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Abstract

Shouldn’t language and vision features be treated

equally in vision-language (VL) tasks? Many VL ap-

proaches treat the language component as an afterthought,

using simple language models that are either built upon

fixed word embeddings trained on text-only data or are

learned from scratch. We believe that language features

deserve more attention, and conduct experiments which

compare different word embeddings, language models, and

embedding augmentation steps on five common VL tasks:

image-sentence retrieval, image captioning, visual ques-

tion answering, phrase grounding, and text-to-clip retrieval.

Our experiments provide some striking results; an aver-

age embedding language model outperforms an LSTM on

retrieval-style tasks; state-of-the-art representations such

as BERT perform relatively poorly on vision-language

tasks. From this comprehensive set of experiments we

propose a set of best practices for incorporating the lan-

guage component of VL tasks. To further elevate language

features, we also show that knowledge in vision-language

problems can be transferred across tasks to gain perfor-

mance with multi-task training. This multi-task training

is applied to a new Graph Oriented Vision-Language Em-

bedding (GrOVLE), which we adapt from Word2Vec using

WordNet and an original visual-language graph built from

Visual Genome, providing a ready-to-use vision-language

embedding: http://ai.bu.edu/grovle.

1. Introduction

In recent years many methods have been proposed for

vision-language tasks such as image and video caption-

ing [12, 27, 47, 48, 52], multimodal retrieval [16, 24, 20,

49, 37, 46, 51], phrase grounding [42, 19, 41, 43], and vi-

sual question answering [14, 2, 56, 44, 54]. Language rep-

resentations for these models tend to be obtained by av-

eraging word embeddings (e.g. [49, 41, 40, 24]), feeding

features representing each word into a LSTM (e.g. [43, 52,

51]), and using word-level or phrase-level attention mod-

els (e.g. [1, 11, 33, 5, 30]). The word embeddings used in

Figure 1. How should language features be constructed for a

vision-language task? We provide a side by side comparison of

how word-level and sentence-level embeddings, simple and more

complex language models, and fine-tuning and post-processing

vectors impact performance.

these tasks include a simple one-hot encoding of each word

in a vocabulary (e.g. [14, 48, 49]), pretrained dense vec-

tor representations like Word2Vec [35] or GloVe [38], and

Fisher vectors built on top of these dense representations

(e.g. [24, 40, 49]). Although there are more modern embed-

dings such as FastText [4], ELMo [39] and BERT [9] that

have shown significant performance improvements on lan-

guage tasks such as sentiment analysis and question answer-

ing, many vision-language approaches still use the more

dated feature representations.

While there are isolated cases where these language

model and feature choices are compared for the same task

model (e.g. [49, 17]), to our knowledge there exists no com-

prehensive comparison. To address this neglect of language

feature exploration, we provide an all-inclusive experi-

mental survey of embedding, language model, and train-

ing choice. We perform experiments using from-scratch,

Word2Vec [35], WordNet retrofitted Word2Vec [13], Fast-

Text [4], Visual Word2Vec [26], HGLMM (300-D, 6K-

D) [24], InferSent [8], and BERT [9] representations in

addition to a new embedding, GrOVLE, on five vision-

language tasks: image-sentence retrieval, visual question

answering, phrase grounding, image captioning, and text-

to-clip retrieval.

Our goal is to provide insight for vision-language appli-
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cations based on extensive experiments varying choices il-

lustrated in Figure 1. Our findings show how to make these

choices to take advantage of language features in vision-

language work. For example, we find that using an Average

Embedding language model, which ignores word ordering,

tends to perform better than a LSTM. This suggests that the

LSTM overfits to the task it is trained on. However, when

training a word embedding from scratch a LSTM performs

best. This result is mostly likely a product of the LSTM

learning to predict the next word given previous words,

learning context. Pretrained word vectors likely already

provide some semblance of this context information since

that is how they are typically trained. The take-aways from

all experimental results are summarized in Figure 2.

Relying on word embeddings trained solely on large text

corpora can have important consequences. For example, in

Word2Vec the words “boy” and “girl” have higher cosine

similarity than either have to the word “child.” While this is

a subtle difference, it can impact tasks such as image cap-

tioning where “girl” can be replaced by “child” when de-

scribing a visual scene, but not by “boy.” These nuances

are not well captured when using text-only information.

To address this, we introduce the Graph Oriented Vision-

Language Embedding, GrOVLE, which has been learned

for vision-language tasks specifically.

