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Abstract

Existing 3D scene flow estimation methods provide the

3D geometry and 3D motion of a scene and gain a lot of

interest, for example in the context of autonomous driving.

These methods are traditionally based on a temporal se-

ries of stereo images. In this paper, we propose a novel

monocular 3D scene flow estimation method, called Mono-

SF. Mono-SF jointly estimates the 3D structure and motion

of the scene by combining multi-view geometry and single-

view depth information. Mono-SF considers that the scene

flow should be consistent in terms of warping the reference

image in the consecutive image based on the principles of

multi-view geometry. For integrating single-view depth in

a statistical manner, a convolutional neural network, called

ProbDepthNet, is proposed. ProbDepthNet estimates pixel-

wise depth distributions from a single image rather than

single depth values. Additionally, as part of ProbDepth-

Net, a novel recalibration technique for regression problems

is proposed to ensure well-calibrated distributions. Our

experiments show that Mono-SF outperforms state-of-the-

art monocular baselines and ablation studies support the

Mono-SF approach and ProbDepthNet design.

1. Introduction

In applications such as mobile robots or autonomous ve-

hicles a representation of the surrounding environment is

utilized, e.g. to fulfill a navigation task. From a computer

vision point of view, the 3D position and motion of a pixel

in the image is denoted as 3D scene flow [59, 60], which is

traditionally estimated based on a temporal series of stereo

images [4, 44, 61]. In this work, we propose a novel scene

flow estimation method, Mono-SF, for a monocular camera

setup focusing on dynamic traffic scenes. Monocular cam-

era systems are often preferred over stereo cameras due to

being more cost efficient and to avoid the effort of calibrat-
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Figure 1. Overview of Mono-SF for monocular scene flow estima-

tion. Mono-SF jointly optimizes the 3D geometry of a set of planes

with the 6D motion of rigid bodies considering a) a photometric

distance by warping the reference image into the consecutive im-

age, b) probabilistic depth distributions provided by ProbDepthNet

and c) scene model smoothness priors.

ing the stereo rig. However, 3D scene flow estimation is an

ill-posed problem in a monocular camera setup. To solve

the ambiguity, previous monocular methods assumed that

the moving objects are in contact with the surrounding en-

vironment [6, 8, 51] or that the scene follows a smoothness

prior regarding surface and motion [36, 46, 66]. These as-

sumptions might be violated and the methods still require

a relative translational motion of the camera to the scene.

In contrast to the multi-view geometry-based approaches,

methods were proposed (e.g. [10,14,19]) that provide depth

estimates from a single image at a reasonable level of qual-

ity. However, single-view depth estimation and multi-view

geometry are mostly tackled as two individual tasks or fused

in a way that is only applicable for static scenes [12,54,71].

Our proposed Mono-SF method combines multi-view ge-

ometry with single-view depth information in a probabilis-

tic optimization framework to provide consistent 3D scene

flow estimates. Thereby, both kinds of information are ex-

ploited and the single-view depth serves to solve the multi-

view geometry-based ambiguity.
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Previous methods [4, 44, 45] showed that a suitable rep-

resentation of particularly traffic scenes is the decomposi-

tion into 3D planar surface elements, each one assigned to

a rigid body. A rigid body is either the background or a

potentially moving object. Following this model, Mono-

SF jointly estimates the 3D geometry of each plane and 6D

motion of each rigid body considering a) the multi-view ge-

ometry by warping the reference image into the consecutive

image, b) probabilistic single-view depth estimates, and c)

scene model smoothness priors (see Fig. 1). Additionally,

an instance segmentation is exploited to detect the set of

potentially moving objects.

As an additional contribution, we propose ProbDepth-

Net, a convolutional neural network (CNN) that estimates

pixel-wise probability depth distributions from a single im-

age rather than just single depth values such as [10, 14, 19].

Whereas the problem of overconfident estimates is a well-

known problem in classification [21], it is typically ignored

in probabilistic approaches for regression [17, 31, 32, 34].

Therefore, we propose a novel recalibration technique: Cal-

ibNet, a small subsequent part of ProbDepthNet, is trained

on a hold-out split of the training data to compensate for

overfitting effects and to provide well-calibrated distribu-

tions.

Our Mono-SF approach is evaluated with respect to sev-

eral state-of-the-art monocular baselines and an ablation

study confirms the importance of the individual compo-

nents of the proposed optimization framework. Further-

more, ProbDepthNet is validated to provide well-calibrated

depth distributions. Our experiments show that several pre-

vious probabilistic approaches suffer from overconfident es-

timates – an effect that could be compensated by adding

our proposed CalibNet for recalibration. The suitability of

ProbDepthNet for integrating single-view depth informa-

tion in Mono-SF is confirmed, especially due to the im-

portance of providing single-view depth information in a

probabilistic and well-calibrated form.

