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Abstract

In this paper, we are interested in pose estimation of an-

imals. Animals usually exhibit a wide range of variations

on poses and there is no available animal pose dataset for

training and testing. To address this problem, we build an

animal pose dataset to facilitate training and evaluation.

Considering the heavy labor needed to label dataset and it

is impossible to label data for all concerned animal species,

we, therefore, proposed a novel cross-domain adaptation

method to transform the animal pose knowledge from la-

beled animal classes to unlabeled animal classes. We use

the modest animal pose dataset to adapt learned knowl-

edge to multiple animals species. Moreover, humans also

share skeleton similarities with some animals (especially

four-footed mammals). Therefore, the easily available hu-

man pose dataset, which is of a much larger scale than our

labeled animal dataset, provides important prior knowledge

to boost up the performance on animal pose estimation. Ex-

periments show that our proposed method leverages these

pieces of prior knowledge well and achieves convincing re-

sults on animal pose estimation.

1. Introduction

In this paper, we aim to tackle the animal pose esti-

mation problem, which has a wide range of applications

in zoology, ecology, biology, and entertainment. Previous

works [14, 6, 8, 48] only focused on human pose estimation

and achieved promising results. The success of human pose

estimation is based on large-scale datasets [35, 1]. The lack

of a well-labeled animal pose dataset makes it extremely

difficult for existing methods to achieve competitive perfor-

mance on animal pose estimation.

In practice, it is impossible to label all types of animals

∗Part of this work was done when Jinkun Cao and Hongyang Tang were

research interns in Tencent. They contribute equally.
†Cewu Lu is the corresponding author: lucewu@sjtu.edu.cn
‡Cewu Lu is a member of MoE Key Lab of Artificial Intelligence, AI

Institute, Shanghai Jiao Tong University

considering there are more than million species of animals

and they have different appearances. Thus, we need to ex-

ploit some useful prior that can help us to solve this prob-

lem, and we have identified three major priors. First, pose

similarity between humans and animals or among animals

is important supplementary information if we are targeting

for four-legged mammals. Second, we already have large-

scale datasets (e.g. [35]) of animals with other kinds of an-

notation which will help to understand animal appearance.

Third, considering the anatomical similarities between ani-

mals, pose information of a certain class of animals is help-

ful to estimate animals’ pose of other classes if they share a

certain degree of similarity.

With the priors above, we propose a novel method to

leverage two large-scale datasets, namely pose-labeled hu-

man dataset and box-labeled animal dataset, and a small

pose-labeled animal dataset to facilitate animal pose esti-

mation. In our method, we begin from a model pretrained

on human data, then design a “weakly- and semi-supervised

cross-domain adaptation”(WS-CDA) scheme to better ex-

tract cross-domain common features. It consists of three

parts: feature extractor, domain discriminator and the key-

point estimator. The feature extractor extracts features

from input data, based on which the domain discrimina-

tor tries to distinguish which domain they come from and

the keypoint estimator predicts keypoints. With keypoint es-

timator and domain discriminator optimized adversarially,

the discriminator encourages the network to be adaptive to

training data from different domains. This improves pose

estimation with cross-domain shared information.

After WS-CDA, the model already has the pose knowl-

edge for some animals. But it still does not perform well on

a specific unseen animal class because no supervised knowl-

edge is obtained from this class. Targeting to improve it, we

propose a model optimization mechanism called “Progres-

sive Pseudo-label-based Optimization”(PPLO). The key-

points prediction on animals of new species is optimized

using the pseudo-labels which is generated based on se-

lected prediction output by the current model. The insight

is that animals of different kinds often share many simi-
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Figure 1: Some samples from the Animal-Pose dataset.

larities, such as limb proportion and frequent gesture, pro-

viding prior to inferring animal pose. And the prediction

with high confidence is expected to be quite close to ground

truth, thus bringing augmented data into training with little

noise. A self-paced strategy [30, 27] is adopted to select

pseudo-label and to alleviate noise from unreliable pseudo

labels. An alternating training approach is designed to en-

courage model optimization in a progressive way.