When building GrOVLE, we take into account the differ-

ences in the relationships between words when used to de-

scribe visual data. We introduce a new relational graph by

extracting semantic relationships between words using the

Visual Genome dataset [28], which is annotated with dense

descriptions of entities, their attributes, and their relation-

ships to other entities within an image. We use both Word-

Net and Visual Genome graphs to adapt Word2Vec, through

the retrofitting process defined by Faruqui et al. [13].

Finally, in addition to viewing embedding performance

for each individual task, we asked: Can an embedding gen-

eralize across vision-language tasks? Inspired by multi-task

training strategies like PackNet [34], we train the GrOVLE

embedding on all the vision-language tasks in our exper-

iments. The word representation becomes more powerful

with task specific knowledge, as the multi-task GrOVLE

ultimately outperforms its single-task trained version, be-

coming a leading embedding amongst the five tasks. Note

that unlike PackNet, GrOVLE operates directly on the word

embeddings rather than model weights.

Below we summarize our primary contributions:

• Comprehensive experiments exhaustively comparing

different word representations, language models, and

pretraining and adaptation steps across five common

vision-language tasks, providing best practices for fu-

ture work. See Figure 2 for a summary of our findings.

• GrOVLE, a publicly available word embedding which

Figure 2. Average rank is defined using each tasks’ best perform-

ing model. Variance is defined as the average difference between

the best and worst performance of the fine-tuned language model

options (e.g. Average Embedding + ft, Self-Attention + ft, LSTM

+ ft). Note that variance rank is listed from lowest to highest, e.g.

from-scratch embeddings have highest variance. If the top embed-

ding per task is a tie, both are provided in the right most column.

For the tasks InferSent and BERT operate on, they would land be-

tween 7th and 8th place for average rank; average variance is N/A.

Note that average variance is not provided for multi-task trained

GrOVLE as it was created with the best model for each task.

has been specially trained for vision-language tasks1.

• Key insight into the transferability of word embed-

dings across the five vision-language tasks through the

use of multi-task training.

2. Related Work

To the best of our knowledge, the effect of pretrained

embeddings in VL tasks has never before been system-

atically compared. Visual information has been used in

limited ways to improve word embeddings such as sim-

ply concatenating visual features [22] or focusing on ab-

stract scenes [26]. Lazaridou et al. [29] focuses on leverag-

ing first order semantic relationships by encouraging align-

ment between the visual and language embeddings for a

predefined set of nouns describing objects. Word embed-

dings have also been improved by including additional con-

straints on the learning process [55] or as a post-processing

step [13]. These models focus on improving some general

sense of word similarity. GrOVLE is different in that it

is directly optimized to work well on a variety of vision-

language tasks. We focus on how 10 representations com-

pare amongst model and training choices, some of which

are considered state-of-the-art for language tasks such as

the recently introduced BERT [9].

Several vision-language approaches have also tried to

improve their language model, rather than the word em-

beddings, as a way to improve performance. These have

included building Fisher vectors on top of pretrained word

embeddings [24, 31], constraining a coarse-to-fine word or-

dering [10, 46], or performing co-reference resolution to

1http://ai.bu.edu/grovle
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Figure 3. The language model variants used in our experiments

include: mean pooling of embeddings (MP) which is then passed

to fully connected layers (FC), a LSTM fed a single embedding

at a time followed by a fully connected layer, or a self-attention

model which builds a weighted context sum (WS) before being

passed to a pair of fully connected layers.

identify additional constraints between entities ([50, 41, 25,

6]). Attention mechanisms have also become a popular way

to improve performance: word-level attention has been used

in image captioning by learning the weights of words us-

ing a LSTM [1] or a multi-layered perceptron [52, 11] be-

fore being passed to a language generation model. Dual

attention [37] has also been used to attend to the question

in VQA using feed-forward neural networks. These ap-

proaches could be used in conjunction with this work to

further improve performance.

3. Language Models

We present three language model options for which we

provide experimental results for 8 of 10 different embed-

dings to determine which language model is best for each

task and each embedding (sentence level embeddings can-

not be incorporated into some of these architectures).

In Figure 3 an Average Embedding, Self-Attention, and

LSTM language architecture are shown. The Average Em-

bedding model consists of mean pooling the embeddings,

forming a single representation of all words wi (with n

words in total) in a given sentence or phrase. A sample’s

pooled vector is then passed through a pair of fully con-

nected layers as shown in the upper left corner of Figure 3.

