolution layer into “specialist” groups or a

“shared” group, which are specific to or shared across dif-

ferent tasks, respectively. We employ variational inference

to learn the distributions over the possible grouping of ker-

nels and network parameters that determines the connec-

tivity between layers and the shared and task-specific fea-

tures. This naturally results in a learning algorithm that op-

timally allocate representation capacity across multi-tasks

via gradient-based stochastic optimization, e.g. stochastic

gradient descent.
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Figure 2: Illustration of filter assignment in a SFG module.

Each kernel {wk} in the given convolution layer is probabilisti-

cally assigned to one of the filter groups G1, Gs, G2 according

to the sample drawn from the associated categorical distribution

Cat(p1, ps, p2).

3.1. Stochastic Filter Groups

SFGs introduce a sparse connection structure into the ar-

chitecture of CNN for multi-task learning in order to sep-

arate features into task-specific and shared components.

Ioannou et al. [10] introduced filter groups to partition ker-

nels in each convolution layer into groups, each of which

acts only on a subset of the preceding features. They

demonstrated that such sparsity reduces computational cost

and number of parameters without compromising accuracy.

Huang et al. [8] proposed a similar concept, but differs in

that the filter groups do not operate on mutually exclusive

sets of features. Here we adapt the concept of filter groups
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Figure 3: Illustration of possible grouping patterns learnable with

the proposed method. Each set of green, pink and yellow blocks

represent the ratio of filter groups G1 (red), Gs (green) and G2

(blue). (i) denotes the case where all kernels are uniformly split.

(ii) & (iii) are the cases where the convolution kernels become

more task-specific at deeper layers. (iv) shows an example with

more heterogeneous splits across tasks.
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Figure 4: Illustration of feature routing. The circles G1, Gs, G2

denote the task-specific and shared filter groups in each layer. (i)

shows the directions of routing of activations between different

filter groups while (ii) shows the directions of the gradient flow

from the task losses L1 and L2. The red and blue arrows denote

the gradients that step from L1 and L2, respectively. The task-

specific groups G1, G2 are only updated based on the associated

losses, while the shared group Gs is updated based on both.

to the multi-task learning paradigm and propose an exten-

sion with an additional mechanism for learning an optimal

kernel grouping rather than pre-specifying them.

For simplicity, we describe SFGs for the case of multi-

task learning with two tasks, but can be trivially extended

to a larger number of tasks. At the lth convolution layer in a

CNN architecture with Kl kernels {w(l),k}Kl

k=1, the associ-

ated SFG performs two operations:

1. Filter Assignment: each kernel w
(l)
k is stochasti-

cally assigned to either: i) the “task-1 specific group”

G
(l)
1 , ii) “shared group” G

(l)
s or iii) “task-2 specific

group” G
(l)
2 with respective probabilities p(l),k =

[p
(l),k
1 , p

(l),k
s , p

(l),k
2 ] ∈ [0, 1]3. Convolving with the

respecitve filter groups yields distinct sets of features

F
(l)
1 , F

(l)
s , F

(l)
2 . Fig. 2 illustrates this operation and

Fig. 3 shows different learnable patterns.

2. Feature Routing: as shown in Fig. 4 (i), the fea-

tures F
(l)
1 , F

(l)
s , F

(l)
2 are routed to the filter groups

G
(l+1)
1 , G

(l+1)
s , G

(l+1)
2 in the subsequent (l+1)th layer

in such a way to respect the task-specificity and shared-

ness of filter groups in the lth layer. Specifically, we

perform the following routing for l > 0:

F
(l+1)
1 = h(l+1)

�

[F
(l)
1 |F (l)

s ] ∗G
(l+1)
1

�

F (l+1)
s = h(l+1)

�

F (l)
s ∗G(l+1)

s

�

F
(l+1)
2 = h(l+1)

�

[F
(l)
2 |F (l)

s ] ∗G
(l+1)
2

�

where each h(l+1) defines the choice of non-linear

function, ∗ denotes convolution operation and | de-

notes a merging operation of arrays (e.g. concate-

nation). At l = 0, input image x is simply con-

volved with the first set of filter groups to yield F
(1)
i =

h(1)
�

x∗G
(1)
i

�

, i ∈ {1, 2, s}. Fig. 4(ii) shows that such

sparse connectivity ensures the parameters of G
(l)
1 and

G
(l)
2 are only learned based on the respective task

losses, while G
(l)
s is optimised based on both tasks.