2. Related work

The works related to the approach presented here are

divided into three categories: In the first category are the

stereo-based scene flow methods which inspired our Mono-

SF scene model and optimization framework. The second

category provides an overview of methods for monocular

scene reconstruction comprising the baseline methods. Fi-

nally, the category of probabilistic deep learning represents

works related to the probabilistic design of ProbDepthNet.

Stereo Scene Flow: Scene flow estimation was intro-

duced by Vedula et al. [59, 60] as a joint optimization

of 3D geometry and motion of the scene based on a se-

quence of stereo images. Mostly variational approaches

were used subsequently to extend the scene flow concept

[3,25,29,50,58,64,65]. However, Vogel et al. [61] were the

first that significantly outperformed individual stereo and

optical flow methods on their respective tasks for dynamic

traffic scenes. They represented the dynamic scene as a col-

lection of rigid moving planar surface elements and jointly

optimized the geometry and the motion of each plane con-

sidering scene model priors. Menze et al. [44] formulated

the problem by a set of rigid moving objects and jointly

optimized their motion with the geometry of each plane.

This representation is particularly beneficial if the associ-

ation of planes to objects is supported by an instance seg-

mentation as proposed in [4]. Our Mono-SF model corre-

sponds to these approaches, called object [44] or instance

scene flow [4], but Mono-SF uses only monocular images.

Monocular Scene Reconstruction: Traditionally,

monocular scene reconstruction is based on the structure

from motion (SfM) principle. The SfM-based approaches

can be divided into several categories: First, rigid SfM-

based methods estimate the 3D geometry of a rigid scene

based on its relative motion to the camera, e.g. a static scene

and a moving camera [11, 13, 47, 48, 57]. Second, the non-

rigid SfM principle is typically used to derive the deforma-

tion of a single object [7, 16, 20]. Third, multi-body SfM is

the concept of reconstructing individual moving parts of the

scene separately [36,51]. However, the absolute and relative

scales of the reconstructions are unknown in general. Scene

model assumptions are needed to solve this scale ambiguity,

e.g. that moving objects are in contact with the surrounding

environment [6,8,51] or that the scene follows a smoothness

prior regarding surface and motion [36, 46, 66].

Even though the idea of single-view depth estimation

is by far not new [27, 40, 52], the real breakthrough was

achieved by usage of deep learning methods. Pioneering,

Eigen et al. [10] proposed a CNN that is trained in a su-

pervised manner and estimates the depth in a coarse to fine

scheme. Afterward, various self-supervised and unsuper-

vised approaches were proposed using either an image re-

construction loss in a stereo setup [15, 19] or in a monoc-

ular image sequence [42, 62, 75, 76]. Fu et al. [14] formu-

lated the depth estimation as an ordinal regression problem,

which led to the currently leading approach in the KITTI

depth prediction benchmark as reported by [56]. Multi-

task CNNs that estimate optical flow alongside the depth

were proposed [55, 70, 73, 77]. Thereby, both tasks benefit

from each other by a combined training loss. DeMoN [57]

could also exploit multi-view information for depth estima-

tion during inference. However, it is focused and applied

only to static scenes as it just estimates a single camera mo-

tion for the whole scene.

Whereas single-view depth estimation and multi-view

geometry are mostly taken as individual tasks, a few works

combine both. The single-view depth estimation can be

useful for scale estimation in monocular visual odometry

[2,69,71] or fused with SfM-based depth estimates in static
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environments [12, 54, 71]. Kumar et al. [37] used single-

view depth estimation for depth initialization in a multi-

body or non-rigid SfM-based approach similar to [36].

Brickwedde et al. [5] proposed a fusion of single-view depth

estimates and optical flow to provide a column-wise seg-

mentation in stick-like rigid elements of particularly traf-

fic scenes. In contrast to these methods, Mono-SF is for-

mulated as a scene flow estimation problem and integrates

probabilistic single-view depth distributions instead of sin-

gle depth values.

