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Abstract

Fisheye cameras are notoriously hard to calibrate us-

ing traditional plane-based methods. This paper proposes

a new calibration method for large field of view cameras.

Similarly to planar calibration, it relies on multiple images

of a planar calibration grid with dense correspondences,

typically obtained using structured light. By relying on the

grids themselves instead of the distorted image plane, we

can build a rectilinear Generic Virtual Central (GVC) cam-

era. Instead of relying on a single GVC camera, our method

proposes a selection of multiple GVC cameras which can

cover any field of view and be trivially aligned to provide

a very accurate generic central model. We demonstrate that

this approach can directly model axial cameras, assuming

the distortion center is located on the camera axis. Exper-

imental validation is provided on both synthetic and real

fisheye cameras featuring up to a 280◦ field of view. To our

knowledge, this is one of the only practical methods to cal-

ibrate axial cameras.

1. Introduction

Fisheye lens calibration is a type of calibration which

is becoming very common since the emergence of low

cost high quality fisheye lenses for applications such as

immersive imaging as well as industrial and automotive

applications. These lenses can feature very large fields of

view (FoV). Modern fisheyes can see as much as 280◦ (see

Fig. 7), with large amount of radial distortion and signif-

icant axial displacement of the optical center, essentially

making them non-single viewpoint, which do not com-

ply with standard lens models [5, 16]. Simple OpenCv

tools fail completely at calibrating these kinds of cameras

and current methods are either planar and limited to 180◦

or non-planar which makes them impractical. This pa-

per proposes a calibration method adapted to these kinds

of lenses, which are described as generic axial cameras.

We tackle a slightly more constrained version of the axial

model, which we identify as Generic Quasi-Central cam-
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Figure 1: Central and Axial models. In the fisheye im-

age (left), points at increased radius r correspond to in-

creased ray angles α in a central camera (middle) as well

as increased center displacement dz in a quasi-central

camera (right).

era.

Similarly to traditional planar calibration, the new

method makes use of multiple dense correspondences of

planar grids. It is known that a grid can be used as a

virtual image to build a Generic Virtual Central cameras,

which is free of distortion [2]. We propose to build mul-

tiple such virtual cameras, then calibrate and align them

to provide an accurate solution to the full central camera

model.

In order to recover the axial displacement of the opti-

cal center, an approach is presented for the generalization

of the generic central model into the quasi-central model.

This approach also relies on multiple GVC models, con-

firming their high accuracy. The paper is organized as

follows. In Section 2, previous work and generic camera

models are presented. The Generic Quasi-Central camera

model is presented in Section 3. The calibration method

for multiple Generic Virtual Central cameras is presented

in Section 4, followed by experimental validation and re-

sults in Section 5.

2. Previous Work

There has been a lot of work on the calibration of fish-

eye lenses [7, 18]. Most of this work relies on global

single viewpoint models. In this paper, the focus is on
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generic and non-single viewpoint models.

Camera models can be divided in various ways. One

of such way is to classify models according to how broad

the impact of a set of parameters is in the image. The

broader the impact the more global a model is. In this

way, models can be classified as global, local and dis-

crete classes. Discrete models are models where each

individual pixel of the image requires its individual pa-

rameters. One such model is the ray-based model where

it is required to explicitly represent each ray of a camera

[18]. In this way, the generic imaging model as defined

in [9, 17] is a discrete ray-based model where the cam-

era captures images defined as a set of individual pixels

each associated to a single ray of light in the 3D world.

This unconstrained set of projection rays, each with its

own direction and position in 3D, and associated image

pixels, constitute the camera model and the expected re-

sult for the calibration algorithm [9, 15]. One possible

calibration method is to solve 3D points along projection

rays using 3D calibration objects. In the case of unknown

pose of the calibration object, it is possible with 3 views

of the object to solve a system of linear equations for the

unknown poses and the projection rays in the case of a

generic non-central camera. This system relies only on

the collinearity constraints of points between the three

views [9, 17]. The term non-central refers to the fact that

the projection rays are unconstrained. Depending on the

spatial distribution of the projection rays, a hierarchy of

camera models emerges. Three of them are: central cam-

eras where all projection rays intersect a single point (the

optical center), axial cameras where all projection rays

intersect a single line (the camera axis), and non-central

cameras where the projection are entirely unconstrained

[9, 15].