Fig. 5 provides a schematic of our overall architecture,

in which each SFG module stochastically generates filter

groups in each convolution layer and the resultant features

are sparsely routed as described above. The merging mod-

ules, denoted as black circles, combine the task-specific and

shared features appropriately, i.e. [F
(l)
i |F

(l)
s ], i = 1, 2 and

pass them to the filter groups in the next layer. Each white

circle denotes the presence of additional transformations

(e.g. convolutions or fully connected layers) in each h(l+1),

performed on top of the standard non-linearity (e.g. ReLU).

The proposed sparse connectivity is integral to ensure

task performance and structured representations. In partic-

ular, one might argue that the routing of “shared” features

F
(l)
s to the respective “task-specific” filter groups G

(l+1)
1

and G
(l+1)
2 is not necessary to ensure the separation of gra-

dients across the task losses. However, this connection al-

lows for learning more complex task-specific features at

deeper layers in the network. For example, without this

routing, having a large proportion of “shared” filter group

Gs at the first layer (Fig. 3 (ii)) substantially reduces the

amount of features available for learning task-specific ker-

nels in the subsequent layers—in the extreme case in which

all kernels in one layer are assigned to Gs, the task-specific

filter groups in the subsequent layers are effectively unused.

Another important aspect that needs to be highlighted

is the varying dimensionality of feature maps. Specifi-

cally, the number of kernels in the respective filter groups

G
(l)
1 , G

(l)
s , G

(l)
2 can vary at each iteration of the training,
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Figure 5: Schematic of the proposed multi-task architecture based on a series of SFG modules in the presence of two tasks. At each

convolution layer, kernels are stochastically assigned to task-specific and shared filter groups G1, Gs, G2. Each input image is first

convolved with the respective filter groups to yield three distinct sets of output activations, which are routed sparsely to the filter groups in

the second layer layer. This process repeats in the remaining SFG modules in the architecture until the last layer where the outputs of the

final SFG module are combined into task-specific predictions ŷ1 and ŷ2. Each small white circle denotes an optional transformation (e.g.

extra convolutions) and black circle merges the incoming inputs (e.g. concatenation).

and thus, so does the depth of the resultant feature maps

F
(l)
1 , F

(l)
s , F

(l)
2 . Instead of directly working with features

maps of varying size, we implement the proposed architec-

ture by defining F
(l)
1 , F

(l)
s , F

(l)
2 as sparse tensors. At each

SFG module, we first convolve the input features with all

kernels, and generate the output features from each filter

group by zeroing out the channels that root from the ker-

nels in the other groups, resulting in F
(l)
1 , F

(l)
s , F

(l)
2 that are

sparse at non-overlapping channel indices. In the simplest

form with no additional transformation (i.e. the grey circles

in Fig. 5 are identity functions), we define the merging op-

eration [F
(l)
i |F

(l)
s ], i = 1, 2 as pixel-wise summation. In the

presence of more complex transforms (e.g. residual blocks),

we concatenate the output features in the channel-axis and

perform a 1x1 convolution to ensure the number of channels

in [F
(l)
i |F

(l)
s ] is the same as in F

(l)
s .

3.2. T+1 Way Concrete “Drop-Out”

Here we derive the method for simultaneously optimis-

ing the CNN parameters and grouping probabilities. We

achieve this by extending the variational interpretation of

binary dropout [6, 7] to the (T +1)-way assignment of each

convolution kernel to the filter groups where T is the num-

ber of tasks. As before, we consider the case T = 2.