Probabilistic Deep Learning: The methods of single-

view depth estimation mentioned in the previous section do

not provide an uncertainty measure or probabilistic distri-

bution of the depth estimates. Kendall and Gal [32] distin-

guished two kind of uncertainties, epistemic and aleatoric

uncertainty. Epistemic uncertainty corresponds to the un-

certainty of the model parameters or the ignorance which

model generates the training data, whereas aleatoric un-

certainty refers to noise in the input data [32]. Malinin et

al. [43] extended this definition by introducing the distribu-

tional uncertainty to represent out-of-distribution data. To

estimate the extent of aleatoric uncertainty in a regression

problem, different strategies have been proposed. First, a

probability distribution can be learned by minimizing the

negative log-likelihood on the training data [32, 34]. Sec-

ond, Ilg et al. [31] proposed a single network that is pushed

to estimate a complementary set of hypotheses. Thereby,

the aleatoric uncertainty is encoded by the empirical distri-

bution of these hypotheses. Third, Gast and Roth [17] re-

placed each layer with a probabilistic layer to propagate an

input uncertainty through the network. The ProbDepthNet

method presented here falls under the category of estimating

the aleatoric uncertainty with a single network and single in-

ference such as [17,31,32,34]. For classification problems,

Guo et al. [21] showed that modern neural networks tend to

overfit on the training data, which results in highly overcon-

fident estimates. Recalibration techniques were proposed to

compensate for this effect [21, 35, 49].

3. Method

The monocular scene flow estimation method, Mono-SF,

is designed to combine multi-view geometry with proba-

bilistic single-view depth information in a probabilistic op-

timization framework. First, a CNN, called ProbDepthNet,

providing single-view depth information in a probabilistic

and well-calibrated form is described. Second, the Mono-

SF model and optimization framework are presented.

3.1. Probabilistic SingleView Depth Estimation

To integrate the single-view depth estimates in Mono-SF

in a statistical manner, ProbDepthNet is designed to repre-

sent the uncertainty of each estimate. Thus, the main ob-

jective of ProbDepthNet is not to provide a single depth es-
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Figure 2. Overview of ProbDepthNet for probabilistic single-view

depth estimation. The architecture consists of two parts: Depth-

Net and CalibNet for recalibration (blue). Both parts provide a

parametrized form (µi, si / s̃i and λi / λ̃i) of a mixture of Gaus-

sians. Each part is trained on a different split of the training data

using a negative log-likelihood loss (orange). The ground truth

data is provided by a stereo SGM [26]-based completion of a lidar

point cloud (green).

timate, but to provide a probability density function of the

depth for each pixel p given an input image I . The depth

is encoded by its inverse form d = Z−1, where Z is the z-

coordinate of the 3D-position in camera coordinates. Prob-

DepthNet estimates a pixel-wise probability density func-

tion pp(d | I) parameterized as a mixture of Gaussians:

pp(d | I) =
K
∑

i=1

λi · N (d− µi, σi) (1)

K represents the number of components, λi are the weights,

µi are the mean values, and σi are the variances of the i-th

component. Compared to a single Gaussian distribution, a

mixture model is able to capture more general distributions,

e.g. a multimodal distribution. But, the mixture of Gaus-

sians is more an exemplary choice and other parameteriza-

tions of a probability distribution can be used as well.

Fig. 2 gives an overview of the architecture, training pro-

cess and ground truth generation. ProbDepthNet consists of

two parts: DepthNet and CalibNet. DepthNet is a fully con-

volutional ResNet-50 [24] with skip connections between

corresponding encoder and decoder layers. The outputs

of DepthNet are the parameters of the mixture of Gaus-

sians, whereby the variance is provided in the log-space

si = log σi. Additionally, the variances si and weights λi

of DepthNet are recalibrated by CalibNet, which outputs

the corresponding recalibrated values s̃i and λ̃i. CalibNet

just consists of five 1 × 1 convolutional layers: One layer

without non-linear activation function to provide a scaled

version of the inputs and a residual path with four layers in-

cluding exponential linear units as activation functions. The

number of features of all layers is equal to the number of in-

puts 2K. Both networks are trained on different splits of the

training data to avoid overfitting of DepthNet on the calibra-

tion split. The negative log-likelihood loss L is minimized

2782



during training similar to [32, 34]:

L =
∑

u,v∈ΩGT

[

− log

(

K
∑

i=1

λiN (dGT − µi, σi)

)]

(2)

u, v ∈ ΩGT are all pixels in the image with valid ground

truth depth values dGT and µi, λi, σi are the outputs of the

trained network.

To overcome the limitations of lidar data in terms of den-

sity, range, and field of view, an intermediate fusion based

on stereo images is used for ground truth depth generation.

