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Abstract

In this paper, we propose 3D unsupervised reconstruc-

tion networks (3D-URN), which reconstruct the 3D struc-

tures of instances in a given object category from their 2D

feature points under an orthographic camera model. 3D-

URN consists of a 3D shape reconstructor and a rotation

estimator, which are trained in a fully-unsupervised man-

ner incorporating the proposed unsupervised loss functions.

The role of the 3D shape reconstructor is to reconstruct the

3D shape of an instance from its 2D feature points, and the

rotation estimator infers the camera pose. After training,

3D-URN can infer the 3D structure of an unseen instance in

the same category, which is not possible in the conventional

schemes of non-rigid structure from motion and structure

from category. The experimental result shows the state-of-

the-art performance, which demonstrates the effectiveness

of the proposed method.

1. Introduction

Unsupervised 3D reconstruction from 2D observations

is one of the key problems in computer vision, which has

numerous applications such as human computer interac-

tion and augmented reality. Structure from motion (SfM)

and non-rigid structure from motion (NRSfM) have handled

the unsupervised 3D reconstruction problem, of which the

goals are to reconstruct 3D trajectories and motions from

2D feature trajectories of rigid and non-rigid objects, re-

spectively. Thanks to the significant advances [16,29], SfM

is considered as a mature area in computer vision. However,

NRSfM has been generally considered as an ill-conditioned

problem due to the increased degrees of freedom. To al-

leviate this issue, some prior information on the nature of

deformation has been incorporated. For example, the shape

space model [4, 7, 8] and the trajectory space model [3, 15]

assume that the aligned deformations of a non-rigid instance

can be represented by a low-rank matrix. However, most
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Figure 1. The proposed 3D unsupervised reconstruction networks

(3D-URN) reconstructs the 3D structures of instances in an object

category from their 2D feature points. After training, 3D-URN

can reconstruct the 3D structure of an unseen instance in the same

category as the one used in the training process.

schemes of NRSfM have focused on the reconstruction of

a specific instance of an object and have assumed smooth

input trajectories.

These limitations have been alleviated in the field of

structure from category (SfC) [1,2,12,20], which is a prob-

lem to reconstruct the 3D structures of instances in an ob-

ject category and no smoothness assumption of input fea-

ture points is needed. Furthermore, SfC can handle a gen-

eral object category, unlike NRSfM that has conventionally

dealt with limited object categories such as human face or

body [20]. However, despite their promising results, most

works of NRSfM and SfC can only produce the 3D recon-

struction of a given input, i.e., the information learned from

reconstructing a certain input cannot be reused, and a suffi-

cient number of samples are needed in the reconstruction

process. That is, the optimization process should be re-

peated with a sufficient number of samples to reconstruct
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the 3D structure of each instance, although the 2D feature

points of instances in the same object category are similar

with each other.

In this paper, we propose 3D unsupervised reconstruc-

tion networks (3D-URN), a neural-network-based frame-

work which reconstructs 3D structures of instances in an

object category from their 2D feature points under an or-

thographic camera model (see Figure 1). 3D-URN consists

of a 3D shape reconstructor and a rotation estimator, which

are based on neural networks. The role of the 3D shape

reconstructor is to reconstruct the 3D shape of an instance

from its 2D feature points, which is a highly non-linear pro-

cedure. To solve this problem, inspired by the shape-basis

methods in NRSfM [4,7,8], we incorporate multiple 3D re-

constructors, from which the final 3D shape is represented

as a weighted sum of multiple 3D reconstructors. Here, the

weights of 3D reconstructors are also estimated based on

a neural-network-based estimator. On the other hand, the

rotation estimator estimates a rotation matrix from the 2D

feature points of an instance. Unlike the 3D shape recon-

structor, the output of the rotation estimator should meet the

orthogonality constraint. To handle this issue, we propose

a rotation refiner that decomposes the output of the rota-

tion estimator to make it orthogonal. The proposed rotation

refiner is composed of differentiable operations, which is

useful in back-propagation.