Suppose that the architecture consists of L SFG mod-

ules, each with Kl kernels where l is the index. As the

posterior distribution over the convolution kernels in SFG

modules p(W|X,Y(1),Y(2)) is intractable, we approxi-

mate it with a simpler distribution qφ(W) where W =
{W(l),k}k=1,...,Kl,l=1,...,L. Assuming that the posterior

distribution factorizes over layers and kernels up to group

assignment, we defined the variational distribution as:

qφ(W) =
L
Y

l=1

Kl
Y

k=1

qφlk
(W(l),k)

=
L
Y

l=1

Kl
Y

k=1

qφlk
(W

(l),k
1 ,W(l),k

s ,W
(l),k
2 )

where {W
(l),k
1 ,W

(l),k
s ,W

(l),k
2 } denotes the kth kernel

in lth convolution layer after being routed into task-

specific G
(l)
1 , G

(l)
2 and shared group G

(l)
s . We define each

qφlk
(W

(l),k
1 ,W

(l),k
2 ,W

(l),k
s ) as:

W
(l),k
i = z

(l),k
i ·M(l),k for i ∈ {1, s, 2} (1)

z(l),k = [z
(l),k
1 , z

(l),k
2 , z(l),ks ] ∼ Cat(p(l),k) (2)

where z(l),k is the one-hot encoding of a sample from the

categorical distribution over filter group assignments, and

M(l),k denotes the parameters of the pre-grouping convolu-

tion kernel. The set of variational parameters for each ker-

nel in each layer is thus given by φlk = {M(l),k,p(l),k =

[p
(l),k
1 , p

(l),k
s , p

(l),k
2 ]}.

We minimize the KL divergence between the approxi-

mate posterior qφ(W) and p(W|X,Y(1),Y(2)). Assuming

that the joint likelihood over the two tasks factorizes, we

have the following optimization objective:

LMC(φ) = −
N

M

M
X

i=1

h

log p(y
(1)
i |xi,Wi)+log p(y

(2)
i |xi,Wi)

i

+

L
X

l=1

Kl
X

k=1

KL(qφlk
(W(l),k)||p(W(l),k)) (3)
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where M is the size of the mini-batch, N is the total num-

ber of training data points, and Wi denotes a set of model

parameters sampled from qφ(W). The last KL term regu-

larizes the deviation of the approximate posterior from the

prior p(W(l),k) = N (0, I/l2) where l > 0. Adapting the

approximation presented in [6] to our scenario, we obtain:

KL(qφlk
(W(l),k)||p(W(l),k)) ∝

l2

2
||M(l),k||22 −H(p(l),k)

(4)

where H(p(l),k) = −

P

i∈{1,2,s} p
(l),k
i log p

(l),k
i is the en-

tropy of the grouping probabilities. While the first term per-

forms the L2-weight norm, the second term pulls the group-

ing probabilities towards the uniform distribution. Plugging

eq.(4) into eq.(3) yields the overall loss:

LMC(φ)=−
N

M

M
X

i=1

h

log p
⇣

y
(1)
i |xi,Wi

⌘

+log p
⇣

y
(2)
i |xi,Wi

⌘i

+ λ1 ·
L
X

l=1

Kl
X

k=1

||M(l),k||2 − λ2 ·
L
X

l=1

Kl
X

k=1

H(p(l),k) (5)

where λ1 > 0,λ2 > 0 are regularization coefficients.

We note that the discrete sampling operation during fil-

ter group assignment (eq. (2)) creates discontinuities, giv-

ing the first term in the objective function (eq. 5) zero gra-

dient with respect to the grouping probabilities {p(l),k}.

We therefore, as employed in [15] for the binary case, ap-

proximate each of the categorical variables Cat(p(l),k) by

the Gumbel-Softmax distribution, GSM(p(l),k, τ) [22, 12],

a continuous relaxation which allows for sampling, dif-

ferentiable with respect to the parameters p(l),k through

a reparametrisation trick. The temperature term τ adjusts

the bias-variance tradeoff of gradient approximation; as the

value of τ approaches 0, samples from the GSM distribu-

tion become one-hot (i.e. lower bias) while the variance of

the gradients increases. In practice, we start at a high τ and

anneal to a small but non-zero value as in [12, 7] as detailed

in supplementary materials.

4. Experiments

We tested stochastic filter groups (SFG) on two multi-

task learning (MTL) problems: 1) age regression and gen-

der classification from face images on UTKFace dataset

[35] and 2) semantic image regression (synthesis) and seg-

mentation on a medical imaging dataset.