We build an animal pose dataset by extending [3] to pro-

vide basic knowledge for model training and evaluation.

Five classes of four-legged mammals are included in this

dataset: dog, cat, horse, sheep, cow. To better fuse the pose

knowledge from human dataset and animal dataset, the an-

notation format of pose for this dataset is made easy to be

aligned to that of popular human pose dataset[35].

Experimental results show that our approach solves the

animal pose estimation problem effectively. Specifically,

we achieve 65.7 mAP on test set with a very limited amount

of pose-labeled animal data involved in training, close to

the state-of-the-art level of accuracy for human pose esti-

mation. And more importantly, our approach gives promis-

ing results on cross-domain animal pose estimation, which

can achieve 50+ mAP on unseen animal classes without any

pose-labeled data for it.

2. Related Work

Pose estimation focuses on predicting body joints on de-

tected objects. Traditional pose estimation is performed on

human samples [35, 14, 41, 18, 48]. Some works also focus

on the pose of specific body parts, such as hands [10, 29]

and face [38, 12, 32]. Besides these traditional applica-

tions, animal pose estimation brings value in many appli-

cation scenarios, such as shape modeling [60]. However,

even though some works study the face landmarks of ani-

mals [42, 52, 47], the skeleton detection on animals is rarely

studied and faces many challenges. And the lack of large-

scale annotated animal pose datasets is the first problem to

come. Labeling data manually is labor-intensive and it be-

comes even unrealistic to gain well-labeled data for all tar-

get animal classes when considering the diversity.

The rise of deep neural models [23, 31] brings data

hunger to develop a customized high-powered model on

multiple tasks. Data hunger thus becomes common when

trying to train a fully supervised model. To tackle this prob-

lem, many techniques are proposed [44, 45, 55]. Because,

commonly, different datasets share similar feature distri-

bution, especially when their data is sampled from close

domains. To leverage such cross-domain shared knowl-

edge, domain adaptation [49, 15] has been widely stud-

ied on different tasks, such as detection [7, 26], classifica-

tion [19, 21, 17, 16], segmentation [59, 54, 16] and pose

estimation [57, 46]. But in previous works about keypoint

detection or pose estimation [9, 57, 53, 56], source domain

and target domain face much slighter domain shift than

when transferring from human dataset to animals or among

different animal species. Besides, some extra information

might be available for easier knowledge transfer, such as

view consistency [57], attribute attached to samples [17] or

morphological similarity [53, 56].

Domain adaptation becomes very difficult when domains

face severe domain shift and no extra information is avail-

able to align feature representation on different domains,
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just as faced when adopting domain adaptation to animal

pose estimation. A key idea in similar cases[13, 36, 49] is to

extract and leverage more cross-domain common features to

help the final task. To reach this goal, some works [36, 49]

use weight-shared modules for cross-domain feature extrac-

tion. And extracted features are aligned [36] to be repre-

sented with a more similar distribution. Besides, adversar-

ial networks [5, 50, 4] or simply an adversarial loss [49, 17]

are also used to confuse networks to focus more on domain-

invariant features. In addition to the improvement of model

design, data augmentation on the target domain also attracts

much attention for domain adaptation. From this perspec-

tive, GAN [20, 58, 37, 33] raises many interesting tem-

ples [26, 25]. But existing works still only tackle easier

tasks such as object detection and when domain shift can

not be well imitated by style transfer, GANs is less helpful

for data augmentation. On the other hand, some works also

use ’pseudo-label’ for data augmentation [26, 59, 28]. In

these works, confident enough prediction on target domain

data is regarded as ’pseudo ground truth’ and put into train-

ing. For these works, how to select and use pseudo labels in

training is critical and some special learning strategies are

sometimes designed for it [59, 30, 27].

When the issue comes to the domain adaptation for an-

imal pose estimation, all aforementioned schemes show

some shortcomings. Compared with object detection [26]

or classification [17], pose estimation is much more compli-

cated and variance for pose estimation of different animals

is more than texture or style difference. To this end, we pro-

pose a novel method for our task, where some popular ideas

are also put into use after improvement.

