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Abstract

Predicting future frames for a video sequence is a chal-

lenging generative modeling task. Promising approaches

include probabilistic latent variable models such as the

Variational Auto-Encoder. While VAEs can handle uncer-

tainty and model multiple possible future outcomes, they

have a tendency to produce blurry predictions. In this work

we argue that this is a sign of underfitting. To address

this issue, we propose to increase the expressiveness of the

latent distributions and to use higher capacity likelihood

models. Our approach relies on a hierarchy of latent vari-

ables, which defines a family of flexible prior and poste-

rior distributions in order to better model the probability of

future sequences. We validate our proposal through a se-

ries of ablation experiments and compare our approach to

current state-of-the-art latent variable models. Our method

performs favorably under several metrics in three different

datasets.

1. Introduction

We investigate the task of video prediction, a particu-

lar instantiation of self-supervision [7, 9] where generative

models learn to predict future frames in a video. Training

such models does not require any annotated data, yet the

models need to capture a notion of the complex dynamics

of real-world phenomena (such as physical interactions) to

generate coherent sequences.

Uncertainty is an inherent difficulty associated with

video prediction, as many future outcomes are plausible

for a given sequence of observations [1, 5]. Predictions

from deterministic models rapidly degrade over time as un-

certainty grows, converging to an average of the possible

future outcomes [34]. To address this issue, probabilistic

latent variable models such as Variational Auto-Encoders

(VAEs) [19, 31], and more specifically Variational Recur-

rent Neural Networks (VRNNs) [3], have been proposed for

video prediction [1, 5]. These models define a prior distri-
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Figure 1: Can generative models predict the future? We pro-

pose an improved VAE model for video prediction. Our model

uses hierarchical latents and a higher capacity likelihood network

to improve upon previous VAE approaches, generating more visu-

ally appealing samples that remain coherent for longer temporal

horizons.

bution over a set of latent variables, allowing different sam-

ples from these latents to capture multiple outcomes.

It has been empirically observed that VAE and VRNN-

based models produce blurry predictions [21, 22]. This ten-

dency is usually attributed to the use of a similarity metric

in pixel space [21, 26] such as Mean Squared Error (cor-

responding to a log-likelihood loss under a fully factorized

Gaussian distribution). This has lead to alternative models

such as VAE-GAN [21, 22], which extends the traditional

VAE objective with an adversarial loss in order to obtain

more visually compelling generations.

In addition, the lack of expressive latent distributions has

been shown to lead to poor model fitting [13]. Training

VAEs involves defining an approximate posterior distribu-

tion over the latent variables which models their probabil-

ity after the generated data has been observed. If the ap-

proximate posterior is too constrained, it will not be able

to match the true posterior distribution and this will prevent

the model from accurately fitting the training data. On the

other hand, the prior distribution over the latent variables

can be interpreted as a model of uncertainty.
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The decoder or likelihood network needs to transform

latent samples into data observations covering all plausible

outcomes. Given a simple prior, this transformation can be

very complex and require high capacity networks. We hy-

pothesize that the reduced expressiveness of current VRNN

models is limiting the quality of their predictions and in-

vestigate two main directions to improve video prediction

models. First, we propose to scale the capacity of the like-

lihood network. We empirically demonstrate that by using

a high capacity decoder we can ease the latent modeling

problem and better fit the data.

Second, we introduce more flexible posterior and prior

distributions [32]. Current video prediction models usually

rely on one shallow level of latent variables and the prior

and approximate posterior are parameterized using diagonal

Gaussian distributions [1]. We extend the VRNN formula-

tion by proposing a hierarchical variant that uses multiple

levels of latents per timestep.

Models leveraging a hierarchy of latents are known to

be hard to optimize as they are required to backpropagate

through a stack of stochastic latent variables, usually result-

ing in models that only make use of a small subset of the

latents [19, 25, 32]. We mitigate this problem by using a

warmup regime for the KL loss [33] and a dense connectiv-

ity pattern [14, 24] between the input and latent variables.

Specifically, each stochastic latent variable is connected to

the input and to all subsequent stochastic levels in the hier-

archy. Our empirical findings confirm that only with these

techniques our model is able to take advantage of different

layers in a latent hierarchy.