First, the lidar point cloud is projected to the image and in-

consistent measurements are removed to handle occlusion

problems. Second, these sparse depth maps are completed

considering a photometric distance between the two stereo

images by using an SGM-based approach [26].

ProbDepthNet learns to estimate a pixel-wise depth dis-

tribution by observing the depth distribution during the

training process. Thereby, the depth distribution captures

the aleatoric uncertainty regarding the theory of Kendall

and Gal [32]. The aleatoric uncertainty is considered to

be the most dominant uncertainty in many vision applica-

tions [32]. Our experiments show that CalibNet for re-

calibration is also applicable to different probabilistic ap-

proaches similar to [17, 31].

3.2. Monocular Scene Flow

This section presents the Mono-SF optimization frame-

work, structured as follows: First, the decomposition of the

scene into piecewise planar surface elements and rigid bod-

ies is described. Second, the optimization is formulated as

an energy minimization problem combining a) multi-view

geometry-based photometric distance, b) the probabilistic

single-view depth estimates of ProbDepthNet and c) scene

model smoothness priors. Finally, the inference and initial-

ization of the optimization problem are presented.

Monocular Scene Flow Model: Following previous ob-

ject scene flow approaches [4, 44, 45], the main assumption

is that, in particular, a traffic scene can be approximated by

a set of piecewise planar surface elements to represent the

structure of the scene and a set of rigid bodies to represent

the motion (see Fig. 3). Formally, the reference image is

divided into a set of superpixels each one representing a 3D

plane. Each 3D plane is defined by its normal ni ∈ R
3,

scaled by the inverse distance of the plane to the camera

to encode the 3D position X of each point on the plane by

nT
i X = 1. The set of rigid bodies consists of the back-

ground as well as other traffic participants such as pedestri-

ans or vehicles detected by an instance segmentation. Even

though a pedestrian does not undergo a rigid body motion,

at a certain scale, it can be approximated by its dominant

rigid body transformation as motivated by [45]. Each rigid

body is represented by its 6D motion Tj ∈ SE(3). Addi-

6D motions Tj of rigid bodies 3D normals ni of planes

Figure 3. Variables of Mono-SF model and energy minimization

problem are the 6D rigid body motions Tj of moving objects (col-

ored in the left image) and the background as well as the 3D scaled

normals ni of superpixel planes (boundaries in the right image).

tionally, each superpixel is associated with one rigid body

and with the pixels Ri of the corresponding superpixel.

Energy Minimization Problem: The main idea of

Mono-SF is that the scene geometry and motion should be

consistent in terms of warping the reference image I0 in

the consecutive image I1 and consistent to the depth distri-

butions p(d | I0) and p(d | I1) provided by ProbDepthNet.

Formally, Mono-SF jointly optimizes the 6D motion of each

rigid body Tj and 3D normal of each plane ni as an en-

ergy minimization problem. The energy term E consists of

unary data terms Φ(p0,ni,Tj) for each pixel p0 and pair-

wise smoothness terms Ψ(ni,nj) for each two planes nk

and nl adjacent in the image k, l ∈ N :

E =
∑

ni

∑

p0∈Ri

Φ(p0,ni,Tj) +
∑

k,l∈N

Ψ(nk,nl) (3)

Tj is the rigid body corresponding to the plane ni.

The unary terms Φ(p0,ni,Tj) consist of two parts.

First, Φpho(p0,ni,Tj) minimizes an appearance-based

photometric distance between pixel p0 and its projected po-

sition in the consecutive image. Second, Φsvd
t (p0,ni,Tj)

prefers a 3D position consistent to the estimated depth prob-

abilities of ProbDepthNet at time t = 0 and t = 1:

Φ(p0,ni,Tj) = Θ0 Φpho(p0,ni,Tj)

+ Θ1

∑

t∈{0,1}

Φsvd
t (p0,ni,Tj) (4)

The terms are weighted by Θ0 or Θ1, respectively. The

photometric distance Φpho(p0,ni,Tj) rates the similarity

of the two corresponding image positions p0 and p1 as the

hamming distance of their respective 5× 5 Census descrip-

tors [74] truncated at τ0. The corresponding image coordi-

nates p1 in the second image I1 are defined by a homogra-

phy [22] considering the 3D normal ni and the motion of

the corresponding rigid body Tj :

p1 = K(Rj − tjn
T
i )K

−1p0 (5)

Rj and tj is the decomposition of Tj into rotation matrix

and translation vector. K is the intrinsic camera matrix.