A more complex language architecture is a LSTM; word

representations are individually passed through a LSTM

cell, each producing their own hidden state. LSTMs are typ-

ically thought of as a “better” architecture choice, modeling

the relationship between words in a sentence, as it maintains

word ordering. We later show this assumption does not hold

true across all vision-language tasks.

Lastly, we compare a Self-Attention model that is closely

related to the Average Embedding architecture. The pri-

mary difference is the pooling layer, which now consists of

two steps. First, a context vector C is concatenated with all

word embeddings in W of a given sample. Our experiments

use the average embedding as context. It is passed through

a fully connected layer which applies Softmax to give con-

text “scores” for each word in a sentence. Next, the inner

product is taken of these weights and the original word em-

beddings from W to produce a context weighted sum which

is then passed to a pair of fully connected layers.

4. Experimental Setup

In this section we provide details of each vision-language

task. The datasets and vision-language task models are de-

scribed in supplementary material, but are referenced in Ta-

ble 1. We split our experiments into three parts: Pretrained

Embeddings (Section 5), Adapted Embeddings (Section 6),

and Multi-task Trained Embeddings (Section 7).

4.1. Compared Tasks and Metrics

Image-Sentence Retrieval. The goal is to retrieve relevant

sentences given an image, or to retrieve relevant images

given a sentence. It is evaluated using Recall@K where

K = [1, 5, 10], resulting in six numbers which measure the

performance of the model (three for image-to-sentence and

three for sentence-to-image). We report the average of these

six numbers as a measure of overall performance. All six

numbers can be found in supplementary material.

Phrase Grounding. In phrase grounding the task is to find

the location of a phrase given an image it is known to exist

in. Performance is measured using accuracy, where a box

is deemed to be successfully localized if it has at least 0.5

intersection over union (IOU) with the ground truth box.

Text-to-Clip. For text-to-clip, the goal is to locate the tem-

poral region (i.e. the video clip) that is described by a query.

Performance is measured using a mix of Recall@K, where

K = [1, 5], and the average IOU the predicted temporal lo-

cation of a query phrase has with its ground truth temporal

segments. We use the evaluation code provided by Hen-

dricks et al. [16] in our experiments. We report the average

of these three metrics as an overall score; all metrics are

reported in supplementary material.

Image Captioning. The goal of image captioning is to pro-

duce natural language which describes an image scene with

a well formed sentence. The produced captions are evalu-

ated against a set of reference sentences for each image. We

report the commonly used evaluation metric BLEU-4, with

CIDEr and METEOR results available in the supplementary

material.

Visual Question Answering. In VQA [2], the goal is to

produce a free-form natural language answer given an im-

age and question. This open-ended task consists of three

types of questions: yes/no, number and other. The accu-

racy of the model is determined by the number of correctly

answered questions. We evaluate on the test-dev set.
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5. Pretrained Word Embeddings

We begin our exhaustive search across language feature

choices with pretrained word embeddings. These offer an

initial comparison across techniques that do not use forms

of post-processing to adapt embeddings, but rather learn

vectors with different model architectures and training ob-

jectives. Word2Vec, FastText, InferSent, and BERT are re-

viewed before results are discussed.

5.1. Word Level Representations

Word2Vec [35] is one of the most widespread word embed-

dings in use since its release. It builds off of the probabilis-

tic feed forward Neural Network Language Model (NNLM)

introduced in [3], which is composed of input, projection,

hidden, and output layers. The input is defined by a 1-out-

of-V vector where V is the vocabulary size. The projection

matrix is shared amongst all words and the computational

complexity between hidden and output layers is reduced

using a hierarchical Softmax where the vocabulary is rep-

resented as a Huffman binary tree.

Word2Vec introduced two variations of the NNLM

model, with the primary distinction being that the non-

linear hidden layer is removed and the projection layer is

shared amongst all words, i.e. the words are averaged. This

leads to the first model, Continuous Bag of Words (CBOW),

in which given four previous and four future words, the

current word is predicted. The second model, Skip-Gram,

instead predicts the context words given the current word.

This results in maximizing the classification of a word given

the words it is surrounded by. Skip-Gram tends to perform

better with a larger range of context words, but this also re-

sults in greater computational complexity.

