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Abstract

Most of the existing learning-based single image super-

resolution (SISR) methods are trained and evaluated on

simulated datasets, where the low-resolution (LR) images

are generated by applying a simple and uniform degrada-

tion (i.e., bicubic downsampling) to their high-resolution

(HR) counterparts. However, the degradations in real-

world LR images are far more complicated. As a con-

sequence, the SISR models trained on simulated data be-

come less effective when applied to practical scenarios.

In this paper, we build a real-world super-resolution (Re-

alSR) dataset where paired LR-HR images on the same

scene are captured by adjusting the focal length of a dig-

ital camera. An image registration algorithm is developed

to progressively align the image pairs at different resolu-

tions. Considering that the degradation kernels are natu-

rally non-uniform in our dataset, we present a Laplacian

pyramid based kernel prediction network (LP-KPN), which

efficiently learns per-pixel kernels to recover the HR image.

Our extensive experiments demonstrate that SISR models

trained on our RealSR dataset deliver better visual quality

with sharper edges and finer textures on real-world scenes

than those trained on simulated datasets. Though our Re-

alSR dataset is built by using only two cameras (Canon

5D3 and Nikon D810), the trained model generalizes well to

other camera devices such as Sony a7II and mobile phones.

1. Introduction

Single image super-resolution (SISR) [16] aims to re-

cover a high-resolution (HR) image from its low-resolution

(LR) observation. SISR has been an active research topic

for decades [39, 59, 46, 48, 4, 6] because of its high prac-

tical values in enhancing image details and textures. Since

SISR is a severely ill-posed inverse problem, learning im-
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(a) Image captured by Sony a7II

(b) Bicubic

(c) RCAN + BD

(d) RCAN + MD (e) RCAN + RealSR (f) LP-KPN + RealSR

Figure 1. The SISR results (×4) of (a) a real-world image cap-

tured by a Sony a7II camera. SISR results generated by (b) bicu-

bic interpolator, RCAN models [64] trained using image pairs (in

DIV2K [46]) with (c) bicubic degradation (BD), (d) multiple sim-

ulated degradations (MD) [62], and (e) authentic distortions in our

RealSR dataset. (f) SISR result by the proposed LP-KPN model

trained on our dataset. Note that our RealSR dataset is collected

by Canon 5D3 and Nikon D810 cameras.

age prior information from HR and/or LR exemplar images

[16, 14, 57, 20, 15, 8, 25, 58, 12, 21, 47, 42] plays an in-

dispensable role in recovering details from an LR image.

Benefitting from the rapid development of deep convolu-

tional neural networks (CNNs) [29], recent years have wit-

nessed an explosive spread of training CNN models to per-

form SISR, and the performance has been consistently im-

proved by designing new CNN architectures [10, 51, 43, 24,

45, 31, 65, 64] and loss functions [23, 30, 41].
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Though significant advances have been made, most of

the existing SISR methods are trained and evaluated on sim-

ulated datasets which assume simple and uniform degrada-

tion (i.e., bicubic degradation). Unfortunately, SISR mod-

els trained on such simulated datasets are hard to general-

ize to practical applications since the authentic degradations

in real-world LR images are much more complex [56, 27].

Fig. 1 shows the SISR results of a real-world image cap-

tured by a Sony a7II camera. We utilize the state-of-the-art

RCAN method [64] to train three SISR models using sim-

ulated image pairs (in DIV2K [46]) with bicubic degrada-

tion, multiple simulated degradations [62] and image pairs

with authentic distortions in our dataset to be constructed in

this paper. The results clearly show that, compared with the

simple bicubic interpolator (Fig. 1(b)), the RCAN models

trained on simulated datasets (Figs. 1(c)∼1(d)) do not show

clear advantages on real-world images.