The proposed 3D-URN is trained in a fully-unsupervised

manner based on the proposed loss functions, namely, the

projection loss and the low-rank prior loss. After the pro-

posed network is trained, the network can infer the 3D struc-

ture of an instance in the same object category unlike pre-

vious works of NRSfM and SfC. The proposed 3D-URN

shows the state-of-the-art performance, which demonstrates

the effectiveness of the scheme.

The contribution of the proposed method is summarized

as:

• We propose a neural-network-based framework which

solves the structure from category problem.

• We propose a novel rotation refiner, which is a differ-

entiable layer that resolves the issues of orthogonality

constraints and reflection ambiguities among the esti-

mated rotation matrices.

• The proposed scheme shows the state-of-the-art per-

formance on the popular benchmark data sets.

The remainder of this paper is organized as follows: we

discuss related work in Section 2. The proposed 3D-URN

and the proposed unsupervised loss functions are explained

in Section 3. Section 4 shows the experimental results, and

we conclude the paper in Section 5.

2. Related work

In this section, we introduce recent work on non-rigid

structure from motion, and present some related work in

structure from category.

2.1. Nonrigid structure from motion

The goal of NRSfM is to reconstruct 3D trajectories and

camera poses from 2D feature trajectories of non-rigid ob-

jects. NRSfM is generally considered as an ill-conditioned

problem, because of its large degrees of freedom. That is,

we have to find out the camera pose and the shape of the

object, which change in each frame, from an observation of

2D feature points. To resolve the ill-conditioned nature of

NRSfM, some prior information has been incorporated. The

low-rank assumption [3, 4, 7, 8, 15] is one of the promising

prior assumptions. The local-rigidity prior [5, 6, 17, 23, 27]

and the sparsity assumption [19] have also been incorpo-

rated to make the problem easier. However, most NRSfM

schemes have difficulties reconstructing a set of arbitrary

instances in a general object category, and so they have fo-

cused on limited object categories, such as a human face

and body. Furthermore, they often assume smooth input

trajectories, which limits the range of practical uses.

2.2. Structure from category

To resolve the limitations of NRSfM, some frameworks

have been proposed to reconstruct multiple arbitrary in-

stances of an object category without the assumption of

smooth input trajectories [1, 2, 12, 20]. Gao et al. [12] ex-

tended two existing schemes to exploit the proposed sym-

metry constraints. Agudo et al. [1] proposed a formula-

tion based on a dual low-rank shape representation, which

is learned through a variant of the probabilistic linear dis-

criminant analysis. On the one hand, Kong et al. [20] intro-

duced the concept of SfC, of which the goal is to reconstruct

the 3D shapes and camera poses of multiple instances in an

object category from their 2D feature points. They formu-

lated an augmented sparse shape-space model that can re-

construct multiple instances of a rigid object category. A

thing to note here is that all of the previous works [1,12,20]

only handled rigid object categories. To resolve this issue,

Agudo et al. [2] proposed a framework for SfC which can

handle both the rigid and non-rigid object categories. They

formulated the model of the object deformation based on

multiple unions of subspaces, which was solved with aug-

mented Lagrange multipliers. In spite of the promising re-

sults of NRSfM and SfC, most of them can only produce

the 3D reconstruction of a given input, i.e., the informa-

tion learned from reconstructing a certain input cannot be

reused, which hinders their utility in real world applications.
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Figure 2. An overview of the proposed 3D shape reconstructor. It consists of nf 3D reconstructors and a weight estimator. Here, each 3D

reconstructor consists of nd modules, and each module produces an intermediate reconstruction which is used in the intermediate losses

to prevent the gradient vanishing problem. The reconstructions are weighted summed to estimate the final 3D shape. Here, the number

written under each layer represents the channel size of the layer.