The term Φsvd
t (p0,ni,Tj) rates the consistency of the

depth of pixel p0 based on the ProbDepthNet estimates.
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Whereas the depth d0(p0,ni) at time t = 0 is directly de-

fined by the corresponding scaled normal vector ni, the mo-

tion of the corresponding rigid body Tj needs to be consid-

ered to derive the depth d1(p0,ni,Tj) at time t = 1. Both

depth values are rated by the negative log-likelihood of the

probability provided by ProbDepthNet for their respective

image It and image coordinate pt:

Φsvd
t (p0,ni,Tj) = − log ppt

(dt(p0,ni,Tj) | It) (6)

The image coordinates p1 are again defined as in Eq. (5).

The previous data terms include the single-view depth

information and multi-view geometry-based photometric

distance. Additionally, scene model priors are integrated

similar to [44] as pairwise smoothness terms Ψ(nk,nl) pre-

ferring a smooth structure in terms of depth Ψd(nk,nl) and

orientation Ψori(nk,nl), each part weighted by Θ2 or Θ3:

Ψ(nk,nl) = Θ2Ψ
d(nk,nl) + Θ3Ψ

ori(nk,nl) (7)

For each shared boundary pixel p0 ∈ Bk,l of plane nk and

nl, a difference in depth is penalized:

Ψd(nk,nl) =
∑

p0∈Bk,l

min (|d0(p0,nk)− d0(p0,nl)|, τ1)

(8)

Analogously, a smooth orientation of planes adjacent in the

image is preferred by measuring the similarity of the normal

vectors nk and nl:

Ψori(nk,nl) = min

(

1−
|nknl|

||nk||||nl||
, τ2

)

(9)

Both smoothness terms are truncated by τ1 or τ2 to regard

discontinuities in the depth or orientation, for example be-

tween different objects. The hyper-parameters Θ and τ are

defined differently according to the rigid body type, back-

ground or object, and differently for adjacent planes be-

longing to different rigid bodies. These dependencies are

neglected in the previous equations for ease of reading.

Inference: The scene flow estimation is formulated as

the energy minimization problem in Eq. (3). Assuming a

suitable initialization, that will be discussed in the next sec-

tion, an iterative optimization approach can be applied. Fol-

lowing the proposed optimization of the object scene flow

methods [4, 44], particle max-product belief propagation is

used for 10 iterations with 5 particles for each 6D rigid body

motion and 10 particles for each 3D normal vector.

Initialization: The optimization problem needs a suit-

able initialization of all variables. In the first step, the

set of rigid bodies is initialized including their scale-aware

6D motions. Traditionally, the known camera height or

an additional inertial measurement unit is used for scale-

aware monocular visual odometry in the automotive do-

main. However, this only provides scale information for

the camera ego-motion. The key idea applied here is to in-

tegrate single-view depth information to provide the metric

scale. In contrast to [2, 69, 71], we apply this idea addi-

tionally for scale-aware pose estimation of moving objects.

First, object instances in the images I0 and I1 detected by

a Mask R-CNN [23] (implementation of [63]) are paired

based on sparse flow correspondences (pi
0,p

i
1) [18] using

a simple voting scheme. Each object instance, as well as

the background, builds a rigid body. Second, the 6D motion

Tj ∈ SE(3) of each rigid body is optimized jointly with a

set of 3D points Xi ∈ X (one for each flow correspondence

lying in the corresponding instance masks) by minimizing

∑

Xi∈X

∑

t∈{0,1}

Θ4Φ
proj
t (pi

t,Xi,Tj)+Φsvd
t (Xi,Tj). (10)

Φproj
t (pi

t,Xi,Tj) is the reprojection error of Xi with re-

spect to the flow-based image positions pi
t weighted by Θ4.

Φsvd
t (Xi,Tj) rates the consistency of the 3D points Xi to

the ProbDepthNet estimates analogously to Eq. (6). The

energy term of Eq. (10) is optimized using the Levenberg-

Marquardt solver implemented in [38].

Subsequently, the set of 3D planes is initialized. First,

a dense depth map is computed based on a semi-global

matching adapted to the monocular case similarly to [1,67].

Again, the depth estimates are additionally rated by the

ProbDepthNet estimates. Second, the superpixels includ-

ing their 3D normal ni are initialized using the approach

in [68]. The pixels of a plane are enforced to be of the same

instance to get a unique association with a rigid body.