2.1. Generic Central Cameras

In the case of generic central cameras, calibration us-

ing planar calibration grids was demonstrated to work in

practical cases [1, 8]. Using three calibration grids that

are dense, the optical center as well as the pose of all

three grids are solved. A 183◦ field of view fisheye camera

was successfully calibrated using a total of 12 calibration

grids to cover the whole field of view [8]. It is shown that

a minimum of four points each matching three planes are

required to solve plane poses. Furthermore, the linear

equation system relies on collinearity of matching projec-

tion rays as well as cheirality (solved 3d points are located

on the same side of the optical center) [8]. Our approach

requires two planes per match, its linear system is more

straightforward, and can generalize to axial models.

An example of image undistorsion is provided in [1] by

intersecting a single plane with the previously computed

projection rays. With a lens of only 60◦ FoV, the camera is

probably very close to central, and its comparison to our

axial and large FoV examples is not applicable.

The concept of using a grid as a virtual image for the

purpose of a rectilinear planar calibration has been pro-

posed in [2]. Once a grid is selected as the virtual image,

if can be calibrated with all other grids, effectively provid-

ing the pose of all grids. However, using a single virtual

image is limited to grids inside a small FoV. All grids not

included must have their pose solved separately with an

alternate algorithm which tends to be unstable and ac-

cumulate errors toward the edge of the FoV. This limita-

tion is removed in our approach by introducing multiple

generic virtual cameras and allows any field of view to be

calibrated, up to a full sphere.

2.2. Generic Axial Cameras

In the context of generic axial cameras, calibration us-

ing planar calibration grids was demonstrated to work on

simulated data [9, 11]. In this model, one has to solve for

the camera axis and the poses of all grids. To establish the

trifocal tensor to be solved, each image point must match

three calibration grids and satisfy additional constraints:

the camera axis must intersect all the projection rays, and

the principal point, located at the distortion center, must

be known to allow a prealignment of the planes. Sub-

sequently, a bundle adjustment is used to minimize the

distance between 3D points and their projection on their

respective projection rays[11]. In the case of the spheri-

cal catadioptric camera, even though this camera seems

to be axial, the solved rays are distributed in a very small

region approximated as the optical center. The resolved

poses seem to show some inconsistencies with the actual

sequence of capture [10].

2.3. Dense planar correspondences

Calibration of generic cameras, since they are ray-

based, require dense matches between the image and cal-

ibration grids. In practice, dense correspondences can be

obtained by interpolating positions from closely spaced

targets [8, 17], or structured light matching on a flat LCD

monitor [1, 3, 12, 13]. The correspondences are provided

in the form of a lookup table, where each pixel (u, v) of

the fisheye image provides a match (x , y) on the planar

grid. As illustrated in Fig. 2, (x , y) matches are repre-

sented as red and green, respectively. Blue is used as a

mask.

3. Generic Quasi-Central Cameras

The goal of our method is to calibrate the generic ax-

ial model, as defined in [11], but this model is under-

constrained. It allows a single 3d point to have two or

more rays projecting to the image, making it impossible

to inverse the image formation model. In [14], the term
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Figure 2: Examples of dense correspondence maps of pla-

nar grids obtained with structured light. In the 16-bit im-

age, red and green encode x and y coordinates, respec-

tively.

quasi-central is introduced for models where light rays

intersect near a single optical center, as a way to approx-

imate non-central cameras with central cameras.