It is thus highly desired that we can have a training

dataset consisting of real-world, instead of simulated, LR

and HR image pairs. However, constructing such a real-

world super-resolution (RealSR) dataset is a non-trivial job

since the ground-truth HR images are very difficult to ob-

tain. In this work, we aim to construct a general and prac-

tical RealSR dataset using a flexible and easy-to-reproduce

method. Specifically, we capture images of the same scene

using fixed digital single-lens reflex (DSLR) cameras with

different focal lengths. By increasing the focal length, finer

details of the scene can be naturally recorded into the cam-

era sensor. In this way, HR and LR image pairs on different

scales can be collected. However, in addition to the change

of field of view (FoV), adjusting focal length can result in

many other changes in the imaging process, such as shift

of optical center, variation of scaling factors, different ex-

posure time and lens distortion. We thus develop an effec-

tive image registration algorithm to progressively align the

image pairs such that the end-to-end training of SISR mod-

els can be performed. The constructed RealSR dataset con-

tains various indoor and outdoor scenes taken by two DSLR

cameras (Canon 5D3 and Nikon D810), providing a good

benchmark for training and evaluating SISR algorithms in

practical applications.

Compared with the previous simulated datasets, the im-

age degradation process in our RealSR dataset is much more

complicated. In particular, the degradation is spatially vari-

ant since the blur kernel varies with the depth of content in

a scene. This motivates us to train a kernel prediction net-

work (KPN) for the real-world SISR task. The idea of ker-

nel prediction is to explicitly learn a restoration kernel for

each pixel, and it has been employed in applications such

as denoising [1, 35, 49], dynamic deblurring [44, 17] and

video interpolation [36, 37]. Though effective, the memory

and computational cost of KPN is quadratically increased

with the kernel size. To obtain as competitive SISR per-

formance as using large kernel size while achieving high

computational efficiency, we propose a Laplacian pyramid

based KPN (LP-KPN) which learns per-pixel kernels for

the decomposed image pyramid. Our LP-KPN can leverage

rich information using a small kernel size, leading to effec-

tive and efficient real-world SISR performance. Figs. 1(e)

and 1(f) show the SISR results of RCAN [64] and LP-KPN

models trained on our RealSR dataset, respectively. One

can see that both of them deliver much better results than

the RCAN models trained on simulated data, while our LP-

KPN (46 conv layers) can output more distinct result than

RCAN (over 400 conv layers) using much fewer layers.

The contributions of this work are twofold:

• We build a RealSR dataset consisting of precisely

aligned HR and LR image pairs with different scal-

ing factors, providing a general purpose benchmark for

real-world SISR model training and evaluation.

• We present an LP-KPN model and validate its effi-

ciency and effectiveness in real-world SISR.

Extensive experiments are conducted to quantitatively

and qualitatively analyze the performance of our RealSR

dataset in training SISR models. Though the dataset in its

current version is built using only two cameras, the trained

SISR models exhibit good generalization capability to im-

ages captured by other types of camera devices.

2. Related Work

SISR datasets. There are several popular datasets, includ-

ing Set5 [3], Set14 [61], BSD300 [33], Urban100 [20],

Manga109 [34] and DIV2K [46] that have been widely used

for training and evaluating the SISR methods. In all these

datasets, the LR images are generally synthesized by a sim-

ple and uniform degradation process such as bicubic down-

sampling or Gaussian blurring followed by direct downsam-

pling [11]. The SISR Models trained on these simulated

data may exhibit poor performance when applied to real

LR images where the degradation deviates from the sim-

ulated ones [13]. To improve the generalization capability,

Zhang et al. [62] trained their model using multiple sim-

ulated degradations and Bulat et al. [5] used a GAN [18]

to generate the degradation process. Although these more

advanced methods can simulate more complex degradation,

there is no guarantee that such simulated degradation can

approximate the authentic degradation in practical scenar-

ios which is usually very complicated [27].

Several recent attempts have been made on capturing

real-world image pairs for SISR. Qu et al. [40] put two

cameras together with a beam splitter to collect a dataset

with paired face images. Köhler et al. [27] employed hard-

ware binning on the sensor to capture LR images and used

multiple postprocessing steps to generate different versions

of an LR image. However, both datasets were collected in
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Figure 2. Illustration of thin lens. u, v, f represent the object dis-

tance, image distance and focal length, respectively. h1 and h2

denote the size of object and image.

indoor laboratory environment and very limited number of

scenes (31 face images in [40] and 14 scenes in [27]) were

included. More recently, two contemporary datasets have

been constructed using similar strategy as ours. Chen et

al. [7] captured 100 image pairs of printed postcards at one

scaling factor, but the models trained on this dataset may

not generalize well to real-world natural scenes. Zhang et

al. [63] captured 500 scenes using multiple focal lengths.