4. Experiments

In the first part of this section ProbDepthNet is analyzed:

Qualitative results of ProbDepthNet are shown, the gener-

alization capabilities to other datasets are presented and an

ablation study confirms the importance of the recalibration

technique to provide well-calibrated distributions. In the

second part, the Mono-SF optimization framework is eval-

uated by showing qualitative results and a quantitative eval-

uation with respect to several state-of-the-art methods. Ad-

ditionally, two ablation studies confirm the claimed Prob-

DepthNet design for Mono-SF and support the importance

of the individual components of Mono-SF.

4.1. Probabilistic SingleView Depth Estimation

The experiments are conducted on a ProbDepthNet

model trained for the KITTI scene flow training set [45].

The model is trained on 33 sequences of the KITTI raw

dataset that are not part of the scene flow set. Around 75% /

25% of the sequences are used for training DepthNet / Cal-

ibNet. It is trained for 15 epochs using Adam optimizer [33]

with a learning rate of 10−4 halved every 5 epochs and a

small batch size of 4. The input images are scaled to a size
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Image Ground truth depth Mean depth µ0 Variance s0 Recalib. variance s̃0

Figure 4. Exemplary estimates of ProbDepthNet on KITTI scene flow set [44] for the first component of the mixture of Gaussians excluding

the weight. The color encodes the inverse depth from close (red) to far (blue) or high variance (red) to low variance (blue).

Figure 5. Generalization of ProbDepthNet (trained on KITTI) on

Cityscapes [9] (top) and central crop of Make3D [53] (bottom).

The figure shows the estimates based on the left image in the

form of the mean depth values µ0 (middle) and recalibrated log-

variances s̃0 (right) of the first component.

of 512×256 and a mixture of Gaussians with 8 components

is used.

Fig. 4 shows exemplary the output of ProbDepthNet.

The variances visually correlate with challenging parts of

the scene such as object boundaries or poles. The estimated

recalibrated variances s̃0 provided by CalibNet are signif-

icantly higher than the variances s0. The generalization

capabilities of ProbDepthNet trained for KITTI are visu-

alized by the qualitative results on the Make3D [53] and

Cityscapes [9] dataset in Fig. 5. Please see the supplemen-

tary material for more qualitative results and discussions.

The following ablation study analyzes the proposed re-

calibration by adding the CalibNet trained on a hold-out

split. Our proposed training by minimizing the negative log-

likelihood (NLL) is related to the approach in [32]. But, to

provide a comparison of different probabilistic approaches,

the DepthNet part is also trained using a multi-hypothesis

strategy (’Hypo [31]’) similar to [31] or transformed to its

’assumed density filtering’-counterpart (’ADF [17]’) as pro-

posed by [17]. Fig. 6 shows the mean NLL on the KITTI

scene flow set (which is not part of the training data) every

1000 training steps. In the bottom plot of Fig. 6, the cali-

bration of the final models is evaluated. The frequency of

ground truth depth values inside a given interval should be

the same as the cumulative probability of the estimated dis-

tribution. The impact of overfitting effects varies among the

different approaches – but all approaches suffer from such

an effect and provide overconfident estimates. Furthermore,

CalibNet is validated as an useful recalibration technique

applicable to different probabilistic approaches.

For integration in Mono-SF, a model is additionally pre-

trained on Cityscapes [9]. Compared to previous non-

probabilistic methods for single-view depth estimation such

as [14, 19, 39], the main benefit of ProbDepthNet is pro-

viding well-calibrated depth distributions. However, in

addition to correct uncertainties, the underlying estimates

should have sufficient quality as well. A quantitative eval-

uation (see supplementary material) shows that the accu-

racy of the depth estimates represented by the total means

of the distributions is comparative to [19, 39] and slightly

below [14].

4.2. Monocular Scene Flow

Mono-SF estimates the 3D scene flow from monocular

images focusing on dynamic traffic scenes, which means

providing the 3D position and 3D motion of each pixel. The

following results and evaluations are based on the equiva-
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Figure 6. Top: Mean negative log-likelihood (NLL) of ProbDepth-

Net on the KITTI scene flow set over the training process; Bottom:

Calibration plot comparing the frequency of ground truth depth

values lying in a given confidence interval. This frequency is equal

to the confidence interval for a perfect calibrated model (dotted

line). By including CalibNet for recalibration the overfitting effect

is compensated and a better calibrated model achieved.
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Figure 7. Exemplary qualitative results of monocular scene flow estimation methods on the KITTI scene flow training set [44]. The top

row of each scenario shows the depth values at time t = 0 (left half) and t = 1 (right half) colored from close (red) to far (dark blue). The

optical flow is visualized in the bottom row of each scenario. The ground truth is interpolated for visualization purposes.