UTKFace dataset: We tested our method on UTKFace

[35], which consists of 23,703 cropped faced images in the

wild with labels for age and gender. We created a dataset

with a 70/15/15% split. We created a secondary separate

dataset containing only 10% of images from the initial set,

so as to simulate a data-starved scenario.

Medical imaging dataset: We used a medical imaging

dataset to evaluate our method in a real-world, multi-task

problem where paucity of data is common and hard to miti-

gate. The goal of radiotherapy treatment planning is to max-

imise radiation dose to the tumour whilst minimising dose

to the organs. To plan dose delivery, a Computed Tomogra-

phy (CT) scan is needed as CT voxel intensity scales with

tissue density, thus allowing dose propagation simulations.

An MRI scan is needed to segment the surrounding organs.

Instead of acquiring both an MRI and a CT, algorithms can

be used to synthesise a CT scan (task 1) and segment or-

gans (task 2) given a single input MRI scan. For this ex-

periment, we acquired 15, 3D prostate cancer scans with

respective CT and MRI scans with semantic 3D labels for

organs (prostate, bladder, rectum and left/right femur heads)

obtained from a trained radiologist. We created a training

set of 10 patients, with the remaining 5 used for testing. We

trained our networks on 2D patches of size 128x128 ran-

domly sampled from axial slices, and reconstructed the 3D

volumes of size 288x288x62 at test time by stitching to-

gether the subimage-wise predictions.

4.1. Baselines

We compared our model against four baselines in addi-

tion to Cross-Stitch networks [25] trained end-to-end rather

than sequentially for fair comparison. The four baselines

considered are: 1) single-task networks, 2) hard-parameter

sharing multi-task network (MT-hard sharing), 3) SFG-

networks with constant 1/3 allocated grouping (MT-constant

mask) as per Fig. 3(i), and 4) SFG-networks with constant

grouping probabilities (MT-constant p). We train all the

baselines in an end-to-end fashion for all the experiments.

We note that all four baselines can be considered special

cases of an SFG-network. Two single-task networks can be

learned when the shared grouping probability of kernels is

set to zero. Considering Fig. 5, this would remove the di-

agonal connections and the shared network. This may be

important when faced with two unrelated tasks which share

no contextual information. A hard-parameter sharing net-

work exists when all shared grouping probabilities are max-

imised to one leading to a scenario where all features are

shared within the network up until the task-specific layers.

The MT-constant mask network is illustrated in Fig. 3(i),

where 1/3 of kernels are allocated to the task 1, task 2 and

shared groups, yielding uniform splits across layers. This

occurs when an equal number of kernels in each layer ob-

tain probabilities of p(l),k = [1, 0, 0], [0, 1, 0] and [0, 0, 1].
Lastly, the MT-constant p model represents the situation

where the grouping is non-informative and each kernel has

equal probability of being specific or shared with probabil-

ity p(l),k = [1/3, 1/3, 1/3]. Training details for these models,

including the hyper-parameter settings, are provided in the

supplementary document.
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UTKFace network: We used VGG-11 CNN architecture

[31] for age and gender prediction. The network consists

of a series of 3x3 convolutional layers interleaved with max

pooling layers. In contrast to the original architecture, we

replaced the final max pooling and fully connected layers

with global average pooling (GAP) followed by a fully con-

nected layers for prediction. Our model’s version of VGG

(SFG-VGG) replaces each convolutional layer in VGG-11

with a SFG layer with max pooling applied to each feature

map F
(l)
1 , F

(l)
2 , F

(l)
s . We applied GAP to each final fea-

ture map before the final merging operation and two fully

connected layers for each task.

Medical imaging network: We used the HighResNet

architecture [18] for CT synthesis and organ segmentation.