However, the image pairs are not precisely aligned in this

dataset, making it inconvenient to evaluate the performance

of trained models on this dataset. Different from them, in

our dataset we captured images from various scenes at mul-

tiple focal lengths, and developed a systematic image reg-

istration algorithm to precisely align the image pairs, pro-

viding a general and easy-to-use benchmark for real-world

single image super-resolution.

Kernel prediction networks. Considering that the degra-

dation kernel in our RealSR dataset is spatially variant, we

propose to train a kernel prediction network (KPN) for real-

world SISR. The idea of KPN was first proposed in [1] to

denoise Monte Carlo renderings and it has proven to have

faster convergence and better stability than direct prediction

[49]. Mildenhall et al. [35] trained a KPN model for burst

denoising and obtained state-of-the-art performance on both

synthetic and real data. Similar ideas have been employed

in estimating the blur kernels in dynamic deblurring [44, 17]

or convolutional kernels in video interpolation [36, 37]. We

are among the first to train a KPN for SISR and we propose

the LP-KPN to perform kernel prediction in the scale space

with high efficiency.

3. Real-world SISR Dataset

To build a dataset for learning and evaluating real-world

SISR models, we propose to collect images of the same

scene by adjusting the lens of DSLR cameras. Sophisticated

image registration operations are then performed to gener-

ate the HR and LR pairs of the same content. The detailed

dataset construction process is presented in this section.

3.1. Image formation by thin lens

The DSLR camera imaging system can be approximated

as a thin lens [54]. An illustration of the image formation

Table 1. Number of image pairs for each camera at each scaling

factor.

Camera Canon 5D3 Nikon D810

Scale ×2 ×3 ×4 ×2 ×3 ×4

# image pairs 86 117 86 97 117 92

process by thin lens is shown in Fig. 2. We denote the object

distance, image distance and focal length by u, v, f , and de-

note the size of object and image by h1 and h2, respectively.

The lens equation is defined as follows [54]:

1

f
=

1

u
+

1

v
. (1)

The magnification factor M is defined as the ratio of the

image size to the object size:

M =
h2

h1
=

v

u
. (2)

In our case, the static images are taken at a distance (i.e.,

u) larger than 3.0m. Both h1 and u are fixed and u is much

larger than f (the largest f is 105mm). Combining Eq. (1)

and Eq. (2), and considering the fact that u ≫ f , we have:

h2 =
f

u− f
h1 ≈

f

u
h1. (3)

Therefore, h2 is approximately linear to f . By increasing

the focal length f , larger images with finer details will be

recorded in the camera sensor. The scaling factor can also

be controlled (in theory) by choosing specific values of f .

3.2. Data collection

We used two full frame DSLR cameras (Canon 5D3 and

Nikon D810) to capture images for data collection. The

resolution of Canon 5D3 is 5760× 3840, and that of Nikon

D810 is 7360 × 4912. To cover the common scaling fac-

tors (e.g., ×2,×3,×4) used in most previous SISR datasets,

both cameras were equipped with one 24∼105mm, f /4.0

zoom lens. For each scene, we took photos using four focal

lengths: 105mm, 50mm, 35mm, and 28mm. Images taken

by the largest focal length are used to generate the ground-

truth HR images, and images taken by the other three focal

lengths are used to generate the LR versions. We choose

28mm rather than 24mm because lens distortion at 24mm is

more difficult to correct in post-processing, which results in

less satisfied quality in image pair registration.