FastText [4] is an extension of the Word2Vec model in

which the atomic entities of the embeddings are no longer

words, but are instead character n-grams. N can be decided

given the task and time or space constraints. A word is rep-

resented as the sum of its character n-gram vectors in addi-

tion to the word vector itself. This change of reference can

improve performance due to better representation of rare,

misspelled, and out of vocabulary words, as the n-grams

create more neighbors for use during training.

5.2. Sentence Level Representations

InferSent [8] uses a bi-directional LSTM with max-pooling

to create a sentence-level embedding. It is trained using the

Natural Language Inference (NLI) task, in which the goal

is to categorize natural language English sentence (premise,

hypothesis) pairs into three classes: entailment, contradic-

tion, and neutral. The NLI model architecture separately en-

codes each sentence of the input pair using a BiLSTM. Af-

ter, the pair’s sentences form a shared representation com-

posed of the concatenation of the vectors, the element-wise

product, and the absolute element-wise difference. This

vector is then fed into a three-class classifier, defined by

several FC layers and a Softmax.

BERT [9] is currently the state-of-the-art word embed-

ding model. Its language encoder is a bi-directional multi-

layered Transformer which directly follows the architec-

ture described in [45]. The embedding is trained on two

tasks: Masked Language Modeling (MLM) and Next Sen-

tence Prediction. The goal of MLM is to predict the original

vocabulary ID of a masked word given its context words.

Next Sentence Prediction is the binary classification task of

determining if the second sentence is the true next sentence.

5.3. Results

We start with an embedding learned from scratch with

random initialization as our first baseline. Results demon-

strate that while many previous works use scratch embed-

dings, this greatly impacts performance in vision-language

tasks. Unsurprisingly, when comparing the first lines of

Table 1(a,b), we find that using Word2Vec rather than an

embedding trained from scratch tends to improve perfor-

mance. This is more important when considering a larger

vocabulary as seen comparing phrase grounding experi-

ments on DiDeMo and ReferIt, whose embeddings trained

from scratch using their smaller vocabulary compare favor-

ably to Word2Vec.

The original Word2Vec embedding pretrained on Google

News can be considered a second baseline. While Fast-

Text is a more modern embedding, Word2Vec only falls

behind within a point or two across all tasks, and even out-

performs or performs equally as well as FastText for cer-

tain tasks (e.g. text-to-clip, image captioning). This vali-

dates works which extend Word2Vec such as Retrofitting,

HGLMM Fisher Vectors, and GrOVLE, as Word2Vec may

still provide advantages with additional adaptations; results

for adapted embeddings follow in Section 6.

Table 1 also contains a comparison of language model

variants across the five vision-language tasks we evaluate

on. We see that fine-tuning a word embedding on a vision-

language task can have dramatic effects on the performance

of the language model (e.g. 5-10% increase to mean recall

on image-sentence retrieval).

When comparing the architecture choices from Figure 3

we see that for retrieval-based tasks (i.e. where the out-

put is not free-form text) the Average Embedding and Self-

Attention models perform better than a simple LSTM-based

approach, with Self-Attention being best on average. This

is especially notable since these two models have fewer pa-

rameters and are faster to compute than a LSTM. Choos-

ing to use a Self-Attention language model in future vision-

language work will not only boost metrics, but will also be

a more time efficient option. The only apparent exception

to this is the text-to-clip task. This may be because it is a
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Task Image-Sentence Retrieval Phrase Grounding Text-to-Clip Image Captioning VQA

Dataset Flickr30K [53] MSCOCO [32]
Flickr30K

ReferIt [21] DiDeMo [16] MSCOCO [32] VQA [15]
Entities [42]

Method Embedding Network [49] CITE [40] ARNet [7] EtEMN [18]

Metric Mean Recall Accuracy Average BLEU-4 CIDEr Accuracy

(a) Training from scratch

Average Embedding 44.3 73.7 70.46 51.70 33.02 – – –

Self-Attention 44.6 77.6 70.68 52.39 33.48 – – –

LSTM 60.0 77.5 70.47 51.57 32.83 26.7 89.7 60.95

(b) Word2Vec [35]

Average Embedding 62.5 75.0 70.03 52.51 32.95 – – –

Average Embedding + ft 71.5 78.2 70.85 53.29 32.58 – – –

Self-Attention 63.6 75.6 70.19 52.41 33.23 – – –

Self-Attention + ft 71.9 79.9 70.94 53.54 33.26 – – –

LSTM 68.5 72.5 69.83 52.86 33.73 28.5 92.7 61.40

LSTM + ft 69.0 78.2 70.55 53.58 33.94 28.5 94.0 61.35

(c) FastText [4]