We validate our hierarchical VRNN in three datasets

with varying levels of future uncertainty and realism:

Stochastic Moving MNIST [5], the BAIR Push Dataset [8]

and Cityscapes [4]. When compared to current state of the

art models [5, 22], our approach performs favorably under

several metrics. In particular for the BAIR Push Dataset,

our hierarchical-VRNN shows an improvement of 44% in

Video Fréchet Distance (FVD) [36] and 9.8% in term of

LPIPS score [43] over SVG-LP [5], the previous best VAE-

based model. It also achieves a similar FVD than the SAVP

VAE-GAN model [22], while showing a 11.2% improve-

ment in terms of LPIPS over this baseline.

2. Related Work

Initial video prediction approaches relied on determinis-

tic models. Ranzato et al. [29] divided frames into patches

and predicted their evolution in time given previous neigh-

boring patches. In [34] Srivastava et al. used LSTM net-

works on pretrained image embeddings to predict the future.

Similarly, Oh et al. [27] used LSTMs on CNN representa-

tions to predict frames in Atari games when given the player

actions.

ConvLSTMs [42] adapt the LSTM equations to spatial

feature maps by replacing matrix multiplications with con-

volutions. They were originally used for precipitation now-

casting and are commonly used for video prediction. Pred-

Net [23] and ContextVP [2] are deterministic models us-

ing LSTMs and other recurrent architectures that have been

used for video prediction of car mounted scenes.

Other works have proposed to disentangle the motion

and context of the frames to generate [37, 35, 6]. They

assume that a scene can be decomposed as multiple ob-

jects, which allows them to use a fixed representation for

the background. Our approach does not follow this model-

ing assumption and instead tries to capture the uncertainty

in the future.

Autoregressive models [16, 30] approximate the full

joint data distribution p(x1, x2, ..., xN ) over pixels, which

allows them to capture complex pixel dependencies but at

the expense of making their inference mechanism slow and

not scalable to high resolutions. Latent variable models us-

ing GANs [10] were proposed in [39, 38, 35]. Training pure

GAN video models is still an open research direction: train-

ing is unstable and most models require auxiliary losses.

Concurrent work [20] has proposed a fully invertible model

for video.

A more successful approach so far has been based on

VAE [19, 31]/VRNN [3] models. SV2P [1] proposed to

capture sequence uncertainty in a single set of latent vari-

ables kept fixed for each predicted sequence. SVG [5]

adopted the VRNN formulation [3], introducing per-step la-

tent variables (SVG-FP) and a variant with a learned prior

(SVG-LP), which makes the prior at a certain timestep a

function of previous frames. In recent work, SAVP [22]

proposed to use the VAE-GAN [21] framework for video,

a hybrid model that offers a trade-off between VAEs and

GANs. Our model extends the VRNN formulation by in-

troducing a hierarchy of latents to better approximate the

data likelihood.

There are multiple works addressing hierarchical VAEs

for non-sequential data [28, 25, 33, 18]. While hierarchical

VAEs can model more flexible latent distributions, training

them is usually difficult due to the multiple layers of con-

ditional latents [32], resulting in most latents being unused.

Ladder Variational Autoencoders [33] proposed a series of

techniques to partially alleviate this issue. IAF [18] used a

similar architecture to Ladder VAEs and extended it with a

novel normalizing flow. Recent work [24] has trained very

deep hierarchical models that produce visually compelling

samples. We extend hierarchical latent variable models to

sequential data and apply them to video prediction.