3. 3D reconstruction networks

In this section, we introduce the proposed 3D-URN,

which consists of a 3D shape reconstructor and a rotation

estimator. The network reconstructs the 3D shape of the

i-th sample, X̂i ∈ R
3×p, where p is the total number of

points, and the camera matrix R̂i ∈ R
3×3 from 2D feature

points of the i-th sample, xi ∈ R
2×p. In this paper, we as-

sume that the 2D feature points and the reconstructed 3D

shapes are translated so that their means are zero.

3.1. 3D shape reconstructor

An illustration of the proposed 3D shape reconstructor is

visualized in Figure 2. The role of the 3D shape reconstruc-

tor, f , is to reconstruct the 3D shape X̂i given 2D feature

points xi, which can be expressed as

X̂i = f(xi). (1)

In (1), the 3D shape is reconstructed based on a single re-

constructor. However, 3D reconstruction from a 2D cue is

a highly non-linear procedure, which might be hard to deal

with based on a single reconstructor. To resolve this issue,

we incorporate multiple reconstructors, and the final result

is estimated as a weighted sum of reconstructions, which

can be written as

X̂i =
∑

j=1,··· ,nf

wjfj(xi), (2)

where fj is the j-th reconstructor, w ∈ R
nf is the weight

of the reconstructions which is estimated from a weight esti-

mator, wj is the j-th element of w, and nf is the total num-

ber of reconstructors. The design of the 3D shape recon-

structor has been inspired by the shape-space-based method

in NRSfM [4, 7, 8] that represents the 3D shape based on

a weighted sum of basis shapes. However, in their formu-

lation, a batch of 2D feature points is always necessary to

infer the basis shapes, unlike the proposed scheme which

generates several basis shapes for each frame. In the next

section, the details of the proposed 3D reconstructor and

the weight estimator are introduced.

3.1.1 Design of the 3D reconstructor

The proposed 3D reconstructor is designed based on a neu-

ral network. The vectorized 2D feature points, vec(xi),
where vec(·) denotes the vectorization operator, is mapped

into a feature space with a fully-connected layer, which

is fed into nd cascaded modules. Each module consists

of two fully-connected layers. After each fully-connected

layer, a ReLU activation function is followed. Note that the

output of each module is fed into another fully-connected

layer without activation function to infer intermediate re-

sult, which is denoted by fk
j (xi) ∈ R

3p, k = 1, · · · , nd.

Here, the output of the last module is the final reconstruc-

tion of each 3D reconstructor, i.e., fj(xi) = fnd

j (xi).

There are two things to consider in designing the 3D re-

constructor. The first one is scale ambiguity between the

weights and the reconstructions in (2). Specifically, numer-

ous combinations of wj and fj(xi) with different scales

can produce the same 3D shape X̂i, which can make the

solution ambiguous. To resolve this issue, we normalize the

reconstructions so that they have unit Frobenius norms. The

3851



Figure 3. An overview of the proposed rotation estimator. The

output of the estimation network is fed into the proposed rotation

refiner, which resolves the issues of orthogonality constraints and

reflection ambiguities among the estimated rotation matrices.

second issue is that the training procedure of the proposed

network could suffer from gradient vanishing problem in

case of large nd. To alleviate this issue, we put the pro-

posed losses to the output of each module, which will be

introduced in Section 3.3.

3.1.2 Design of the weight estimator

An illustration of the weight estimator is visualized in Fig-

ure 2. The weight estimator infers the weights of the recon-

structions from 2D feature points. It is also designed based

on a neural network, which consists of six fully-connected

layers. The output of each fully-connected layer is followed

by a ReLU activation function except the last layer. Here,

we empirically found out that incorporating the absolute

value of the output from the network as the weight improves

the performance. Hence, we utilize the absolute value of the

output from the weight estimator as the weight, w.