Average Embedding 69.2 78.5 69.75 51.27 32.45 – – –

Average Embedding + ft 73.0 80.7 70.62 53.24 32.01 – – –

Self-Attention 69.5 78.6 69.87 52.49 33.31 – – –

Self-Attention + ft 73.1 80.6 71.23 53.87 33.17 – – –

LSTM 69.1 76.9 69.76 52.21 33.06 28.5 92.7 61.86

LSTM + ft 68.5 80.1 71.09 53.95 32.51 28.3 93.2 61.66

(d) Sentence-Level

InferSent [8] 71.2 76.4 57.83 52.29 31.87 – – –

BERT [9] 71.8 75.4 69.38 50.37 32.46 – – –

Table 1. Word Embedding Comparison Across Vision Language Tasks. (a) contains the results of learning an embedding from scratch

i.e. random initialization with fine-tuning during training. The remaining sections compare (b) Word2Vec, (c) FastText, and (d) sentence

level embeddings InferSent and BERT. All experiments show three model variants: Average Embedding, Self-Attention, and LSTM, with

and without fine-tuning during training. Average Embedding and Self-Attention are not used in generation tasks for Image Captioning and

VQA as they are known to show worse performance; sentence level embeddings are not applicable for these tasks. See text for discussion.

video-based task which contains some temporal language

in its queries [16], so the ordering of words may be espe-

cially important to identifying which video clip to select

compared to other retrieval-based tasks. While all language

models perform closely on ReferIt phrase grounding, this

still suggests that there is no need to use the more complex

LSTM language model without additional modification.

Lastly, sentence level embeddings InferSent and BERT

are compared in Table 1(d); results are without fine-tuning.

Fine-tuning would likely improve performance, but is diffi-

cult to incorporate due to size (e.g. the larger BERT model

contains a total of 340M parameters while the well-known

VGG-16 network uses 138M; fine-tuning the top layers

of BERT still requires loading the full model). The two

are comparable to each other with the exception of phrase

grounding accuracy on Flickr30K Entities; BERT surpris-

ingly outperforms InferSent by 11.55%. Both InferSent and

BERT do not provide the best results across any task, and

thus are not a leading option for vision-language tasks.

InferSent and BERT reach comparable values to the

best Word2Vec models for image-sentence retrieval on

Flickr30K, performing more poorly for the MSCOCO

dataset. For the remaining retrieval tasks, metrics are be-

low the best performing model and embedding combination

within 1-3 points, again noting the unusual exception of In-

ferSent on phrase grounding of Flickr30K Entities, which

significantly drops below scratch performance.

6. Adapted Word Embeddings

Since the introduction of Word2Vec, several enhance-

ment techniques have been proposed. In this section we ex-

plore adaptations of Word2Vec which use different methods

to post-process embeddings. Extensions either use language

enhancements, visual enhancements, or both (e.g. WordNet

retrofitting, HGLMM vs. Visual Word2Vec vs. GrOVLE,

respectively). We shall now briefly discuss these enhance-

ments.

6.1. Visual Word2Vec

Visual Word2Vec [26] is a neural model designed to

ground the original Word2Vec representation with visual se-

mantics. Its goal is to maximize the likelihood of a visual

context given the set of words used to describe it, thus push-

ing word representations used to describe the same visual

scene closer together. Clusters are first learned offline using
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features from abstract clip-art scenes such as the locations

of objects, pose, expressions, and gaze to provide surrogate

class labels. Word vectors initialized with Word2Vec are

then passed through a single hidden layer network. After,

a learned output weight matrix and Softmax are applied to

predict the visual semantic class the words belong to.

6.2. HGLMM Fisher Vectors

Another post-processed embedding we use for this set

of experiments is the Hybrid Gaussian-Laplacian Mixture

Model (HGLMM) representation built off of Fisher vectors

for Word2Vec [24]. While bag-of-words pooling is simple

and commonly applied, Fisher vectors change this pooling

technique and achieve state-of-the-art results on many ap-

plications. Fisher vectors instead concatenate the gradients

of the log-likelihood of local descriptors (which in this case

are the Word2Vec vectors) with respect to the HGLMM pa-

rameters. HGLMM is a weighted geometric mean of the

Gaussian and Laplacian distributions and is fit using Ex-

pectation Maximization. Following [49, 40], we reduce the

dimensions of the original encodings (18K-D) to 6K-D or

300-D using PCA, as it has been found to improve numeri-

cal stability on VL tasks (except for experiments on ReferIt

which we reduce to 2K-D due to its small vocabulary size).