In this paper, the term quasi-central defines a model

where camera rays intersect on a common camera axis,

and where the displacement along this axis is a mono-

tonic function of the ray angle with the axis. This ensures

the convergence of our projection model as well as the

inversibility of the image formation model. The quasi-

central model, depicted in Fig. 1(right), is thus some-

where between central and fully axial and applies to real

fisheye cameras.

3.1. Image Formation Model

A generic axial camera model can be represented as a

lookup table (LUT) assigning to each fisheye image posi-

tion (u, v) a projection ray with parameters (α,β , dz). As

illustrated in Fig. 3, the relationship between (u, v) and

the ray (α,β , dz) is simple. A central camera features

dz = 0 while an axial or quasi-central camera provides

an additional parameter dz, the vertical displacement of

the optical center, which more accurately represents real

fisheye lenses. A quasi-central camera requires a mono-

tonic relation between dz and α, and full axial camera

has no restriction on dz.

Typically, an equidistant fisheye has r∝ α, and a rec-

tilinear lens has r∝ tanα. Our model does not enforce a

particular relationship between r and α or dz as it relies

on a LUT to explicitly store individual ray information.

Furthermore, it does not impose radial symmetry around

the principal point.

As illustrated in Fig. 3, the projection of a world point

(x , y, z) to a camera ray (α,β , dz) is

(α,β , dz) = M(u, v)

(u, v, dz) = M−1(α,β)

(α,β) = f (x , y, z)

(u, v, dz)k = FP
k=0,1,...

�

�

�

�

M−1( f (x , y, z)) k = 0

M−1( f (x , y, z − dzk−1)) k > 0

(1)

Figure 3: Generic quasi-central model. The projection ray

of a 3D point p = (x , y, z) is represented as (α,β , dz). We

have (α,β) = f (x , y, z − dz).

where M is the image formation model, M−1 is its inverse,

f is the projection model such that

(α,β) = f (x , y, z) = (Θ(〈x , y, z〉 , 〈0,0, 1〉),

Θ(〈x , y, 0〉 , 〈1,0, 0〉))
(2)

and FP is the fixed point function starting at k = 0 which

iterates until the result stops changing. We define Θ(a,b)

as the angle between vectors a and b. Notice that for a

central camera, dz is always 0 so the iteration stops at

k = 0. For quasi-central, dz is unknown so it is initialized

at 0. Its value will converge to the correct dz, and thus

the correct (u, v) in the image, after a few iterations, as-

suming dz is a monotonic function of α. This assumption

is realistic in practice for real lenses.

4. Calibrating multiple GVC cameras

Fig. 4 illustrates generic central and non-central cam-

era models, where the image plane is non-planar to rep-

resent radial distortion. These models are incompatible

with a linear planar calibration approach. As seen at the

right of Fig. 4, [2] proposes to use one of the calibration

grids, here depicted in red, as a virtual image plane, which

we refer to as a Generic Virtual Central camera.

Instead of solving a single GVC for a full fisheye as

in [2], we propose to use multiple GVC cameras, each

using a minimal number of calibration grids, to represent

the full generic central camera. This central camera cal-

ibration serves as the basis for the generalization to the

generic quasi-central model.

4.1. Planar calibration for GVC model

As described in [2], active grids provide dense corre-

spondence maps for the purpose of calibration. Given

three grids, it is possible to find their respective poses us-

ing planar calibration [19]. Fig. 5 illustrates this for three
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Figure 4: Left) Generic Non-Central camera. Middle)

Generic Central camera (rays intersect at optical center).

Right) Generic Virtual Central camera, where the plane

in red takes the role of a virtual image plane.

Figure 5: Calibration grid C0 will act as the image plane

in a planar calibration step with checkerboards C1 and C2,

yielding the pose of C1 and C2 and the internal parameters

(K) for C0.

grids C0, C1 and C2, from which C0 is designated virtual

image. Notice that it is important to ensure that the rel-

ative pose of a grid with respect to the virtual image is

never a pure translation, as this would yield a degenerate

configuration and a failed calibration [6].