This network has been developed for semantic segmenta-

tion in medical imaging and has been used in a variety of

medical applications such as CT synthesis [2] and brain

segmentation [18]. It consists of a series of residual blocks,

which group two 3x3 convolutional layers with dilated

convolutions. The baseline network is composed of a 3x3
convolutional layer followed by three sets of twice repeated

residual blocks with dilated convolutions using factors

d = [1, 2, 4]. There is a 3x3 convolutional layer between

each set of repeated residual blocks. The network ends with

two final 3x3 layers and either one or two 1x1 convolutional

layers for single and multi-task predictions. In our model,

we replace each convolutional layer with an SFG module.

After the first SFG layer, three distinct repeated residual

blocks are applied to F
(l=0)
1 , F

(l=0)
2 , F

(l=0)
s . These are

then merged according the feature routing methodology

followed by a new SFG-layer and subsequent residual

layers. Our model concludes with 2 successive SFG-layers

followed by 1x1 convolutional layers applied to the merged

features F
(l=L)
1 and F

(l=L)
2 .

5. Results

5.1. Age regression and gender prediction

Results on age prediction and gender classification on

both datasets are presented in Tab. 1a and 1b. Our model

(MT-SFG) achieved the best performance in comparison to

the baselines in both data regimes. In both sets of experi-

ments, our model outperformed the hard-parameter sharing

(MT-hard sharing) and constant allocation (MT-constant

mask). This demonstrates the advantage of learning to al-

locate kernels. In the MT-constant mask model, kernels are

equally allocated across groups. In contrast, our model is

able to allocate kernels in varying proportions across differ-

ent layers in the network (Fig. 6 - SFG-VGG11) to max-

imise inductive transfer. Moreover, our methods performed

better than a model with constant, non-informative group-

ing probabilities (MT-constant p= [1/3, 1/3, 1/3]), displaying

(a) Full training data

Method
Age Gender

(MAE) (Accuracy)

One-task (VGG11) [31] 7.32 90.70
MT-hard sharing 7.92 90.60
MT-constant mask 7.67 89.41
MT-constant p=[1/3,1/3,1/3] 6.34 92.10
VGG11 Cross Stitch [25] 6.78 90.30
MT-SFG (ours) 6.00 92.46

(b) Small training data

Method
Age Gender

(MAE) (Accuracy)

One-task (VGG11) [31] 8.79 85.54
MT-hard sharing 9.19 85.83
MT-constant mask 9.02 85.98
MT-constant p=[1/3,1/3,1/3] 9.15 86.01
VGG11 Cross Stitch [25] 8.85 83.72
MT-SFG (ours) 8.54 87.01

Table 1: Age regression and gender classification results on UTK-

Face [35] with (a) the full and (b) limited training set. The best and

the second best results are shown in red and blue. The mean abso-

lute error (MAE) is reported for the age prediction and classifica-

tion accuracy for gender prediction. For our model, we performed

50 stochastic forward passes at test time by sampling the kernels

from the approximate posterior qφ(W). We calculated the average

age per subject and obtained gender prediction using the mode of

the test-time predictions.

the importance of learning structured representations and

connectivity across layers to yield good predictions.

5.2. Image regression and semantic segmentation

Results on CT image synthesis and organ segmentation

from input MRI scans is detailed in Tab. 2. Our method ob-

tains equivalent (non-statistically significant different) re-

sults to the Cross-Stitch network [25] on both tasks. We

have, however, observed best synthesis performance in the

bone regions (femur heads and pelvic bone region) in our

model when compared against all the baselines, including

Cross-Stitch. The bone voxel intensities are the most diffi-

cult to synthesise from an input MR scan as task uncertainty

in the MR to CT mapping at the bone is often highest [2].

Our model was able to disentangle features specific to the

bone intensity mapping (Fig. 7) without supervision of the

pelvic location, which allowed it to learn a more accurate

mapping of an intrinsically difficult task.