3. Preliminaries

3.1. Animal Pose Dataset

As there are few available pose-labeled animal datasets,

in order to objectively evaluate the performance on ani-

mal pose estimation and to gain basic knowledge under

weak supervision, we build a pose-labeled animal dataset.

Luckily, a dataset [2, 3] of pose-labeled instances from

VOC2011 [11] is publicly available. We extend its annota-

tion on five selected mammals: dog, cat, horse, sheep, cow.

It helps to align annotation format with a popular human-

keypoint format for better leveraging knowledge from hu-

man data. In this dataset, 5,517 instances of these 5 cat-

egories are distributed in more than 3,000 images. After

annotation expanding, at most 20 keypoints are available on

animal instances, including 4 Paws, 2 Eyes, 2 Ears, 4 El-

bows, Nose, Throat, Withers and Tailbase, and the 4 knees

points labeled by us. Such animal pose annotation can be

aligned to that defined in popular COCO [35] dataset by

selecting within 17 keypoints. Some dataset samples are

shown in Fig 1. To build such a novel dataset, only very

Figure 2: The length proportion of each defined “bones” for

different classes.

slight labor work is involved. Domain shift between ani-

mals’ pose and humans’ pose comes mostly from the dif-

ference of their skeleton configuration, which can’t be im-

itated by style transfer as the texture difference. We define

18 “bones” (link of two adjacent joints) to help explanation

on it as same as those in COCO dataset. We calculate the

relative length proportion of “bones” on average of different

classes. Results are shown in Fig 2. Some different classes

of animals suffer from much slighter skeleton discrepancy

than animals and humans do, which reflects the severity of

domain shift different domains suffering from.

3.2. Problem Statement

In this paper, we aim to estimate pose configuration of

animals, especially four-legged mammals. With large-scale

human pose datasets and a handful of labeled animal sam-

ples available, the problem is translated into a domain adap-

tion problem that we estimate pose on unseen animals with

the help of knowledge from pose-labeled domains. This

problem is formulated precisely as below.

A pose-labeled dataset is denoted as D̄ consisting of both

human images and mammal images:

D̄ = {D̄H} ∪ {D̄Ai
|1 ≤ i ≤ m} (1)

where m animal species are contained and human dataset

D̄H is much larger than animal datasets D̄A.

Each instance Ī ∈ D̄ possesses a pose ground-truth

Y (Ī) ∈ R
d×2, which is a matrix containing ordered key-

point coordinates. Our goal is to predict underlying key-

points of unlabeled animal samples I ∈ D. Their latent

pose ground truth is denoted as Ŷ (I) and is expected to be

described in a uniform format with Y (Ī). Therefore, we

formulate our task as to train a model:

Gθ : RH×W −→ R
d×2 (2)
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Gθ takes an image of unseen animal species as input and

predicts keypoints on it. Since prior knowledge is gained

from both human data or labeled animal species, which have

obvious domain shift with those unlabeled animal species.

This task can thus be summarized as a cross-domain adap-

tation for animal pose estimation.

4. Proposed Architecture

Knowledge from both human dataset and animal dataset

is helpful to estimate animal pose, but there exists a data

imbalance problem: pose-labeled animal dataset is small

but has slighter domain shift with the target domain while

the pose-labeled human dataset is much larger but suf-

fers from more severe domain shift. In Section 4.1, we

design a “Weakly- and Semi- Supervised Cross-domain

Adaptation”(WS-CDA) scheme to alleviate such flaw and

to better learn cross-domain shared features. In Section 4.2,

we introduce designed “Progressive Pseudo-Label-based

Optimization” (PPLO) strategy to boost model performance

on target domain referring to ‘pseudo-labels’ for data aug-

mentation. The final model is pre-trained through WS-CDA

and boosted under PPLO.