3. Preliminaries

We follow previous work in video prediction [5]. Given

D context frames c = (c1, c2, ..., cD) and the T following

future frames x = (x1, x2, ..., xT ), our goal is to learn a
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generative model that maximizes the probability p(x|c).
VRNN follows the VAE formalism and introduces

a set of latent variables z = (z1, z2, ..., zT ) to cap-

ture the variations in the observed variables x at each

timestep t. It defines a likelihood model p(x|z, c) =QT

t=1 p(xt|z≤t,x<t, c) and a prior distribution p(z|c) =QT

t=1 p(zt|z<t,x<t, c) which are parametrized in an au-

toregressive manner; i.e. at each timestep observed and la-

tent variables are conditioned on the past latent samples

and observed frames. VRNN therefore uses a learned

prior [3, 5]. Taking into account the temporal structure of

the data, the probability p(x, z|c) is factorized as

p(x, z|c) =
TY

t=1

p(xt|z≤t,x<t, c)p(zt|z<t,x<t, c). (1)

Computing p(x|c) requires marginalizing over the la-

tent variables z, which is computationaly intractable. In-

stead, VRNN relies on Variation Inference [15] and de-

fines an amortized approximate posterior q(z|x, c) =QT

t=1 q(zt|z<t,x≤t, c) that approximates the true poste-

rior distribution p(z|x, c). We then can derive the evidence

lower bound (ELBO), a lower bound to the marginal log-

likelihood p(x|c):

log p(x|c) ≥
TX

t=1

Eq(z≤t|x≤t,c) log p(xt|z≤t,x<t, c)

−DKL(q(zt|z<t,x≤t, c)||p(zt|z<t,x<t, c)) (2)

VRNN can be optimized to fit the training data by maxi-

mizing the ELBO using stochastic backpropagation and the

reparameterization trick [19, 31].

4. Hierarchical VRNN

We now introduce a hierarchical version of the VRNN

model. At each timestep, we consider L levels of latents

variables zt = (z1t , ..., z
L
t ). We then further factorize the

latent prior as

p(zt|z<t,x<t, c) =
LY

l=1

p(zlt|z
<l

t
, zl<t

,x<t, c). (3)

The sampling process of the latent variable zlt now depends

on the latent variables from previous time steps zl<t
for that

level and on the latent variables of the previous levels at the

current timestep z
<l

t
. Similarly, we can write the approxi-

mate posterior as:

q(zt|z<t,x≤t, c) =

LY

l=1

q(zlt|z
<l

t
, zl<t

,x≤t, c). (4)
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Figure 2: Graphical model for the learned prior with the dense

latent connectivity pattern. Arrows in red show the connections

from the input at the previous timestep to current latent variables.

Arrows in green highlight skip connections between latent vari-

ables and connections to outputs. Arrows in black indicate re-

current temporal connections. We empirically observe that this

dense-connectivity pattern eases the training of latent hierarchies.

Using eq. 3 and eq.4, we can rewrite the ELBO as

log p(x|c) ≥
TX

t=1

[Eq(zt|z<t,x≤t,c) log p(xt|z≤t,x<t, c)

−

LX

l=1

DKL(q(z
l
t|z

<l

t
, zl<t

,x≤t, c)||p(z
l
t|z

<l

t
, zl<t

,x<t, c))].

(5)

Refer to the Appendix for a full derivation of the ELBO.

4.1. Dense Latent Connectivity

Training a hierarchy of latent variables is known to be

challenging as it requires to backpropagate through mul-

tiple stochastic layers. Usually this results in models that

only use one specific level of the hierarchy [19, 25, 32]. To

ease the optimization we use a dense connectivity pattern

between latent levels both for the prior and the approximate

posterior, following [14, 24].

Fig 2 illustrates the dense connection of the learned prior

(refer to the Appendix for the approximate posterior). For

each latent level, the prior and posterior are implemented

using recurrent neural networks which take as input a deter-

ministic transformation of xt−1 (red arrows in Fig 2), and

to all the latent variables from the previous levels (green ar-

rows in in Fig 2). In addition, each latent variable has a

direct connection to the output variables xt.

4.2. Model Parametrization

We now describe an instantiation of the VRNN model

that we will use in the experiments, illustrated in Fig.