The camera was set to aperture priority mode and the

aperture was adjusted according to the depth-of-field (DoF)

[53]. Basically, the selected aperture value should make

the DoF large enough to cover the scene and avoid severe

diffraction. Small ISO is preferred to alleviate noise. The

focus, white balance, and exposure were set to automatic

mode. The center-weighted metering option was selected

since only the center region of captured images were used
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Figure 3. Illustration of our image pair registration process.

in our final dataset. For stabilization, the camera was fixed

on a tripod and a bluetooth remote controller was used to

control the shutter. Besides, lens stabilization was turned

off and the reflector was pre-rised when taking photos.

To ensure the generality of our dataset, we took photos

in both indoor and outdoor environment. Scenes with abun-

dant texture are preferred considering that the main purpose

of super-resolution is to recover or enhance image details.

For each scene, we first captured the image at 105mm focal

length and then manually decreased the focal length to take

three down-scaled versions. 234 scenes were captured, and

there are no overlapped scenes between the two cameras.

After discarding images having moving objects, inappro-

priate exposure, and blur, we have 595 HR and LR image

pairs in total. The numbers of image pairs for each camera

at each scaling factor are listed in Table 1.

3.3. Image pair registration

Although it is easy to collect images on different scales

by zooming the lens of a DSLR camera, it is difficult to

obtain pixel-wise aligned image pairs because the zooming

of lens brings many uncontrollable changes. Specifically,

images taken at different focal lengths suffer from differ-

ent lens distortions and usually have different exposures.

Moreover, the optical center will also shift when zoom-

ing the focal length because of the inherent defect of lens

[55]. Even the scaling factors are varying slightly because

the lens equation (Eq. (1)) cannot be precisely satisfied in

practical focusing process. With the above factors, none of

the existing image registration algorithms can be directly

used to obtain accurate pixel-wise registration of two im-

ages captured under different focal length. We thus develop

an image registration algorithm to progressively align such

image pairs to build our RealSR dataset.

The registration process is illustrated in Fig. 3. We first

import the images with meta information into PhotoShop to

correct the lens distortion. However, this step cannot per-

fectly correct the lens distortion especially for the region

distant from the optical center. We thus further crop the

interested region around the center of the image, where dis-

tortion is not severe and can be well corrected. The cropped

region from the image taken at 105mm focal length is used

as the ground-truth HR image, whose LR counterparts are to

be registered from images taken at 50mm, 35mm, or 28mm

focal length. Due to the large difference of resolution and

small changes in luminance between images taken at differ-

ent focal lengths, those sparse keypoint based image regis-

tration algorithms such as SURF [2] and SIFT [32] cannot

always achieve pixel-wise registration, which is necessary

for our dataset. To obtain accurate image pair registration,

we develop a pixel-wise registration algorithm which simul-

taneously considers luminance adjustment. Denote by IH

and IL the HR image and the LR image to be registered,

our algorithm minimizes the following objective function:

min
τ

||αC(τ ◦ IL) + β − IH ||pp, (4)

where τ is an affine transformation matrix, C is a cropping

operation which makes the transformed IL have the same

size as IH , α and β are luminance adjustment parameters,

|| · ||p is a robust Lp-norm (p ≤ 1), e.g., L1-norm.

The above objective function is solved in an iterative

manner. At the beginning, according to Eq. (3), the τ

is initialized as a scaling transformation with scaling fac-

tor calculated as the ratio of two focal lengths. Let I′L =
C(τ ◦ IL). With I

′

L and IH fixed, the parameters for lumi-

nance adjustment can be obtained by α = std(IH)/std(I′L)
and β = mean(IH)−αmean(I′L), which can ensure I′L hav-

ing the same pixel mean and variance as IH after luminance

adjustment. Then we solve the affine transformation matrix

τ with α and β fixed. According to [38, 60], the objec-

tive function w.r.t. τ is nonlinear, which can be iteratively

solved by a locally linear approximation:

min
∆τ

||αC(τ ◦ IL) + β + αJ∆τ − IH ||pp, (5)

where J is the Jacobian matrix of C(τ ◦ IL) w.r.t. τ ,

and this objective function can be solved by an iteratively

reweighted least square problem (IRLS) as follows [9]:

min
∆τ

||w ⊙ (A∆τ − b)||22, (6)

where A = αJ, b = IH − (αC(τ ◦ IL) + β), w is the

weight matrix and ⊙ denotes element-wise multiplication.