From the homographies relating C0 to C1 and C2, pla-

nar calibration will provide the pose of C1 and C2 as well

as the internal parameters K0. Assuming the camera is

central, grid C0 shares its optical center with the real cam-

era, but has its own pose in the world. Because it features

a known pixel ratio and size, we can derive its pose from

the internal parameters of K0, which is of the form

K0 =





f 0 cx

0 f cy

0 0 1



 (3)

Because the projection model assumes that the optical

center is at the origin of the world (0,0, 0)⊤, we can in-

fer its origin to be at (−cx ,−cy , f )⊤ and its orientation

aligned with the world.

4.2. Grouping grids into GVC

In this planar calibration scheme, three planes are the

minimum required as one of them is the virtual image

plane and the two others define the homographies. More

planes could be used, as it is the case in [2], but one

must realize that rectilinear cameras are not well defined

at large field of views (and certainly cannot reach 180◦

FoV), even without radial distortion. Moreover, it is most

probable that grids oriented closer to the far edges of the

fisheye FoV will have few correspondences with the vir-

tual image plane, making the homography unstable. This

is why we propose to always use three planes for a GVC

model, and then solve multiple GVC models which are

subsequently aligned together. This ensures optimal pla-

nar calibration with reasonable FoV for each GVC camera,

while allowing very large FoV once grouped together.

The correspondence maps need to be separated into

triplets and some correspondence maps must be part of

more than one triplet. In order to do that, we construct

a fully connected graph between every correspondence

map and every other correspondence map were the edge

weights are the negative number of matching correspon-

dences between both maps. Subsequently, this graph can

be reduced by taking its minimum spanning tree. The

plane with the most edges (or number of matches in the

case of a tie) is determined as the global reference plane

and is marked as a visited node. From the global refer-

ence plane, two neighboring nodes are selected and this

triplet of calibration planes is assembled. The selected

nodes are then marked as visited. In further iterations,

each new triplet needs to count one visited and two un-

visited neighbors. Each new visited node is marked as

such. Special cases can happen, most notably when a vis-

ited node has only a single unvisited neighboring node.

In such a case, the triplet will be composed of the visited

node, the unvisited neighboring node and a previously

visited neighboring node. In this way, all triplets of planes

are assembled into a collection of GVC cameras which are

then calibrated independently. For each triplet, any grid

can be used as the virtual image plane with the one ex-

ception being the first triplet where the global reference

plane needs to be the virtual image.
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Figure 6: Principal point alignment. Left) The optical axis

of the GVC is not aligned with the fisheye axis. Right) The

principal point allows to align the GVC axis.

4.3. Merging multiple GVC cameras

By calibrating all GVC cameras independently, we ob-

tain the positions and orientations of all the grids but in

their respective GVC triplet reference. Some planes be-

long to more than one triplet and were calibrated multi-

ple times thus have multiple poses. Since each plane has

only a single pose in the world, they can be rigidly moved

into alignment. The reference systems are merged using

only these planes as landmarks, not their centers of pro-

jection. This provides a way to align all triplets in the

world. For a central camera, the multiple centers of pro-

jections will be a single point. For a quasi-central camera,

each center of projection will be axially displaced along

the camera axis, as each relates to a local region of the

FoV. After the merge, a single grid is kept as the reference

plane. The optical axis of the merged GVC camera is not

yet defined in that reference system. Although, the dis-

placement of the centers of projection describes the cam-

era axis, in practice these displacements are small, even

nonexistent for a central camera, they are not reliable to

estimate the camera axis. Finding this axis is addressed

in the following section.

4.4. Aligning with the Principal point

By finding the center of distortion, it is possible to align

the optical axis of the merged GVC camera to the optical

axis of the fisheye camera. This point could be different

than the principal point [4], but in practice we consider

them to be the same [19].