3. First we compute features for each context frame

and use them to initialize the hidden state of the
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Figure 3: Model Parametrization. Our model uses a CNN to encode frames individually. The representation of the context frames is used

to initialize the states of the prior, posterior and likelihood networks, all of which use recurrent networks. At each timestep, the decoder

receives an encoding of the previous frame, a set of latent variables (either from the prior or the posterior) and its previous hidden state and

predicts the next frame in the sequence.

prior/posterior/decoder networks, all of which have recur-

rent components. At a given timestep t, the model takes

as input the latent variable samples zt = (z0t , ..., z
L
t ) with

the embedding of the previously generated frame xt−1 and

outputs the next frame x̂t. During training we draw la-

tent samples from the approximate posterior distribution

q(zt|z<t,x≤t, c) and maximize the ELBO. To generate

unseen sequences, we sample zt from the learned prior

p(zt|z<t,x<t, c). Note that since we have multiple levels

of conditional latents we use ancestral sampling to generate

zt, i.e. we first sample from the top level of the hierarchy

and we then sequentially sample the lower levels condition-

ing on the sampled values of the previous layers in the hier-

archy.

Frame Encoder We use a 2D CNN with ResNet [12]

blocks and max-pooling layers to represent input frames.

Prior/Approximate Posterior We parametrize both the

prior and the posterior as a hierarchy of diagonal Normal

distributions N (µ,σ), where the parameters µ and σ are re-

current functions of samples from i) previous levels in the

hierarchy and ii) the frame encoder features. Each level in

the hierarchy operates at a different spatial resolution, with

the top level features operating at a 1x1 resolution, i.e. not

having a spatial topology. At a given timestep t, the pa-

rameters for a specific latent level zlt are given by a ConvL-

STM that consumes i) a previous hidden state, ii) samples

from the previous levels in the hierarchy z<l
t , iii) the feature

map of a frame with the same spatial resolution as the Con-

vLSTM. For the prior network, the input frame embedding

corresponds to the previously generated frame xt−1, while

for the posterior the input comes from the frame to generate

xt.

Likelihood/Frame Decoder At each timestep t, the de-

coder takes a representation of the previously generated

frame xt−1 and the samples zt = (z1t , ..., z
L
t ) and generates

xt according to p(xt|zt,x<t, c). The decoder consists of

ConvLSTMs interleaved with transposed convolutions that

upscale the feature maps back to the input resolution.

Initial State The initial states of our prior, posterior and

decoder/likelihood models are functions of the context. We

use small CNNs to initialize each of the ConvLSTMs layers

used in the VAE components.

5. Experiments

All our models are trained with Adam [17] and a batch

size of b = 128 on Nvidia DGX-1s. We use a learning rate

warmup [11] starting with an initial learning rate λ = 2e-5

that is linearly increased at each timestep until reaching λ =

1.6e-4 in 5 epochs. We use β1 = 0.5 and β2 = 0.9 and weight

decay δ = 1e-4. We train the autoregressive components of

our models using teacher forcing [41].

Our models are also trained using beta warmup [33],

which consists in gradually increasing the weight of the KL

divergence in the ELBO, turning the model from an un-

regularized Autoencoder into a VAE progressively. VAEs

trained with beta warmup usually encode more information

in the latent variables. Refer to the Appendix for a complete

description of our models.
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MODEL PARAMETERS TRAIN/TEST ELBO(↑)

1-ConvLSTM 62.22M - 3237/-3826

3-ConvLSTM 86.64M -1948/-2355

6-ConvLSTM 93.81M -1279.21/-1731.31

+ higher capacity 194.15M -1113.31/-1589.72

Table 1: Ablation - Likelihood We compare models with differ-

ent number of recurrent layers for the likelihood network. We ob-

serve that the model performance increases monotonically as we

add more ConvLSTMs. We further increase the size of the recur-

rent hidden states for the 6-ConvLSTM model (+ higher capacity

variant), also leading to a better data fit. These results suggest that

current video prediction models might underfit the data because of

reduced likelihood capacity.

5.1. Ablation Study

We first investigate the importance of each VRNN com-

ponent, namely the likelihood, the prior and the posterior.

We focus on the BAIR Push dataset [8] with 64x64 color

sequences of a robotic arm interacting with children toys in

a sandbox. Similarly to previous works [22], we use tra-

jectories 256 to 511 as our test set and the rest for train-

ing, resulting in the 43264 train and 256 test sequences. At

training we randomly subsample 12 frames from each train

sequence, use the first 2 frames as the context, and learn to

predict the remaining 10 frames. To evaluate the different

model variations, we report the training objective (ELBO)

obtained for the training set and the test set.