Then we can obtain:

∆τ = (A′diag(w)2A)−1
A

′diag(w)2b, (7)

and τ can be updated by: τ = τ +∆τ .

We iteratively estimate the luminance adjustment param-

eters and the affine transformation matrix. The optimization

process converges within 5 iterations since our prior infor-

mation of the scaling factor provides a good initialization of

τ . After convergence, we can obtain the aligned LR image

as IAL = αC(τ ◦ IL) + β.

4. Laplacian Pyramid based Kernel Prediction

Network

In Section 3, we have constructed a new real-world

super-resolution (RealSR) dataset, which consists of pixel-
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Figure 4. Framework of the Laplacian pyramid based kernel prediction network. By decomposing the image into a Laplacian pyramid,

using small kernels can leverage rich neighborhood information for super-resolution.

wise aligned HR and LR image pairs {IH , IAL} of size h×w.

Now the problem turns to how to learn an effective network

to enhance IAL to IH . For LR images in our RealSR dataset,

the blur kernel varies with the depth in a scene [52] and the

DoF [53] changes with the focal length. Training an SISR

model which directly transforms the LR image to the HR

image, as done in most of the previous CNN based SISR

methods, may not be the cost-effective way. We therefore

propose to train a kernel prediction network (KPN) which

explicitly learns an individual kernel for each pixel. Com-

pared with those direct pixel synthesis networks, KPN has

proven to have advantages in efficiency, interpretability and

generalization capability in tasks of denoising, dynamic de-

blurring, etc., [1, 35, 49, 44, 17, 28].

The KPN takes the IAL as input and outputs a kernel ten-

sor T ∈ R(k×k)×h×w, in which each vector in channel di-

mension T(i, j) ∈ R(k×k) can be reshaped into a k × k
kernel K(i, j). The reshaped per-pixel kernel K(i, j) is ap-

plied to the k×k neighborhood of each pixel in the input LR

image IAL(i, j) to reproduce the HR output. The predicted

HR image, denoted by IPH , is obtained by:

IPH(i, j) = 〈K(i, j), V (IAL(i, j))〉, (8)

where V (IAL(i, j)) represents a k×k neighborhood of pixel

IAL(i, j) and 〈·〉 denotes the inner product operation.

Eq. (8) shows that the output pixel is a weighted lin-

ear combination of the neighboring pixels in the input im-

age. To obtain good performance, a large kernel size is

necessary to leverage richer neighborhood information, es-

pecially when only a single frame image is used. On the

other hand, the predicted kernel tensor T grows quadrati-

cally with the kernel size k, which can result in high com-

putational and memory cost in practical applications. In or-

der to train a both effective and efficient KPN, we propose

a Laplacian pyramid based KPN (LP-KPN).

The framework of our LP-KPN is shown in Fig. 4. As in

many SR methods [31, 48], our model works on the Y chan-

nel of YCbCr space. The Laplacian pyramid decomposes an

image into several levels of sub-images with downsampled

resolution and the decomposed images can exactly recon-

struct the original image. Using this property, the Y channel

of an LR input image IAL is decomposed into a three-level

image pyramid {S0,S1,S2}, where S0 ∈ Rh×w, S1 ∈

R
h

2
×

w

2 , and S2 ∈ R
h

4
×

w

4 . Our LP-KPN takes the LR im-

age as input and predicts three kernel tensors {T0,T1,T2}
for the image pyramid, where T0 ∈ R(k×k)×h×w, T1 ∈
R(k×k)×h

2
×

w

2 , and T2 ∈ R(k×k)×h

4
×

w

4 . The learned ker-

nel tensors {T0,T1,T2} are applied to the corresponding

image pyramid {S0,S1,S2}, using the operation in Eq. (8),

to restore the Laplacian decomposition of HR image at each

level. Finally, the Laplacian pyramid reconstruction is con-

ducted to obtain the HR image. Benefitting from the Lapla-

cian pyramid, learning three k × k kernels can equally lead

to a receptive field with size 4k × 4k at the original reso-

lution, which significantly reduces the computational cost

compared to directly learning one 4k × 4k kernel.