6.3. GrOVLE: Graph Oriented VisionLanguage
Embedding

We provide a new embedding, GrOVLE, which adapts

Word2Vec using two knowledge bases: WordNet and Vi-

sual Genome. This builds off of the retrofitting work of [13]

in which WordNet was one of the lexicon options. The Vi-

sual Genome relational graph is novel, as it creates a lan-

guage graph that captures how words are used in visual con-

texts, unlike any of the language databases used in [13]. We

briefly review retrofitting and then detail the construction of

our original Visual Genome word relation graph. GrOVLE

provides a vision-language enhanced embedding and out-

performs Visual Word2Vec across many tasks. The released

version of GrOVLE is multi-task trained, creating an addi-

tional level of VL knowledge, later described in Section 7.

6.3.1 Retrofitting Word Embeddings

In this section we review the approach of Faruqui et al.

[13], which proposed a graph based learning technique to

“retrofit” additional semantic knowledge onto pretrained

word embeddings.

Given a vocabulary V with words {w1, w2, ..., wn} and

its corresponding word embedding Q̂, where q̂i is the em-

bedding for wi, belief propagation is performed to obtain a

new embedding Q which minimizes the distances between

the embedding representing each word and its neighbors.

These neighbors are defined as edges E between words in a

graph. L2 regularization is performed between the original

and new word embeddings to help prevent overfitting. We

find that this L2 regularization is necessary whenever we

are updating the word embeddings (i.e. we also use it dur-

ing multi-task training described in Section 7). We use the

same regularization parameters as Faruqui et al. and refer

the reader to their work to view the final objective function.

6.3.2 Word Relation Graph Construction

Below we describe the methods we use to create the edges

between words which share some semantic relation. We

use these edges to retrofit the word embeddings with the

process described in Section 6.3.1. Of the lexicons provided

by Faruqui et al. [13], we used only the WordNet graph, as

it contains the largest vocabulary with the most edges. A

joint lexicon is built with WordNet and Visual Genome as

opposed to successively retrofitting the two; this minimized

forgetting of the first and thus improved performance.

WordNet [36] is a hierarchical lexical database which or-

ganizes nouns, adjectives, verbs and adverbs into sets of

synonyms (synsets) and uses semantic relations to associate

them. As in Faruqui et al. [13], we construct a graph by

creating links between words if they have a synonym, hy-

pernym, or hyponym relationship.

Visual Genome [28] contains a wealth of language annota-

tions for 108K images: descriptions of entities in an image,

their attributes, relationships between multiple entities, and

whole image and region-based QA pairs. Each instance in

these annotations is considered a sample which we tokenize

and remove stopwords from. We compute co-occurrence

statistics over pairs of words within the sample for pairs

that occur more than 50 times, resulting in 322,928 pairs

for 12,849 words. For each word we compute a pointwise

mutual information (PMI) score for all pairs it occurs in,

and create links between the top ten words. This creates

a graph where words that occur frequently together when

describing visual data are linked.

6.4. Results

We see a small, but consistent improvement across most

of the vision-language tasks using GrOVLE as seen in Ta-

ble 2(b). These changes result in an embedding with com-

parable performance to the HGLMM 6K-D features, which

are reported in Table 2(e). However, our word embedding

tends to perform better when embeddings are the same size

(i.e. 300-D). For the generation-based tasks (i.e. captioning

and VQA), the benefits of using adapted embeddings are

less clear. This may simply be an artifact of the challenges

in evaluating these tasks (i.e., the captions are improving in

a way the metrics don’t capture). Also, models that more

carefully consider the effect of each word in a caption may

benefit more from our improved features (e.g. [37, 51]).