5.1.1 Scaling the Likelihood Model

We assess the importance of the likelihood model

p(xt|z≤t,x<t, c). For this purpose, we build a VRNN with

a single level of latent variables and modify the number of

ConvLSTM layers in the decoder. Our aim is to investigate

whether increasing the capacity of the latents to observa-

tions mapping results in better predictions.

In this experiment, our baseline likelihood model has one

LSTM at 1x1 spatial resolution. We then gradually replace

convolutional layers in the decoder with ConvLSTM lay-

ers, which increases the amount of information that can be

carried from previous timesteps and, by extension, also in-

creases the overall likelihood model capacity. We compare

to a model with 3 ConvLSTM layers at resolutions 1x1, 4x4

and 8x8 and a model with 6 ConvLSTM layers at 1x1, 4x4,

8x8, 16x16, 32x32 and 64x64. Additionally, we also in-

crease the size of the ConvLSTM layers for the model with

6 layers as another way of adding capacity.

Results can be found in Fig 1. We observe that, as a

general trend, both the training and test ELBO decrease as

we increase the model capacity, which suggests that cur-

rent video prediction models might operate in an underfit-

ting regime and benefit from higher capacity decoders.

MODEL PARAMETERS TRAIN/TEST ELBO (↑)

1 166.55M -1141.85/-1536.93

1-8 220.60M -989.39/-1313.02

1-8-32 230.74M -883.10/-1162.24

1-8-16-32 245.19M -956.63/-1256.22

Naive Training 224.18M -1127.33/-1440.58

BW 224.18M -1101.39/-1440.62

Dense 230.74M -1182.60/-1547.05

BW and Dense 230.74M -883.10/-1162.24

Table 2: Ablation - Hierarchy of Latents Top half: We com-

pare a VRNN baseline with a single level of latents with no spatial

topology (1), a model with two levels of latents at resolutions 1x1

and 8x8 (1-8), our full model with three levels of latents at 1x1,

8x8 and 32x32 (1-8-32), and a model with 4 levels of latents (1-8-

16-32). Adding more levels of latents leads to a better fit, with re-

duced ELBOs. However, adding too many levels of latents reduces

the performance due to the difficulties in training hierarchical la-

tent variable models. Bottom half: To highlight the difficulties in

training hierarchies of latents, we investigate the effects of using

beta warmup (BW) [33] and having a dense connectivity (Dense)

between latents when training the 1-8-32 model. Without these

techniques the hierarchy of latents does not improve performance.

5.1.2 More Flexible Prior and Posterior

We now investigate the importance of having more flexible

prior and approximate posterior distributions and augment

the 6-ConvLSTM VRNN model with a hierarchy of latent

variables. For all models, we fix the frame encoder and like-

lihood model1 and change the networks that estimate the

learned prior p(zt|z<t,x<t, c), and the approximate pos-

terior q(zt|z<t,x≤t, c) over the latent variables. All these

models use a dense connectivity pattern and beta warmup.

We compare a VRNN baseline with a single level of la-

tents with no spatial topology, with a model with two levels

of latents at resolutions 1x1 and 8x8 (1-8), three levels of

latents at 1x1, 8x8 and 32x32 (1-8-32), and four levels of

latents (1-8-16-32) in the top half of Table 2. All models

are trained with beta warmup and dense latent connectiv-

ity. We observe that in general adding more levels of la-

tents with higher resolution reduces the train and test EL-

BOs, supporting the hypothesis that a more flexible prior

and posterior leads to a better data fit. However, we observe

diminishing returns past 3 levels, as our 1-8-16-32 model

does not outperform the 3 layers model. We attribute this to

the difficulties in training deep hierarchies of latents, which

remains a challenging optimization problem.