5.3. Learned architectures

Analysis of the grouping probabilities of a network em-

bedded with SFG modules permits visualisation of the net-

work connectivity and thus the learned MTL architecture.
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(a) CT Synthesis (PSNR)

Method Overall Bones Organs Prostate Bladder Rectum

One-task (HighResNet) [18] 25.76 (0.80) 30.35 (0.58) 38.04 (0.94) 51.38 (0.79) 33.34 (0.83) 34.19 (0.31)

MT-hard sharing 26.31 (0.76) 31.25 (0.61) 39.19 (0.98) 52.93 (0.95) 34.12 (0.82) 34.15 (0.30)

MT-constant mask 24.43(0.57) 29.10(0.46) 37.24(0.86) 50.48(0.73) 32.29(1.01) 33.44(2.88)
MT-constant p=[1/3,1/3,1/3] 26.64(0.54) 31.05 (0.55) 39.11 (1.00) 53.20 (0.86) 34.34 (1.35) 35.61 (0.35)

Cross Stitch [25] 27.86 (1.05) 32.27 (0.55) 40.45 (1.27) 54.51 (1.01) 36.81 (0.92) 36.35 (0.38)

MT-SFG (ours) 27.74 (0.96) 32.29 (0.59) 39.93 (1.09) 53.01 (1.06) 35.65 (0.44) 35.65 (0.37)

(b) Segmentation (DICE)

Method Overall Left Femur Head Right Femur Head Prostate Bladder Rectum

One-task (HighResNet) [18] 0.848(0.024) 0.931 (0.012) 0.917 (0.013) 0.913 (0.013) 0.739 (0.060) 0.741 (0.011)

MT-hard sharing 0.829(0.023) 0.933 (0.009) 0.889 (0.044) 0.904 (0.016) 0.685 (0.036) 0.732 (0.014)

MT-constant mask 0.774(0.065) 0.908 (0.012) 0.911 (0.015) 0.806 (0.0541) 0.583 (0.178) 0.662 (0.019)

MT-constant p=[1/3,1/3,1/3] 0.752(0.056) 0.917 (0.004) 0.917 (0.01) 0.729 (0.086) 0.560 (0.180) 0.639 (0.012)

Cross Stitch [25] 0.854 (0.036) 0.923 (0.008) 0.915 (0.013) 0.933 (0.009) 0.761 (0.053) 0.737 (0.015)

MT-SFG (ours) 0.852(0.047) 0.935 (0.007) 0.912 (0.013) 0.923 (0.016) 0.750 (0.062) 0.758 (0.011)

Table 2: Performance on the medical imaging dataset with best results in red, and the second best results in blue. The PSNR is reported

for the CT-synthesis (synCT) across the whole volume (overall), at the bone regions, across all organ labels and individually at the prostate,

bladder and rectum. For the segmentation, the average DICE score per patient across all semantic labels is computed. The standard

deviations are computed over the test subject cohort. For our model, we perform 50 stochastic forward passes at test-time by sampling the

kernels from the approximated posterior distribution qφ(W). We compute the average of all passes to obtain the synCT and calculate the

mode of the segmentation labels for the final segmentation.

To analyse the group allocation of kernels at each layer,

we computed the sum of class-wise probabilities per layer.

Learned groupings for both SFG-VGG11 network trained

on UTKFace and the SFG-HighResNet network trained on

prostate scans are presented in Fig. 6. These figures il-

lustrate increasing task specialisation in the kernels with

network depth. At the first layer, all kernels are classified

as shared (p= [0, 1, 0]) as low-order features such as edge

or contrast descriptors are generally learned earlier layers.

In deeper layers, higher-order representations are learned,

which describe various salient features specific to the tasks.

This coincides with our network allocating kernels as task

specific, as illustrated in Fig. 7, where activations are strati-

fied by allocated class per layer. Density plots of the learned

kernel probabilities and trajectory maps displaying training

dynamics, along with more examples of feature visualisa-

tions, are provided in supplementary materials.

Notably, the learned connectivity of both models shows

striking similarities to hard-parameter sharing architectures

commonly used in MTL. Generally, there is a set of shared

layers, which aim to learn a feature set common to both

tasks. Task-specific branches then learn a mapping from

this feature space for task-specific predictions. Our models

are able to automatically learn this structure whilst allow-

ing asymmetric allocation of task-specific kernels with no

priors on the network structure.