The center of distortion is defined as the point in the

fisheye camera with the least distortion, where straight

lines in the world should remain straight in the camera

image, as illustrated in Fig. 6. We find the center of distor-

tion by locating straight lines in the fisheye image which

correspond to collinear matches in their planar grid. The

Figure 7: Left) Entaniya 280◦ Fisheye Lens mounted on a

GoPro HERO 4. Right) Recovered poses of the calibration

grids around the fisheye. Notice the near and far sets of

planes.

merged GVC camera is then rotated such that the virtual

principal point, corresponding to the fisheye image prin-

cipal point, lies on its Z-axis. In theory, this alignment is

not absolutely necessary, except to simplify the represen-

tation of radial symmetry and axial displacement.

4.5. Generalizing to quasi-central camera model

For the axial fisheye cameras, the above method has a

severe weakness because homographies assume that all

rays intersect at a single point. In the case of axial cam-

eras that is in fact false, since there will be multiple opti-

cal centers distributed along a common axis. In this situ-

ation, the homographies will in fact provide a single op-

tical center representing the average of all these optical

centers.

In order to generalize from central to quasi-central,

an optimization procedure is devised. Let us consider

the poses of the planar calibration grids Ci : (Ri ,Ti) and

the calibration grid set defined as Π =
�

C1, . . . , Cn

	

. For

given coordinates (u, v) in the fisheye camera image, the

3D point pi
u,v

located on plane i corresponding to the

fisheye image point (u, v) is extracted directly from the

lookup tables LU T i(u, v).

In this way the 3D point in the world centered around

the optical center is defined as

qi
u,v
= Rip

i
u,v
+ Ti (4)

This leads on to defining a line between two points i and

j such as

L i, j
u,v
=
¬

qi
u,v

,q j
u,v

¶

(5)

One special line is the camera axis Lz defined as the Z-

axis. Furthermore, we rely on two functions, Θ(La, Lb)

(see Eq. 2) and d(La, Lb), to provide the angle and dis-

tance, respectively, between two lines La and Lb. The
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Figure 8: Minimization of planes i and j must reduce dis-

tance d with the Z-axis, as well as Θ for parallelism with

the matching line from the same (u, v).

minimization problem is formulated as

arg min
Π

|Ω|
∑

{i, j}

∑

u,v

d(L i, j
u,v

, LZ) + γ

|Ω|
∑

{i, j}

|Ω|
∑

{a,b}

∑

u,v

Θ(L i, j
u,v

, La,b
u,v
)

(6)

whereΩ is the set of pairs of planes such that planes i and

j have correspondences and are separated by a sufficient

distance and where γ is a weighting parameter. This dis-

tance is required to ensure stability because lines gener-

ated between overlapping planes are very unstable. This

has an important consequence in practice as it requires

two sets of calibration grids, one closer and one further

away from the camera (see Fig. 7(right)). The cost func-

tion is illustrated in Fig. 8 for two pairs of planes. The

planes i and j must be positioned so the distance d be-

tween line L i, j
u,v

and the Z-axis is 0. Also, the angle Θ

must be minimized to ensure parallelism with a line La,b
u,v

related to the same fisheye image point (u, v).

This above minimization problem is presented in two

separate terms which minimize different objectives. The

first aims to enforce that all lines intersect the cam-

era axis. The second aims to enforce parallelism be-

tween lines corresponding to a common (u, v) point in

the fisheye image, since this is the basic assumption of

the generic camera model. This second term is required

since the optimization does not solve all parameters glob-

ally, so multiple conflicting solutions for plane poses are

possible.

Figure 9: 3D view of the lookup table for the Synthetic Ax-

ial camera with parabolic displacement. Z-axis is α with

isocontours at every 10◦ (90◦ is in bold). Axial displace-

ment dz is color coded from 0 to 24 plane pixels (see

legend).

5. Experimental results

We provide two different types of experimental results.

First, synthetically generated fisheye cameras, both cen-

tral and quasi-central, are used to validate our calibration

method. Second, calibration results of a real large FoV

camera are provided demonstrating practical use of the

quasi-central model and calibration.