To further highlight the difficulties in training hierar-

chies of latents, we investigate the importance of using beta

warmup [33] and having a dense connectivity between la-

1To add the multiple levels of latents we need to modify the decoder

and slightly increase the number of parameters. However, most (> 85%)

of the added capacity goes towards the prior and posterior networks.
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Figure 4: Average normalized KL per latent channel. We visu-

alize the mean normalized KL for each latent channel for models

from Table 2. Without beta warmup and dense connectivity the

hierarchy of latents is underutilized, with most information being

encoded in a few latents of the top level. In contrast, the same

model with these techniques utilizes all latent levels.

tents. The results of this experiment can be found in the

bottom half of Table 2. We observe that these techniques

are required to make our 1-8-32 model make use of the hi-

erarchy of latents and improve upon the single level model.

This is analyzed in more detail in Fig 4, where we vi-

sualize the KL between the prior and the posterior distri-

butions for the test sequences of the BAIR Push dataset for

the 1-8-32 model and the variant without warmup or dense

connectivity (Naive training). We consider a channel to be

active if its average KL is higher than 0.01 following [24],

and consider that a unit with a KL higher than 0.15 is max-

imally activated. We observe that without these techniques

the model only uses a few latents of the top level in the hi-

erarchy. However, when using beta warmup and a dense

connectivity most of the latents are active across levels.

5.2. Comparisons to Previous Approaches

Next, we compare our single latent level VRNN (Ours

w/o Hier) and our 3-level hierarchical VRNN (Ours w/

Hier) to previous approaches on three datasets.

5.2.1 Evaluation and Metrics

Defining evaluation metrics for video prediction is an open

research question. We want models to predict realistic se-

quences that cover all possible outcomes. Unfortunately,

we are not aware of any metric that reflects all these aspects.

To measure coverage we adopt the evaluation protocol

in [5, 22]. For each ground truth test sequence, we sam-

ple N predictions from the model which are conditioned

on the test sequence initial frames. Then we find the sam-

ple that best matches the ground truth sequence according

to a given metric and report that metric value. Some com-

mon metric choices are Mean-Square Error (MSE), Struc-

tural Similarity (SSIM) [40] or Peak Signal-to-Noise Ra-

tio (PSNR). In practice, these metrics have been shown to

not correlate well with human judgement as they tend to

prefer blurry predictions over sharper but imperfect gener-

ations [43, 22, 36]. LPIPS [43], on the other hand, is a

perceptual metric that compares CNN features and has bet-

ter correlation to human judgment. For this evaluation we

MODEL FVD (↓) LPIPS (↓) SSIM (↑)

SVG-LP [5] 90.81 0.153 ± 0.03 0.668 ± 0.04

OURS W/O HIER 63.81 0.102 ± 0.04 0.763 ± 0.09

OURS W/ HIER 57.17 0.103 ± 0.03 0.760 ± 0.08

Table 3: Stochastic Moving MNIST. We compute the FVD metric

between samples from different models and test sequences as well

as the average LPIPS and SSIM of the best sample for each test

sequence. Our models outperform the SVG-LP baseline on all

metrics by a significant margin. While our model with hierarchical

latent variables obtains a better FVD score, both variants obtain

comparable results in this relatively simple dataset.

generate N = 100 samples following previous work and

use SSIM and LPIPS as metrics. We have empirically ob-

served that the metrics have small variance when using 100

samples. We report the metric average over the test set.

We also use the recently proposed Fréchet Video Dis-

tance (FVD), to measure sample realism. FVD uses features

from a 3D CNN and has also been shown to correlate well

with human perception [36]. FVD compares populations

of samples to assert whether they were both generated by

the same distribution (it does not compare pairs of ground

truth/generated frames directly). We form the ground truth

population by using all the test sequences with their con-

text. For the predicted population we randomly sample one

video out of the N generated for each test sequence. We

repeat this process 5 times and report the mean of the FVD

scores obtained, which are similar across samplings.

5.2.2 Stochastic Moving MNIST [5]

Stochastic Moving MNIST is a synthetic dataset proposed

in [5] which consists of sequences of MNIST digits mov-

ing over a black background and bouncing off the frame

borders. As opposed to the original Moving MNIST

dataset [34] with deterministic motion, Stochastic Moving

MNIST has uncertain digit trajectories - the digits bounce

off the border with a random new trajectory. We train two

variants of our model and compare to the SVG-LP base-

line [5], for which we use a pretrained model from the offi-

cial codebase. All models are trained using 5 frames of con-

text and 10 future frames to predict. To evaluate the models,

we follow the procedure in [5] described in section 5.2.1.