5.4. Effect of p initialisation

Fig. 3 shows the layer-wise proportion of the learned ker-

nel groups on the UTKFace dataset for four different ini-

tilization schemes of grouping probabilities p: (i) “domi-

nantly shared”, with p = [0.2, 0.6, 0.2], (ii) “dominantly

task-specific”, with p = [0.45, 0.1, 0.45], (iii) “random”,

where p is drawn from Dirichlet(1, 1, 1), (iv) “start with

MT-constant mask”, where an equal number of kernels in

each layer are set to probabilities of p = [1, 0, 0], [0, 1, 0]
and [0, 0, 1]. In all cases, the same set of hyper-parameters,

including the annealing rate of the temperature term in GSM

approximation and the coefficient of the entropy regularizer

H(p), were used during training. We observe that the ker-

nel grouping of respective layers in (i), (ii) and (iii) all con-

verge to a very similar configuration observed in Sec. 5.3,

highlighting the robustness of our method to different ini-

tialisations of p. In case (iv), the learning of p were much

slower than the remaining cases, due to weaker gradients,

SFG-VGG11 SFG-HighResNet

Figure 6: Learned kernel grouping in a) SFG-VGG11 network on

UTKFace and b) SFG-HighResNet on medical scans. The propor-

tions of task-1, shared and task-2 filter groups are shown in blue,

green and pink. Within SFG-VGG11, task-1 age regression and

task-2 is gender classification. For SFG-HighResNet, task-1 is CT

synthesis and task-2 is organ segmentation.

1391



Input

Segmentation

Synthesis

Figure 7: Activation maps from example kernels in the learned task-specific and shared filter groups, G
(l)
1 , G

(l)
2 , G

(l)
s (en-

closed in blue, green and pink funnels) in the first, the second last and the last convolution layers in the SFG-HighResNet

model trained on the medical imaging dataset. The results from convolution kernels with low entropy (i.e. high “confidence”)

of group assignment probabilities p(l) are shown for the respective layers.

and we speculate that a higher entropy regularizer is neces-

sary to facilitate its convergence.

6. Discussion
In this paper, we have proposed stochastic filter groups

(SFGs) to disentangle task-specific and generalist features.

SFGs probabilistically defines the grouping of kernels

and thus the connectivity of features in a CNNs. We

use variational inference to approximate the distribution

over connectivity given training data and sample over

possible architectures during training. Our method can be

considered as a probabilistic form of multi-task architecture

learning [19], as the learned posterior embodies the optimal

MTL architecture given the data.

Our model learns structure in the representations. The

learned shared (generalist) features may be exploited either

(ii)(i)

(iii) (iv)

Figure 8: Effect of the initial values of grouping probabilities p

on the learned kernel allocation after convergence.

in a transfer learning or continual learning scenario. As

seen in [17], an effective prior learned from multiple tasks

can be a powerful tool for learning new, unrelated tasks.

Our model consequently offers the possibility to exploit

the learned task-specific and generalist features when faced

with situations where a third task is needed, which may

suffer from unbalanced or limited training data. This is

particularly relevant in the medical field, where training

data is expensive to acquire as well as laborious. We will

investigate this in further work.

Lastly, a network composed of SFG modules can be

seen as a superset of numerous MTL architectures. De-

pending on the data and the analysed problem, SFGs can

recover many different architectures such as single task net-

works, traditional hard-parameter sharing, equivalent allo-

cation across tasks, and asymmetrical grouping (Fig. 3).

Note, however, that proposed SFG module only learns con-

nectivity between neighbouring layers. Non-parallel order-

ing of layers, a crucial concept of MTL models [24, 29],

was not investigated. Future work will look to investigate

the applicability of SFG modules for learning connections

across grouped kernels between non-neighbouring layers.
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and Ivana Išgum. Deep learning for multi-task medical im-

age segmentation in multiple modalities. In International

Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 478–486. Springer, 2016.

[27] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. Hy-

perface: A deep multi-task learning framework for face de-

tection, landmark localization, pose estimation, and gender

recognition. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 41(1):121–135, 2019.

[28] Clemens Rosenbaum, Tim Klinger, and Matthew

Riemer. Routing networks: Adaptive selection of non-

linear functions for multi-task learning. arXiv preprint

arXiv:1711.01239, 2017.

1393



[29] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and

Anders Søgaard. Latent multi-task architecture learning.

2019.

[30] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-
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