4.1. Weakly­ and Semi­ supervised cross­domain
adaptation(WS­CDA)

If a model can learn more cross-domain shared features,

it’s reasonable to expect it to perform more robustly when

facing domain shift. But single-domain data usually leads

the model to learn more domain-specific and untransferable

features. Based on such observations, we design WS-CDA

to leverage as strong as possible cross-domain shared fea-

tures for pose estimation on unseen classes.

Network Design As shown in Fig 3, there are three

sources of input data. The first is the large-scale pose-

labeled human dataset, the second is a smaller pose-labeled

animal dataset and the last is pose-unlabeled animal sam-

ples of an unseen class. This design uses semi-supervision

because few animal samples are annotated, and weak-

supervision because a large part of animal data is only la-

beled at a lower level (only bounding boxes are labeled).

There are four modules used in WS-CDA: 1) All data is

first fed into a CNN-based module called feature extractor

to generate feature maps; 2) All feature maps would go into

a domain discriminator which distinguishes the input fea-

ture maps generated from which domain; 3) Feature maps

from pose-labeled samples are also forwarded to a keypoint

estimator for supervised learning of pose estimation; 4) a

domain adaptation network is inserted to align the feature

representation for following animal keypoint estimation.

The losses of domain discriminator and keypoint estima-

tor are set to be adversarial. As pose estimation is the main

task, the domain discriminator serves for domain confusion

during feature extraction. Through this design, the model

is expected to perform better on pose-unlabeled samples by

leveraging better features that are shared on domains.

Loss Functions The domain discrimination loss(DDL) is

defined based on cross-entropy loss as:

LDDL =− w1

N
∑

i=1

(yilog(ŷi) + (1− yi)log(1− ŷi))

−

N
∑

i=1

yi(zilog(ẑi) + (1− zi)log(1− ẑi)),

(3)

where yi indicates whether xi is a human/animal

sample(yi = 1 for animals and yi = 0 for human); zi in-

dicates whether xi comes from the target domain (zi = 1
if it is pose-unlabeled sample and otherwise zi = 0). ŷi
and ẑi are predictions by the domain discriminator. w1 is a

weighting factor.

Pose-labeled animal and human samples boost the key-

point estimator together under supervision, yielding the

“Animal Pose Estimation Loss” (APEL) and “Human Pose

Estimation Loss”(HPEL). The overall loss for pose estima-

tion is as follows,

Lpose =

N
∑

i=1

(w2yiLA(Ii) + (1− yi)LH(Ii)), (4)

where LH and LA indicate loss function of HPEL and

APEL respectively and are usually both mean-square er-

ror. w2 is weighting factor to alleviate the effect of dataset

volume gap. Considering much more pose-labeled human

samples are put into training than animal samples, without

w2 > 1, model tends to perform almost equivalent to only

trained on human samples.

Integrated optimization target of the framework is thus

formulated as:

LWS−CDA = αLDDL + βLpose, (5)

with αβ < 0, domain discriminator and keypoint estimator

are optimized adversarially, encouraging domain confusion

and boosting pose estimation performance at the same time.

4.2. Progressive Pseudo­label­based Optimization
(PPLO)

In this section, we discuss strategies designed to leverage

pose-unlabeled animal samples to further boost model per-

formance. The intuition is to approximate the underlying

labels starting from the rough estimation by a ’basically-

reliable’ model and to select predictions on target domain

with high confidence for training. These predictions are
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Figure 3: Pipelines in WS-CDA. Lines with color describe the flow of features along different paths. “DDL” indicates the

domain discrimination loss. “APEL” and “HPEL” indicate animal/human pose estimation loss respectively. The cooperation

of keypoint estimator and domain discriminator does not just improves the pose estimation capacity on pose-labeled samples

but also forces the model to gain this through better extracting and leveraging common features shared by pose-labeled and

pose-unlabeled samples.

called “pseudo-labels” as introduced in [28, 26]. Consid-

ering the reliability degree of the model in different stages,

we introduce an optimization method in a self-paced and

alternating style for training with pseudo-labels involved.