We report the results of the experiment in Table 3. We

observe that both versions of our model (with/out the latent

hierarchy) outperform the SVG-LP baseline by a significant

margin on all metrics. Note that LPIPS and FVD might not

be suited to this dataset as they use features from CNNs

trained on real world images, but we report them for com-

pleteness. Visually, our samples (see Appendix) depict the

digits with reduced degradation over time. There are small

differences between the two versions of our model, suggest-

ing that the extra expressiveness of the hierarchical model
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Figure 5: Selected Samples for BAIR Push and Cityscapes. We show a sequence for BAIR Push and Cityscapes and random generations

from our model and baselines. On BAIR Push we observe that the SAVP predictions are crisp but sometimes depict inconsistent arm-

object interactions. SVG-LP produces blurry predictions in uncertain areas such as occluded parts of the background or those showing

object interactions. Our model generates plausible interactions with reduced blurriness relatively to SVG-LP. On Cityscapes, the SVG-LP

baseline is unable to model any motion. Our model, using a hierarchy of latents, generates more visually compelling predictions. More

samples can be found in the Appendix.

is not necessary in this synthetic dataset.

5.2.3 BAIR Push

We compare our VRNN models to SVG-LP [5] and

SAVP [22]. We use their official implementations and pre-

trained models to reproduce their results. We use the ex-

perimental setup of previous works [5, 22], using 2 context

frames and generating 28 frames.

Results can be found on Fig 6. When the robotic arm is

interacting with an object, SVG-LP tends to generate blurry

predictions characterized by a high FVD score. SAVP ex-

hibits a lower FVD as it produces more realistically looking

predictions. However, SAVP does not have a better cov-

erage of the ground truth sequences compared to SVG-LP

as measured by LPIPS and SSIM. By inspecting the SAVP

samples we notice that the SAVP generations tend to be

sharper but sometimes they exhibit temporal inconsisten-

cies or implausible interactions (see Fig 5).

Our models obtain better scores than SVG-LP, the previ-

ous best VAE model. This highlights the importance of hav-

ing a high-capacity likelihood model. In addition, our hier-

archical VRNN further improves both the FVD and LPIPS

metrics, suggesting that the hierarchy of latents helps mod-

eling the data. In particular, it shows an improvement of

44% in terms of FVD and 9.8% in terms of LPIPS over

SVG-LP. It also achieves a similar FVD to that of SAVP,

while outperforming it in terms of LPIPS by 11.2%.
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MODEL FVD (↓) LPIPS (↓) SSIM (↑)

SVG-LP [5] 256.62 0.061± 0.03 0.816± 0.07
SAVP [22] 143.43 0.062± 0.03 0.795± 0.07

SAVP-GAN [22] 230.48 0.073± 0.04 0.778± 0.08
OURS W/O HIER 149.22 0.058± 0.03 0.829 ± 0.06

OURS W/ HIER 143.40 0.055 ± 0.03 0.822± 0.06

Figure 6: BAIR Push - Results. Left: We show the evolution in time of the Average LPIPS and SSIM of the best predicted sample per

test sequence. Right: We report the Average FVD, SSIM and LPIPS of the best sample for each test sequence. Compared to SVG-LP, both

our model with a single level of latents and the hierarchical models improve all metrics. Compared to SAVP, we obtain better LPIPS and

SSIM. Our model with a single level of latents performs better in SSIM but worse on perceptual metrics. When adding the hierarchy of

latents, our model matches the FVD of SAVP and improves the LPIPS, indicating samples of similar visual quality and better coverage of

the ground-truth sequences.