The backbone of our LP-KPN consists of 17 residual

blocks, with each residual block containing 2 convolutional

layers and a ReLU function (similar structure to [31]). To

improve the efficiency, we shuffle [43] the input LR image

with factor 1
4 (namely, the h × w image is shuffled to 16

h
4 × w

4 images) and input the shuffled images to the net-

work. Most convolutional blocks are shared by the three
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Table 2. Average PSNR (dB) and SSIM indices on our RealSR testing set by different methods (trained on different datasets).

Metric Scale Bicubic
VDSR [24] SRResNet [30] RCAN [64]

BD MD Our BD MD Our BD MD Our

PSNR

×2 32.61 32.63 32.65 33.64 32.66 32.69 33.69 32.91 32.92 33.87
×3 29.34 29.40 29.43 30.14 29.46 29.47 30.18 29.66 29.69 30.40
×4 27.99 28.03 28.06 28.63 28.09 28.12 28.67 28.28 28.31 28.88

SSIM

×2 0.907 0.907 0.908 0.917 0.908 0.909 0.919 0.910 0.912 0.922
×3 0.841 0.842 0.845 0.856 0.844 0.846 0.859 0.847 0.851 0.862
×4 0.806 0.806 0.807 0.821 0.806 0.808 0.824 0.811 0.813 0.826

levels of kernels except for the last few layers. One ×4
and one ×2 shuffle operation are performed to upsample the

spatial resolution of the latent image representations at two

lower levels, followed by individual convolutional blocks.

Our LP-KPN has a total of 46 convolutional layers, which

is much less than the previous state-of-the-art SISR mod-

els [31, 65, 64]. The detailed network architecture can be

found in the supplementary material. The L2-norm loss

function L(IH , IPH) = ||IH − IPH ||22 is employed to mini-

mize the pixel-wise distance between the model prediction

IPH and the ground-truth HR image IH .

5. Experiments

Experimental setup. The number of image pairs in our

RealSR dataset is reported in Table 1. We randomly se-

lected 15 image pairs at each scaling factor for each camera

to form the testing set, while using the remaining image

pairs as training set. Except for cross-camera testing, im-

ages from both the Canon and Nikon cameras were com-

bined for training and testing. Following the previous work

[31, 64, 48], the SISR results were evaluated using PSNR

and SSIM [50] indices on the Y channel in the YCbCr

space. The height and width of images lie in the range of

[700, 3100] and [600, 3500], respectively. We cropped the

training images into 192× 192 patches to train all the mod-

els. Data augmentation was performed by randomly rotat-

ing 90◦, 180◦, 270◦ and horizontally flipping the input. The

mini-batch size in all the experiments was set to 16.

All SISR models were initialized using the method in

[19]. The Adam solver [26] with the default parameters

(β1 = 0.9, β2 = 0.999 and ǫ = 10−8) was adopted to op-

timize the network parameters. The learning rate was fixed

at 10−4 and all the networks were trained for 1, 000K it-

erations. All the comparing models were trained using the

Caffe [22] toolbox, and tested using Caffe MATLAB inter-

face. All the experiments were conducted on a PC equipped

with an Intel Core i7-7820X CPU, 128G RAM and a sin-

gle Nvidia Quadro GV100 GPU (32G). Our dataset and

source code can be downloaded at https://github.

com/csjcai/RealSR.

5.1. Simulated SISR datasets vs. RealSR dataset

To demonstrate the advantages of our RealSR dataset,

we conduct experiments to compare the real-world super-

resolution performance of SISR models trained on simu-

lated datasets and RealSR dataset. Considering that most

state-of-the-art SISR models were trained on DIV2K [46]

dataset, we employed the DIV2K to generate simulated im-

age pairs with bicubic degradation (BD) and multiple degra-

dations (MD) [62]. We selected three representative and

state-of-the-art SISR networks, i.e., VDSR [24], SRResNet

[30] and RCAN [64], and trained them on the BD, MD and

RealSR training datasets for each of the three scaling fac-

tors (×2, ×3, ×4), leading to a total of 27 SISR models. To

keep the network structures of SRResNet and RCAN un-

changed, the input images were shuffled with factor 1
2 ,

1
3 ,

1
4

for the three scaling factors ×2, ×3, ×4, respectively.