These innovations are concluded as “Progressive Pseudo-

label-based Optimization” (PPLO) for convenience.

4.2.1 Joint learning for domain adaptation

In transfer learning practice, given the ground truth on both

domains, adaptation can be performed in a jointly super-

vised scheme, which is formulated as:

Ljoint = Lsource + Ltarget

=

S
∑

i=1

LS(I
S
i , G

S
Ii
) +

T
∑

j=1

LT (I
T
j , G

T
Ij
)

(6)

where LS and LT are loss functions for training data re-

spectively from source/target domain. ITj and ISi are sam-

ples from source/target domain whose ground truth labels

are respectively GIS
i

and GIT
j

.

However, for unsupervised domain adaptation, this pro-

cess gets stuck because no ground truth label is available on

the target domain. As a sub-optimal choice, “pseudo-label”

is introduced to fill the vacancy of it. The loss on target

domain in Eq 6 is transformed into:

Ltarget =

T
∑

j=1

LT (I
T
j , P

T
Ij
) (7)

where ground truth label is replaced by the selected pseudo

label PT
Ij

.

4.2.2 Self-paced selection of pseudo labels

One main challenge to involve pseudo labels in training is

that the correctness of pseudo-labels cannot be guaranteed.

Instead of providing more useful knowledge of the target

domain, unreliable pseudo labels will mislead model to per-

form worse on the target domain. To overcome this flaw,

we propose a self-paced [30, 27] strategy to select pseudo

labels into training from easier cases into harder ones. This

avoids model degradation due to aggressive use of pseudo

labels. Overall, the current model prediction would be used

for training as a pseudo label only when its confidence is

high enough. This updates Eq 7 as:

L′

target = −

T
∑

j=1

Ŷ
(φ)
j LT (I

T
j ,m(ITj |φ)) (8)

where m(ITj |φ) is output by model of current weights φ

on ITj . Ŷ
(φ)
j denotes whether the pose prediction on ITj is

reliable enough:

Ŷ
(φ)
j =

{

1, if C(m(ITj |φ)) > µ

0, otherwise
(9)

where C(m(ITj |φ)) denotes the output confidence score on

ITj by the current model. µ is the threshold to filter unreli-

able outputs. In the design of self-paced selection, restrict

of µ keeps being relaxed during the optimization of model.
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Figure 4: The overall process of our proposed scheme with

WS-CDA and PPLO both involved. Blue blocks indicate

the overall network in Fig 3

4.2.3 Alternating cross-domain training

WS-CDA and the careful self-paced selection of pseudo la-

bels make pseudo labels involved in training already much

more reliable. However, pseudo labels still contain more

noise than real ground truth, bringing a risk of model degra-

dation. To relieve the effect, the model is jointly trained in

a cautious manner where samples from source domains and

target domains are fed into training alternately.

If the data volume of the source domain and target do-

main is close, such alternating training approximates to

training on the mixture of data from both domains. How-

ever, domains suffer from huge data volume gap in our task

where pose-labeled animal samples are much more than tar-

get domain samples with pseudo labels. In such a case,

training on a mixed dataset will cause the model to learn

more from the domain with more samples while alternating

training relieves the problem.

The procedure of PPLO in one epoch is explained in Al-

gorithm 1. The overall design of our proposed scheme for

domain adaptation based on multiple domain data is illus-

trated as Fig 4.

5. Evaluation

We evaluate the effectiveness of the proposed designs in

this section. Because there are few existing methods avail-

able for animal pose estimation without labeling too many

samples, we try to build comparisons by transplanting some

previous works focusing on similar tasks.

Algorithm 1 overall procedure of PPLO

Input:

1. Current model weights, φ

2. Current threshold to filter unreliable pseudo-label, µ

3. Source domain data Ī ∈ D̄
4. Ground truth on source domain GS

Ī
∈ GS

5. Target domain data I ∈ D
6. Pseudo labels on target domain PT

I ∈ PT

7. Training steps on source domain KS

8. Training steps on target domain KT

9. Strategy to relax value of µ, S
Output:

1. Updated model weights φ

2. Updated value of µ

3. Updated set of PT

1: for t = 1,...,KS do

2: Sample a mini-batch BĪ from D̄.