Comparing experimental results with other methods

proved to be challenging. In [10, 11], they calibrate an

axial camera model where the camera is in fact two cen-

tral pinhole cameras in a stereo configuration which is not

quasi-central. Since our method requires quasi-central,

no comparison can be performed. Their further work

in [8] constrains their model to a central camera but its

183◦ FoV cannot be compared to ultra-wide. Finally, the

method in [17] describes a framework for generic calibra-

tion and is theoretical in nature. Although they establish

the groundwork for truly generic camera models, in the

case of fisheye cameras, the results shown are preliminary

as only a very limited FoV is calibrated.

5.1. Synthetic Calibration

The synthetic fisheyes have a 220◦ field of view with

three different axial displacement modalities, respec-

tively a linear axial displacement of 20
r , a parabolic dis-

placement of 20
r2 and no axial displacement (a central

camera). For each fisheye cameras, the projection rays

associated with each pixel were generated. Theses rays

are then intersected with various planar grids at vari-

ous poses to generate dense correspondence maps (see

Fig. 2). The calibration is done using only these corre-

spondence maps.

Image formation model. The result of Fig. 9 is the re-

covered image formation model M(u, v) (see Eq. 1) for

the synthetic camera with the parabolic axial displace-

ment. We observe that the result closely matches the cam-

era specification. The cone shape indicates an equidistant
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(a) (b)

(c)

Figure 10: Reprojection error in pixels, as a function of

α, for calibrating a central model (in red) and a quasi-

central model (in blue). Cameras are fisheye 220◦ with

various axial displacements: A) linear, B) parabolic, C)

none.

fisheye and the axial displacement is recovered accurately

as parabolic.

Reprojection error. Fig. 10 presents the reprojection er-

ror for all three synthetic cameras, obtained by reproject-

ing all the points of a single calibration grid into the fish-

eye image. The selected grid is the same for all 3 cameras

and was chosen because it fills a large portion of the FoV

and includes areas where the radial distortion and axial

displacement are highest.

When applying central model calibration on axial cam-

eras (red curves in Fig. 10a and 10b) we observe high

reprojection errors with two dipping points, indicative of

the average pose recovered by this inadequate model. This

is similar to the error observed when fitting a line to a

portion of a second-degree curve. The fit will be wrong,

except maybe at two points.

When applying quasi-central model on the same cam-

eras, shown as blue curves in Fig. 10a and 10b, the curves

are near constant at a low reprojection error (0.5 pixels)

which also corresponds to the lowest point on the red

curve. This demonstrates that our proposed quasi-central

calibration method performs as intended.

For the central camera, depicted in Fig. 10c, both cen-

tral and quasi-central calibration feature low reprojection

errors, demonstrating that both methods perform as ex-

pected.

Table. 1 provides a global performance estimate at a

glance. For synthetic as well as real cameras, calibrations

with low reprojection errors are achieved. Moreover, us-

ing the axial model on axial cameras further reduce the

error.

Figure 11: Axial displacement for the synthetic axial cam-

eras, linear (left) and parabolic (right). In orange are the

true curves and in blue are the axial displacements recov-

ered across a vertical slice of the fisheye image.

Field of View Region

Camera Calib Center Middle Outer Full

Synthetic

Central

Central 0.2 0.1 0.1 0.1

Axial 0.2 0.1 0.1 0.1

Synthetic

Axial Linear

Central 0.5 0.8 1.2 0.8

Axial 0.4 0.2 0.2 0.3

Synthetic

Axial Parabolic

Central 0.3 0.9 1.9 1.1

Axial 0.2 0.4 0.2 0.4

Real

Entaniya 280◦
Central 4.2 4.9 6.4 5.0

Axial 4.5 3.0 4.4 3.8

Table 1: Reprojection error in pixels, averaged for differ-

ent regions of the field of view, for central and axial cal-

ibrations of the synthetic and real cameras. We observe

that axial calibration yields lower error for axial cameras.