MODEL FVD (↓) LPIPS (↓) SSIM (↑)

SVG-LP [5] 1300.26 0.549± 0.06 0.574± 0.08
OURS W/O HIER 682.08 0.304± 0.10 0.609± 0.11
OURS W/ HIER 567.51 0.264 ± 0.07 0.628 ± 0.10

Figure 7: Cityscapes - Quantitative Results We report FVD, SSIM and LPIPS scores on Cityscapes at 128x128 resolution for the SVG-

LP [5] baseline and two variants of our model. Increasing the capacity of the likelihood model brings an improvement in all metrics over

the SVG baseline. When adding a hierarchy of latents we observe further improvements, validating its usefulness. Even though SVG

matches our models in SSIM at later timesteps, this does not correlate well with human judgement, as the generated SVG samples show

more blurriness (see Fig. 5).

5.2.4 Cityscapes

The Cityscapes dataset contains sequences recorded from

a car driving around multiple cities under different condi-

tions. Cityscapes is a challenging dataset - while contiguous

frames are locally similar, uncertainty grows significantly

with time. Compared to previous datasets, the backgrounds

in Cityscapes do not stay constant across time.

We consider sequences with 30 frames from the training

set cities for a total of 1877 train sequences and randomly

select 256 test sequences. We use 2 context and 10 pre-

diction frames to train the models. At test time we predict

28 frames following the BAIR Push setup. We preprocess

the videos by taking a 1024x1024 center crop and resiz-

ing them to 128x128 pixels. For evaluating the models we

use the standard setup where we generate 100 samples per

test sequence and report FVD, SSIM and LPIPS metrics.

Since none of the baselines from previous experiments are

trained on Cityscapes, we use the official SVG implemen-

tation (that defines models with 128x128 inputs) and train a

SVG-LP model. We train all models for 100 epochs.

Results can be found in Fig. 7. SVG-LP has difficulties

generating motion, usually predicting a static image simi-

lar to the last context frame. In contrast, our model without

a hierarchy of latents is able to model the changing scene.

When adding hierarchical latents our model is able to cap-

ture more fine-grained details, and as a result, it produces

more visually appealing samples with a boost in all metrics.

We note that the SSIM scores for SVG-LP match those of

our models at later timesteps in the prediction, however this

does not translate to better samples as can be seen in Fig. 5

or in the Appendix. This further suggests that SSIM is not

a suitable metric to evaluate video prediction models.

6. Conclusions

We propose a hierarchical VRNN for video prediction

featuring an improved likelihood model and a hierarchy of

latents. Our approach compares favorably to current state

of the art models in terms of the FVD, LPIPS and SSIM

metrics, producing visually appealing and coherent sam-

ples. Our results show that current video prediction models

benefit from increased capacity and opens the door to fur-

ther gains with flexible higher capacity generative models.

7615



References

[1] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan,

Roy H Campbell, and Sergey Levine. Stochastic variational

video prediction. arXiv preprint arXiv:1710.11252, 2017. 1,

2

[2] Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and

Petros Koumoutsakos. Contextvp: Fully context-aware

video prediction. In The European Conference on Computer

Vision (ECCV), September 2018. 2

[3] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth

Goel, Aaron C Courville, and Yoshua Bengio. A recurrent

latent variable model for sequential data. In Advances in neu-

ral information processing systems, pages 2980–2988, 2015.

1, 2, 3, 11

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016. 2

[5] Emily Denton and Rob Fergus. Stochastic video generation

with a learned prior. In International Conference on Machine

Learning, pages 1182–1191, 2018. 1, 2, 3, 6, 7, 8, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23

[6] Emily L Denton et al. Unsupervised learning of disentangled

representations from video. In Advances in Neural Informa-

tion Processing Systems, pages 4414–4423, 2017. 2

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018. 1

[8] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey

Levine. Self-supervised visual planning with temporal skip

connections. arXiv preprint arXiv:1710.05268, 2017. 2, 5

[9] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. arXiv preprint arXiv:1803.07728, 2018. 1

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 2

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 4

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 4

[13] Matthew D Hoffman and Matthew J Johnson. Elbo surgery:

yet another way to carve up the variational evidence lower

bound. In Workshop in Advances in Approximate Bayesian

Inference, NIPS, 2016. 1

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017. 2, 3

[15] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola,

and Lawrence K Saul. An introduction to variational meth-

ods for graphical models. Machine learning, 37(2):183–233,

1999. 3
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