We applied the 27 trained SISR models to the RealSR

testing set, and the average PSNR and SSIM indices are

listed in Table 2. The baseline bicubic interpolator is also

included for comparison. One can see that, on our RealSR

testing set, the VDSR and SRResNet models trained on the

simulated BD dataset can only achieve comparable perfor-

mance to the simple bicubic interpolator. Training on the

MD dataset brings marginal improvements over BD, which

indicates that the authentic degradation in real-world im-

ages is difficult to simulate. Employing a deeper architec-

ture, the RCAN (>400 layers) can improve (0.2dB∼0.3dB)

the performance over VDSR and SRResNet on all cases.

Using the same network architecture, SISR models

trained on our RealSR dataset obtain significantly better

performance than those trained on BD and MD datasets

for all the three scaling factors. Specifically, for scaling

factor ×2, the models trained on our RealSR dataset have

about 1.0dB improvement on average for all the three net-

work architectures. The advantage is also significant for

scaling factors ×3 and ×4. In Fig. 5, we visualize the

super-resolved images obtained by different models. As can

be seen, the SISR results generated by models trained on

simulated BD and MD datasets tend to have blurring edges

with obvious artifacts. On the contrary, models trained on

our RealSR dataset recover clearer and more natural im-

age details. More visual examples can be found in the

supplementary file.

5.2. SISR models trained on RealSR dataset

To demonstrate the efficiency and effectiveness of the

proposed LP-KPN, we then compare it with 8 SISR mod-
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Image captured by Canon 5D3

HR Bicubic SRResNet + BD SRResNet + MD SRResNet + RealSR

VDSR + MD VDSR + RealSR RCAN + BD RCAN + MD RCAN + RealSR

Image captured by Nikon D810

HR Bicubic SRResNet + BD SRResNet + MD SRResNet + RealSR

VDSR + MD VDSR + RealSR RCAN + BD RCAN + MD RCAN + RealSR

Figure 5. SR results (×4) on our RealSR testing set by different methods (trained on different datasets).

Table 3. Average PSNR (dB) and SSIM indices for different mod-

els (trained on our RealSR training set) on our RealSR testing set.

Method
PSNR SSIM

×2 ×3 ×4 ×2 ×3 ×4

Bicubic 32.61 29.34 27.99 0.907 0.841 0.806

VDSR 33.64 30.14 28.63 0.917 0.856 0.821
SRResNet 33.69 30.18 28.67 0.919 0.859 0.824
RCAN 33.87 30.40 28.88 0.922 0.862 0.826

DPS 33.71 30.20 28.69 0.919 0.859 0.824
KPN, k = 5 33.75 30.26 28.74 0.920 0.860 0.826
KPN, k = 7 33.78 30.29 28.78 0.921 0.861 0.827
KPN, k = 13 33.83 30.35 28.85 0.923 0.862 0.828
KPN, k = 19 33.86 30.39 28.90 0.924 0.864 0.830

Our, k = 5 33.90 30.42 28.92 0.927 0.868 0.834

els, including VDSR, SRResNet, RCAN, a baseline direct

pixel synthesis (DPS) network and four KPN models with

kernel size k = 5, 7, 13, 19. The DPS and the four KPN

models share the same backbone as our LP-KPN. All mod-

els are trained and tested on our RealSR dataset. The PSNR

and SSIM indices of all the competing models as well as the

bicubic baseline are listed in Table 3.