While Visual Word2Vec is an established visually-

enhanced embedding, its published results did not include
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Task Image-Sentence Retrieval Phrase Grounding Text-to-Clip Image Captioning VQA

Dataset Flickr30K MSCOCO
Flickr30K

ReferIt DiDeMo MSCOCO VQA
Entities

Metric Mean Recall Accuracy Average BLEU-4 CIDEr Accuracy

(a) Word2Vec + wn [13]

Average Embedding + ft 72.0 79.2 70.51 53.93 33.24 – – –

Self-Attention + ft 72.4 80.0 70.70 53.81 33.65 – – –

LSTM + ft 69.3 78.9 70.80 53.67 34.16 28.6 93.3 61.06

(b) GrOVLE

Average Embedding + ft 72.3 80.2 70.77 53.99 33.71 – – –

Self-Attention + ft 72.1 80.5 70.95 53.75 33.14 – – –

LSTM + ft 69.7 78.8 70.18 53.99 34.47 28.3 92.5 61.22

(c) Visual Word2Vec [26]

Average Embedding + ft 66.8 78.7 70.61 53.14 31.73 – – –

Self-Attention + ft 68.8 79.2 71.07 53.26 31.15 – – –

LSTM + ft 66.7 74.5 70.70 53.19 32.29 28.8 94.0 61.15

(d) HGLMM (300-D) [24]

Average Embedding + ft 71.0 79.8 70.64 53.71 32.62 – – –

Self-Attention + ft 71.8 80.4 70.51 53.83 33.44 – – –

LSTM + ft 69.5 77.9 70.37 53.10 33.85 28.7 94.0 61.44

(e) HGLMM (6K-D) [24]

Average Embedding + ft 73.5 80.9 70.83 53.36 32.66 – – –

Self-Attention + ft 75.1 80.6 71.02 53.43 33.57 – – –

LSTM + ft 68.0 79.4 70.38 53.89 34.62 28.0 92.8 60.58

Table 2. Modifications of Word2Vec. (a) contains Word2Vec retrofitted results using only the WordNet (wn) lexicon from [13]. Next, (b)

is our baseline embedding which includes the new Visual Genome relational graph. Visual Word2Vec results are provided in (c), and (d),

(e) are Fisher vectors on top of Word2Vec. See text for discussion.

Task Image-Sentence Retrieval Phrase Grounding Text-to-Clip Image Captioning VQA

Metric Mean Recall Accuracy Average BLEU-4 CIDEr Accuracy

GrOVLE w/o multi-task pretraining 64.7 75.0 70.53 52.15 34.45 28.5 92.7 61.46

+ multi-task pretraining w/o target task 65.8 76.4 70.82 52.21 34.57 28.8 93.3 61.47

+ multi-task pretraining w/ target task 66.2 80.2 70.87 52.64 34.82 28.5 92.7 61.53

+ multi-task pretraining w/ target task + ft 72.6 81.3 71.57 54.51 35.09 28.7 93.2 61.46

Table 3. Comparison of training our word embeddings on four tasks and testing on the fifth, as well as training on all five tasks.

these vision-language tasks. Visual Word2Vec performs

comparably amongst results for generation tasks (i.e. im-

age captioning and VQA), but these tasks have little vari-

ance in results, with less than a point of difference across

the adapted embeddings. The small gain provided in gen-

eration tasks by Visual Word2Vec does not out-weight the

drops in performance across other tasks such as the sig-

nificant mean recall drop of 6.3 compared to HGLMM’s

6K-D Self-Attention result in line two of Table 2(c) and

Table 2(e) for image-sentence retrieval of Flickr30K. For

comparison, GrOVLE’s Self-Attention result in Table 2(b)

is only 3 points lower.

Finally, we report results using HGLMM of different

dimension. HGLMM 300-D features are used for a more

fair comparison to other embeddings. While the HGLMM

6K-D representation primarily results in the highest perfor-

mance, it performs more poorly on generation tasks and

also results in high variance. For example, column one

in Table 2(e) shows a range of 7.1 in mean recall, unlike

GrOVLE which has a range of 2.6.

7. Multi-task Training

A drawback of using pretrained word embeddings like

Word2Vec or the retrofitting process is that they are trained

solely on text data. While our Visual Genome Graph pro-

vides some general information on how words in our vocab-

ulary are used for visual data, it doesn’t provide any sense of

visual similarity between semantically different words that

may be necessary to perform a particular vision-language

task. To address this, we fine-tune GrOVLE across the five

VL tasks.