Method MRE
D1 D2 Fl SF

bg fg all bg fg all bg fg all bg fg all

GeoNet [73] 20.08 47.03 63.41 49.54 56.25 68.82 58.17 32.43 67.69 37.83 67.69 91.41 71.32

DF-Net [77] 18.95 44.43 57.94 46.50 61.55 61.47 61.54 25.66 37.45 27.47 71.63 82.52 73.30

EveryPixel [70] - 23.62 27.38 26.81 - - - 25.34 28.00 25.74 - - -

MirrorFlow [30] + LRC [19] 9.06 25.33 19.83 24.49 35.83 26.15 34.34 9.40 14.22 10.14 40.55 35.17 39.73

HD3-F† [72] + DORN† [14] 11.18 17.02 37.54 20.16 30.08 40.47 31.67 4.01 6.76 4.43 32.57 46.89 34.76

DMDE [51] 14.6 - - - - - - - - - - - -

S. Soup [36] 12.68 - - - - - - - - - - - -

MFA [37] 11.82 - - - - - - - - - - - -

Mono-Stixels [5] 8.04 18.28 22.06 18.86 22.00 31.19 23.41 9.84 14.36 10.54 24.03 39.13 26.34

Mono-SF (ours) 8.14 15.64 22.72 16.72 17.93 24.71 18.97 12.20 9.90 11.85 20.19 29.40 21.60

MRE: mean relative depth error at t=0 (capped at 50m); D1 and D2: disparity errors at t=0,1; Fl: optical flow errors; SF: scene flow errors

fg: foreground (moving) ; bg: background (static); all: bg + fg ;†: parts of dataset used for training (disregarded for ranking); errors are in percent

Table 1. Quantitative evaluation of monocular scene flow methods on the KITTI scene flow training set [45]. The methods are divided into

four groups: First, multi-task CNNs; second, combining optical flow and single-view depth estimation as individual tasks; third, multi-body

or non-rigid SfM-based approaches; fourth, fusing single-view depth information with multi-view geometry.

lent representation as the depth of each pixel at both times

(t = 0, t = 1) and the optical flow. Thereby, the 3D position

and the ability of the approaches to predict a 3D point from

t = 0 to t = 1 based in its 3D motion is evaluated. Ex-

emplary qualitative results of Mono-SF are shown for the

KITTI [45] (see Fig. 7) and Cityscapes dataset [9] (see Fig.

8). Please see the supplementary material for further results.

The quantitative evaluation is based on the KITTI scene

flow dataset [45], which reports the frequencies of errors for

the depth at time t = 0 (D1) and t = 1 (D2) and the optical

flow (Fl). An estimate is considered as an error if it exceeds

Figure 8. Exemplary qualitative result of Mono-SF on a crop of

Cityscapes (removing car hood); left: first input image, middle:

estimated depth values at time t = 0 (left half) and t = 1 (right

half), right: estimated optical flow

a threshold of 3 pixels and 5% in terms of stereo disparity

or optical flow endpoint error. Furthermore, an estimate is

only defined as a valid scene flow estimate (SF) if it fulfills

all the D1, D2, and Fl metrics. All metrics are evaluated

separately for moving objects (fg), the static scene (bg) and

both combined (all).

We propose four categories of state-of-the-art monocu-

lar baseline methods. In the first category are the multi-task

networks, GeoNet [73], DF-Net [77] and EveryPixel [70].

These CNNs are trained in an unsupervised manner and are

able to provide single-view depth estimates for both images

and optical flow estimates. For the GeoNet and DF-Net,

their published code and models are used. The results of

the EveryPixel approach are stated in their paper [70] (D2

metric is excluded as it seems to be inconsistent). As a

second category, single-view depth estimation (’LRC [19]’

or ’DORN [14]’) and optical flow estimation (’MirrorFlow

[30]’ or ’HD3-F [72]’) are combined as individual tasks.

Due to the fact that the published models of ’DORN [14]’
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Method D1-all D2-all Fl-all SF-all

UberATG-DSSF [41] 2.55 4.04 4.73 6.31

ISF [4] 4.46 5.95 6.22 8.08

SGM [26] + SF [28] 6.84 15.60 21.67 24.98

Mono-SF 16.32 19.59 12.77 23.08

Table 2. Results of Mono-SF on the KITTI scene flow test set com-

pared to some stereo-based scene flow estimation methods.

and ’HD3-F [72]’ used parts of the dataset for training,

these methods are disregarded for ranking. The third group

comprises the multi-body or non-rigid SfM-based methods

DMDE [51] and S.Soup [36]. The fourth category consists

of the methods MFA [37], Mono-Stixel [5] and our Mono-

SF approach, which are methods that fuse single-view depth

information with multi-view geometry. DMDE, S.Soup,

and MFA were only evaluated on its depth estimates capped

at 50m using a mean absolute relative error (MRE). For the

Mono-Stixel approach, the authors provide us the results on

a scene flow metric using MirrorFlow [30] and LRC [19] as

inputs. The results of the quantitative evaluation are shown

in Table 1. To the best of our knowledge, it is the first

time that these methods are evaluated and compared as a

scene flow estimation problem. The results show that the

methods of the fourth group that combine single-view depth

and multi-view geometry outperforms the other methods.