One can notice that among the four direct pixel synthesis

networks (i.e., VDSR, SRResNet, RCAN and DPS), RCAN

obtains the best performance because of its very deep archi-

tecture (over 400 layers). Using the same backbone with

less than 50 layers, the KPN with 5× 5 kernel size already

outperforms the DPS. Using larger kernel size consistently

brings better results for the KPN architecture, and it obtains

comparable performance to the RCAN when the kernel size

increases to 19. Benefitting from the Laplacian pyramid

decomposition strategy, our LP-KPN using three different

5×5 kernels achieves even better results than the KPN with

19×19 kernel. The proposed LP-KPN obtains the best per-

formance but with the lowest computational cost for all the

three scaling factors. The detailed complexity analysis and

visual examples of the SISR results by the competing mod-

els can be found in the supplementary file.

5.3. Crosscamera testing

To evaluate the generalization capability of SISR models

trained on our RealSR dataset, we conduct a cross-camera

testing. Images taken by two cameras are divided into train-

ing and testing sets, separately, with 15 testing images for

each camera at each scaling factor. The three scales of im-

ages are combined for training, and models trained on one

camera are tested on the testing sets of both cameras. The

LP-KPN and RCAN models are compared in this evalua-

tion, and the PSNR indexes are reported in Table 4.

It can be seen that for both RCAN and LP-KPN, the

cross-camera testing results are comparable to the in-

camera setting with only about 0.32dB and 0.30dB gap,

respectively, while both are much better than bicubic inter-

polator. This indicates that the SISR models trained on one

camera can generalize well to the other camera. This is pos-

sibly because our RealSR dataset contains various degra-

dations produced by the camera lens and image formation
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Image captured by iPhone X

Bicubic RCAN + BD RCAN + MD

RCAN + RealSR KPN (k = 19) + RealSR LP-KPN + RealSR

Image captured by Google Pixel 2

Bicubic RCAN + BD RCAN + MD

RCAN + RealSR KPN (k = 19) + RealSR LP-KPN + RealSR

Figure 6. SISR results (×4) of real-world images outside our dataset. Images are captured by iPhone X and Google Pixel 2.

Table 4. Average PSNR (dB) index for cross-camera evaluation.

Tested Scale Bicubic

RCAN LP-KPN

(Trained) (Trained)

Canon Nikon Canon Nikon

Canon

×2 33.05 34.34 34.11 34.38 34.18
×3 29.67 30.65 30.28 30.69 30.33
×4 28.31 29.46 29.04 29.48 29.10

Nikon

×2 31.66 32.01 32.30 32.05 32.33
×3 28.63 29.30 29.75 29.34 29.78
×4 27.28 27.98 28.12 28.01 28.13

process, which share similar properties across cameras. Be-

tween RCAN and LP-KPN models, the former has more

parameters and thus is easier to overfit to the training set,

delivering slightly worse generalization capability than LP-

KPN. Similar observation has been found in [1, 49, 35].

5.4. Tests on images outside our dataset

To further validate the generalization capability of our

RealSR dataset and LP-KPN model, we evaluate our trained

model as well as several competitors on images outside our

dataset, including images taken by one Sony a7II DSLR

camera and two mobile cameras (i.e., iPhone X and Google

Pixel 2). Since there are no ground-truth HR versions of

these images, we visualize the super-resolved results in Fig.

1 and Fig. 6. In all these cases, the LP-KPN trained on our

RealSR dataset obtains better visual quality than the com-

petitors, recovering more natural and clearer details. More

examples can be found in the supplementary file.

6. Conclusion

It has been a long standing problem for SISR research

that the models trained on simulated datasets can hardly

generalize to real-world images. We made an attempt to ad-

dress this issue, and constructed a real-world super-solution

(RealSR) dataset with authentic degradations. One Canon

and one Nikon cameras were used to collect 595 HR and LR

image pairs, and an effective image registration algorithm

was developed to ensure accurate pixel-wise alignment be-

tween image pairs. A Laplacian pyramid based kernel pre-

diction network was also proposed to perform efficient and

effective real-world SISR. Our extensive experiments vali-

dated that the models trained on our RealSR dataset can lead

to much better real-world SISR results than trained on ex-

isting simulated datasets, showing good generalization ca-

pability to other cameras. In the future, we will enlarge the

RealSR dataset by collecting more image pairs with more

types of cameras, and investigate new SISR model training

strategies on it.
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