We provide results for a four and five multi-task trained

embedding. The four task experiments are performed with

the final task embedding fixed to demonstrate how well the

embeddings would generalize to new tasks. We also provide

results for pretraining on five tasks with and without fine-

tuning during the last task. Similarly to PackNet [34], for

each dataset/task in the four and five task experiments, we

keep the K most informative features frozen when training

any subsequent task, diminishing the effect of catastrophic
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Task Image-Sentence Retrieval Phrase Grounding Text-to-Clip Image Captioning VQA

Additional Models SCAN [30] QA R-CNN [17] TGN [5] BUTD [1] BAN[23]

Metric Mean Recall Accuracy Average BLEU-4 CIDEr Accuracy

Training from scratch 72.8 83.2 68.56 50.23 43.91 35.2 109.8 68.98

FastText + ft 72.5 83.8 69.27 53.01 44.21 35.2 110.3 69.91

GrOVLE (w/o multi-task pretraining) + ft 72.7 84.1 70.03 53.88 45.26 35.1 110.4 69.36

+ multi-task pretraining w/ target task + ft 76.2 84.7 71.08 54.10 43.61 35.7 111.6 69.97

Table 4. We include results with additional models to verify trends. See text for discussion and supplementary material for more.

forgetting when fine-tuning on a new task. For an embed-

ding of size D and T tasks, K = D

T
, i.e. K = 60 in our

experiments. We evenly split the K features for tasks with

multiple datasets. Features that were tuned on a task are

ranked according to variance and frozen before training on

the next dataset/task. The end result is a pretrained word

embedding which can be “dropped in” to existing models to

improve performance across many vision-language tasks.

To verify that the multi-task GrOVLE performance im-

provements generalize across task model architecture, we

provide results using additional task models in Table 4.

More results can be found in the supplementary material.

7.1. Results

Table 3 reports results of the multi-task training proce-

dure described above. We use the best performing language

model in our comparisons for each task, i.e. Self-Attention

for image-sentence retrieval and phrase grounding, and the

LSTM language model for text-to-clip, image captioning,

and VQA. The first lines of Table 3 report the results of the

original fixed GrOVLE embedding, which should be con-

sidered the baseline. The second line of Table 3 reports per-

formance when the four-task pretrained GrOVLE is fixed

when used in the target task, i.e. the task currently being

run. The third and fourth line of Table 3 report the results

of our embedding when they were trained on all five tasks,

and kept fixed or fine-tuned for the target task, respectively.

The results of line three and four demonstrate that our

improved embedding tends to transfer better when applied

with fine-tuning during the target task. We find similar

trends in performance improvements across tasks: larger

gains occur for image-sentence retrieval with +7.9 mean

recall for the Flickr30K dataset and +6.3 for MSCOCO.

All other tasks have performance improvements under one

point, showing that while the vision-language tasks ap-

pear to transfer well without harming performance, they are

leveraged most in image-sentence retrieval, with an excep-

tion of phrase grounding accuracy on ReferIt (+2.36%).

Table 4 provides more models per task and demonstrates

consistent results: embeddings can significantly affect per-

formance and GrOVLE variants are still the best embedding

overall. As we move down the table we find even larger per-

formance improvements made by using the five-task pre-

trained GrOVLE with fine-tuning than in Table 3. This

multi-task variant is the best performing across all tasks,

thus we release this embedding for public use.

8. Conclusion

We believe there are five major findings in our experi-

ments that researchers should keep in mind when consider-

ing the language component for vision-language tasks:

1. On retrieval-style tasks, the Average Embedding and

Self-Attention language model tend to outperform a

simple LSTM.

2. Fine-tuning a word embedding for a task can signifi-

cantly impact performance.

3. For standard vision-language metrics, language fea-

tures matter most on retrieval and grounding tasks, and

less on text-to-clip and generation tasks.

4. Word embeddings trained on outside vision-language

datasets and tasks generalize to other applications.

5. Multi-task trained GrOVLE is the leading embedding

option for four of the five vision-language tasks when

used with the best corresponding language model.

We have provided evidence that language and vision

features should be treated equally when used in vision-

language tasks. When using the best embedding, lan-

guage model, and training choices, performance for tasks

with more variance can greatly improve, and tasks with

more stubborn performance metrics can be nudged fur-

ther. These insights are proposed to benefit future vision-

language work. Along with these findings, we have intro-

duced GrOVLE, which incorporates hierarchical language

relations from WordNet as well as language with visual

context from Visual Genome. In addition to these adap-

tations, we perform multi-task training with five common

vision-language tasks to further incorporate nuanced visual

information. This provides a 300-D embedding with vision-

language enhancements that is comparable to current em-

beddings and provides low variance results.
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