Axial displacement. Fig. 11 illustrates that the axial

displacement is correctly recovered by the quasi-central

model.

5.2. Real Camera Calibration

The experimental setup for the fisheye calibration

uses a LG29UM57-P LCD monitor with a resolution of

2560x1080 pixels and a 0.2651mm dot pitch. The cam-

era is a GoPro HERO 4, with an Entaniya 280◦ Fisheye

lens attached, in 2.7K 4:3 Ultra Wide video resolution

mode which results in a 2704 × 2028 full frame image

(see Fig. 7(left)). The camera is mounted on a pan-tilt

unit located at about 20cm from a monitor acting as an

active calibration grid, and rotated to provide multiple

calibration grids for different points of view. A second

set of acquisitions is performed at 30cm from the moni-

tor. Note that although the amount of rotation between

planes and the approximate distances between the cam-

era and the monitor are known, the calibration is done

solely using the correspondence maps.

Image formation model. Fig. 12 is the recovered im-

age formation model M(u, v) (see Eq. 1) for the Entaniya

280◦. We observe that the α angles are recovered well

over the full field of view and indicate near equisolid ge-

ometry. The axial displacement is significant and also re-

covered well. It is compatible with the lens diameter of
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Figure 12: 3D view of the lookup table for the Entaniya

280◦. Z-axis is α with isocontours at every 10◦ (90◦ is

in bold). Axial displacement dz is color coded from 0 to

35mm (see legend).

Figure 13: Reprojection error in pixels, as a function of α,

of four calibration grids. Curves results from calibrating

a central model (in red) and a quasi-central model (in

blue) for a 280◦ fisheye.

64mm and the maximum incident angle of 50◦ above the

horizon.

Reprojection error. Similarly to the synthetic camera

cases, the reprojection error is computed on different cal-

ibration grids along the field of view. Four of them were

chosen as representative of the expected results and to-

gether they cover the whole FoV.

Overall, we observe in Fig. 13 that for very wide FoV

fisheyes, modeling the axial displacement greatly im-

proves calibration. In all cases, the reprojection error for

the quasi-central calibration can be averaged to 3 pix-

els or less, while the central calibration is up to 15 pix-

els. Notice the "V" shapes in the red curves which are

steeper with increasing angle due to the averaging effect

of the central calibration. This means that the farther

away from the camera axis you are, the worst a central

calibration performs, and the more essential quasi-central

calibration becomes.

Axial displacement. To better assess the quality of the

quasi-central calibration, Fig. 14 shows the recovered ax-

ial displacement in mm across the camera image. This il-

Figure 14: Axial displacement in mm for the 280◦ camera,

recovered across a horizontal slice of the fisheye image.

lustrates that near the edges, the optical center has moved

by up to 30mm from its initial position and confirms why

a central approximation to such a camera is inaccurate.

Notice that the curve is not symmetric around the princi-

pal point. We believe that this is a result of reaching an

inaccurate local minimum during the optimization step.

This was observed only for specific grids, suggesting some

inaccuracy in the structured light matching.

6. Conclusion

This paper presented a new calibration method for

fisheye cameras, with an underlying Generic Quasi-

Central camera model. It can bypass any image distortion

by using calibration planes as virtual images, the Generic

Virtual Central cameras, which are perfectly rectilinear

and can be solved with simple planar calibrations. The

resulting calibration allows very large fields of view. This

model is then generalized to recover axial optical center

displacements. Although the optimization scheme which

recovers grids poses is simple and could be further im-

proved, results on a real lens demonstrate not only that

axial calibration works, but that it significantly improves

the reprojection error. In the future, we expect that the

Quasi-Central model and multiple GVC cameras will find

more uses such as generating perfect image rectifications,

generalize to other models, improve fisheye image stitch-

ing for immersive imaging and enhance 3D reconstruc-

tion from the triangulation of fisheye images.
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