Mono-SF shows the best rating on most of the metrics and

especially outperforms previous methods on the scene flow

(SF) metrics. The approach and implementation of Mono-

SF is currently not focused on runtime and needs around

41 seconds per image on a single CPU-core. Mono-SF was

also submitted to the KITTI scene flow benchmark (see Ta-

ble 2). Mono-SF is the first monocular method and would

have been ranked at the 13th place with respect to the 21

published stereo scene flow methods.

4.3. Ablation Studies

To analyze the importance of the proposed ProbDepth-

Net design, the results of four Mono-SF variants based on

different single-view depth estimations are provided in Ta-

Method D1-all D2-all Fl-all SF-all

Mono-SF (LRC [19]) 22.36 26.29 15.10 30.96

Mono-SF (w/o prob. depth) 25.49 28.80 15.04 33.59

Mono-SF (w/o recalib.) 20.32 23.37 15.50 26.91

Mono-SF 16.72 18.97 11.85 21.60

Table 3. Ablation study on ProbDepthNet for Mono-SF. For in-

tegrating single-view depth information, ProbDepthNet is more

suitable than LRC for single-view depth estimation (improvement

over ”(LRC [19])”); especially due to the importance of providing

single-view depth estimates in a probabilistic (improvement over

”(w/o prob. depth)” ) and well-calibrated form (improvement over

”(w/o recalib.)”) for Mono-SF.

Energy terms Results

Φpho Φsvd Ψ D1-all D2-all Fl-all SF-all

- - - 18.72 21.30 15.18 25.92

X - - 21.20 23.41 13.85 26.11

X X - 18.65 21.10 13.31 23.67

X X X 16.72 18.97 11.85 21.60

Table 4. Ablation study on Mono-SF approach. Using the

Mono-SF optimization improves the scene flow estimation com-

pared to its initialization (denoted by the row without check-

mark). Each term of the energy minimization problem (photo-

metric distance(Φpho), single-view depth (Φsvd) and smoothness

prior (Ψ)) contributes to the final performance.

ble 3. The two Mono-SF variants ”Mono-SF (LRC [19])”

and ”Mono-SF (w/o prob. depth)” utilized CNNs that pro-

vide only single-view depth values instead of depth distribu-

tions. Whereas ”Mono-SF (LRC [19])” is based on the LRC

method for single-view depth estimation, ”Mono-SF (w/o

prob. depth)” is based on the non-probabilistic estimates of

ProbDepthNet represented by the total means of the distri-

butions. The depth values are integrated by assuming the

same Gaussian distribution (determined on a test set) for all

pixels. Mono-SF based on the probabilistic ProbDepthNet

(”Mono-SF”) outperforms both. This supports the claimed

ProbDepthNet design to provide single-view depth esti-

mates in a probabilistic form. Furthermore, the improve-

ments compared to a variant based on the ProbDepthNet

excluding CalibNet ”Mono-SF (w/o recalib.)” support that

the recalibration technique is an essential component.

In Table 4, the individual components of the Mono-SF

optimization framework are analyzed by removing some

parts of the proposed energy minimization problem (set-

ting their weights to zero). The initialization of Mono-SF

described in Sec. 3.2 is denoted by the row without check-

marks. Compared to this initialization, the scene flow for-

mulation of Mono-SF results in further improvement. Ad-

ditionally, the ablation study shows that each part of the en-

ergy term contributes to the final performance; the multi-

view geometry, the single-view depth information and the

scene model smoothness priors.

5. Conclusion

In this paper, we proposed Mono-SF for joint estima-

tion of the 3D geometry and motion of particularly traffic

scenes by combining multi-view geometry with single-view

depth information. For a sensible statistical integration, we

showed the importance of providing single-view depth in-

formation in a probabilistic and well-calibrated form, which

is made possible by our proposed ProbDepthNet including

a novel recalibration technique.
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