3: Update φ by training on BĪ with GS
Ī

.

4: end for

5: for each I ∈ D do

6: Predict keypoints KI of I .

7: if confidence of KI > µ then

8: update the pseudo label of I in PT to be KI

9: end if

10: end for

11: for t = 1,...,KT do

12: Sample a mini-batch BI from D with PT
I ∈ PT .

13: Update φ by training on BI with PT
I .

14: end for

15: update µ with given strategy S .

16: return φ, µ, PT ;

5.1. Experiment Settings

We transplant some popular multiple pose estimation

frameworks [14, 8, 22] to do animal pose estimation for

comparison. Furthermore, we also compare different popu-

lar domain adaptation methods [49, 36, 26].

For fairness, the data sources are limited in experi-

ments. The pose-labeled human dataset for training is the

full COCO2017 train dataset [35], which contains 100k+

instances, much larger than the built pose-labeled animal

dataset. Our built dataset is the only source of pose-labeled

animal samples and pose-unlabeled animal samples come

from the COCO2017 train dataset [35] of the detection task.

Unless otherwise specified, all models are realized as de-

fined in officially released code by default. But we explain

in detail the configuration of adopted “AlphaPose” model:

i) feature extractor and domain adaptation networks(DAN)

are both based on ResNet-101 [23]. ii) a SE module [24] is

inserted between neighboring residual blocks; iii) keypoint

estimator consists of two DUC [51] layers. The model out-
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Index NA H DAN UA RB mAP

1 0 X 0.4

2 2k 30.3

3 2k X 51.5

4 2k X X 53.0

5 2k X X X 45.7

6 2k X X X X 56.7

7 4k 44.3

8 4k X 62.3

9 4k X X 63.1

10 4k X X X 57.2

11 4K X X X X 65.7

Table 1: Evaluation result of WS-CDA under different set-

tings. mAP is calculated with COCO-api [34]. NA is the

number of pose-labeled animal instances used for training.

H indicates whether human data is used for training. DAN

indicates whether the domain adaptation network is used.

UA indicates whether pose-unlabeled animal data is used.

w2 = 10 if RB is enabled, otherwise w2 = 1.

puts a heatmap for each keypoint with a confidence ( C(·) in

Eq 9) to filter unreliable detected keypoint candidates.

The training procedure is also standardized: AlphaPose-

based models are all trained in 3 steps: i) training with

learning rate=1e− 4; ii) training with learning rate=1e− 4
and disturbance (noise and dithering of patch cropping)

added; iii) training with learning rate=1e − 5 and distur-

bance added. Model is optimized by RMSprop [43] with

default parameters in Pytorch [40]. Training goes to the

next stage or ends when the loss converges stably.

Lastly, unless otherwise specified, hyperparameters are

necessarily uniform. For WS-CDA parameters, we set α =
−1, β = 500, w1 = 1 and w2 = 10. We set the initial value

of µ to be 0.9 in Algorithm 1 and it decreases by 0.01 after

every 10 epochs if some pseudo label is updated during the

recent 10 epochs. Training batch size is always set to be 64.

5.2. Evaluation for WS­CDA

To evaluate the effectiveness of WS-CDA precisely, we

set experiment groups with different modules enabled or

with different training data used and all groups use the ’Al-

phaPose’ framework as described before. Details are re-

ported in Table 1. We select 1,117 instances from the built

animal pose dataset to for testing.

Experiment results show that when only trained on the

human dataset, even if it is larger and well-labeled, the

model encounters total failure on the animal test set. After

a handful of pose-labeled animal samples have been added

to training, the model performance leaps. Such a difference

obviously comes from the huge domain shift between an-

mAP for each class

Method cat dog sheep cow horse

baseline 16.9 17.2 38.3 35.5 28.9

w/o adaptation

Maskrcnn [22] 22.5 21.6 18.7 21.6 23.6

AlphaPose [14] 37.6 37.3 49.4 50.3 47.9

CPN [8] 30.7 37.8 51.1 51.2 41.2

w/ adaptation

CycleGAN+PL [26] 35.9 36.7 48.0 50.1 48.1

dom confusion [49] 38.0 37.7 49.5 50.6 48.5

residual transfer [36] 37.8 38.2 49.1 50.8 48.6

proposed

WS-CDA (w2 = 1) 34.5 32.3 47.6 47.8 46.2

WS-CDA 39.2 38.6 51.3 54.6 50.3

PPLO 37.9 37.5 49.3 50.3 48.1

WS-CDA+PPLO 42.3 41.0 54.7 57.3 53.1

Table 2: Comparisons in term of mAP using different pose

estimation frameworks and with/without domain adaptation

to the target unseen animal class.

imals and humans. Furthermore, even though training on

solely human data fails dramatically, adding the same set

of human samples into training together with animal sam-

ples, it boosts model performance significantly. It proves

that there still be many common features that help pose es-

timation on both humans and animals, while training solely

on human data misleads model to more human-specific fea-

tures instead of them. Then, experiments suggest that do-

main adaptation network and the weighting factor alleviate

the negative influence of the volume gap between animal

dataset and human dataset. And the pose-unlabeled animal

samples would help when the weighting factor is enabled,

otherwise, it might instead degrade the model.

5.3. Evaluation on unseen species

We design experiments to evaluate the performance of

pose estimation on an unseen animal class. “Unseen” means

the animal samples for test come from classes/domains not

involved in training. Among the five pose-labeled animal

classes, we simply set one class as the test set and the

other four for training. In Table 2, the baseline model is

trained solely on the animal dataset. For other groups, mod-

els are trained with pose-labeled human dataset involved.

For the “w/o adaptation” group, models are pre-triained on

the human dataset and then simply fine-tuned on animal

samples. We bring some other domain adaptation meth-

ods [26, 49, 36] into evaluation for comparison. For method

in [58], Cyclegan is used for data augmentation with extra

animal samples used [39]. The method in [49] is adopted

without the “softlabel loss” involved. For method in [36],
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Figure 5: cross-domain adaptation results by our proposed scheme on unseen animals included in our built dataset.

Figure 6: cross-domain adaptation results by our proposed scheme on unseen animals not included in our built dataset.

we use residual transfer networks based on fully connected

networks to replace the adversarial domain discriminator.

The experiment proves the effectiveness of human prior

knowledge, WS-CDA, and PPLO when performing cross-

domain adaptation for pose estimation on unseen animal

classes. Furthermore, our proposed method outperforms

other domain adaptation techniques. An interesting fact

is that GAN-based methods hardly show good effective-

ness, even though they achieve impressive performance in

some other tasks [26]. We conclude it to the failure of

the original pose label when augmenting training data with

GANs [58, 37, 33]. To be precise, GANs only leave seg-

mentation mask unchanged after transformation but joint

locations are usually changed, which invalidates the orig-

inal pose label. Such data augmentation introduces much

noise of labels into training and probably leads to model

degradation.

6. Conclusion

We proposed a novel task of pose estimation on unseen

animals with domain adaptation. A novel cross-domain

adaptation mechanism is developed for this task. We de-

signed a “weakly- and semi-supervised cross-domain adap-

tation” (WS-CDA) scheme to transfer knowledge from hu-

man and animal data to unseen animals. Furthermore,

we designed a “progressive pseudo-label-based optimiza-

tion”(PPLO) to boost model performance by bringing target

domain data into training with ‘pseudo-labels’, for which a

self-paced ‘pseudo-label’ selection method and an alternat-

ing training method are introduced. To facilitate similar fu-

ture tasks, we built an animal pose dataset providing novel

prior knowledge. Experiments prove the effectiveness of

our proposed scheme, which achieves human-level pose es-

timation accuracy on animal pose estimation.
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