3.2. Rotation estimator

An overview of the rotation estimator is visualized in

Figure 3. The role of the rotation estimator, g, is to infer

rotation matrix R̂i given 2D feature points xi, which can be

expressed as

R̂i = g(xi). (3)

The structure of the rotation estimation network is similar

to the weight estimation network, with the different size of

channel dimensions. However, in contrast to the design of

the weight estimation network, there are two things to con-

sider in designing the rotation estimation network. The first

one is the orthogonality constraint of the rotation matrix:

R̂iR̂
T
i = I, (4)

where I is the identity matrix. The second one is the reflec-

tion ambiguities among the estimated rotation matrices. To

resolve these issues, we propose a novel rotation refining

procedure, which is applied to the output of the rotation es-

timation network. The proposed rotation refining procedure

is given as

R̃i ← UV
T ,

R̂i ← U





1 0 0
0 1 0

0 0 |R̃i|



V
T ,

(5)

where g(xi) = UΣV is the singular value decomposition

(SVD) of g(xi) and | · | denotes the matrix determinant. The

first step here enforces the orthogonality constraint. The

reflection ambiguities are also resolved by putting the esti-

mated rotation matrices to the special orthogonal group of

|R̂i| = 1, which is achieved in the second step.

Note that many deep learning tools like TensorFlow pro-

vide an ability to back-propagate through SVD, which en-

ables us to use the proposed rotation refiner without any

problem.

3.3. Unsupervised losses

We train the proposed network in a fully-unsupervised

manner incorporating the proposed losses, which are the

projection loss and the low-rank loss. Before explaining the

proposed loss functions, we introduce some additional no-

tations. Let Sk
j be the collection of reconstructions, which

are estimated from the k-th module of the j-th reconstruc-

tion network, given a batch of training samples, which is

defined as

S
k
j =

[

vec(fk
j (x1)), · · · , vec(fk

j (xnb
))
]T

, (6)

where nb is the batch size. Meanwhile, the weighted sum

of the intermediate reconstructions is denoted by X̂
k
i , i.e.,

X̂
k
i =

∑

j=1,··· ,nf
wjf

k
j (xi).

3.3.1 Projection loss

The projection loss measures how well the projection of the

rotated reconstruction coincide with the given 2D feature

points. The projection loss is defined as

Lproj =
1

pndnb

∑

i∈B

∑

k=1,··· ,nd

‖PR̂iX̂
k
i − xi‖

2

F , (7)

where ‖ · ‖F denotes the Frobenius norm, P is the projec-

tion matrix, and B is a set of training batch samples. Here,

we assume that 2D observations are given from the ortho-

graphic camera model, which is reasonable to model objects

that are far enough from the camera compared to the depth

variation. Hence, the projection matrix P is given as

P =

[

1 0 0
0 1 0

]

. (8)
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3.3.2 Low-rank prior loss

The low-rank assumption has been generally incorporated

in the field of NRSfM [3,4,7,8,15] to reconstruct 3D shapes

in an unsupervised manner. In general, a smooth surrogate

of the rank cost such as log-determinant and the nuclear

norm have been adopted in the formulation [10]. We found

out empirically that a nuclear-norm-based cost gives supe-

rior performance, which is given as

Llr =
1

ndnf

∑

k=1,··· ,nd

∑

j=1,··· ,nf

‖Sk
j (S

k
j )

T ‖∗, (9)

where ‖ · ‖∗ denotes the nuclear norm.

3.3.3 Total loss

The total loss function of the proposed network is given as

Ltotal = λ1Lproj + λ2Llr + λ3Lreg, (10)

where λ1, λ2, and λ3 are weighting parameters, and Lreg

is the regularization loss for estimated weights which is de-

fined as

Lreg = ‖w‖2F . (11)

The loss function is defined on both every intermediate

output and the last output of the reconstruction network,

which facilitates the training procedure by preventing the

gradient vanishing problem.

4. Experimental results

In this section, we show experimental results of 3D-

URN on various data sets. For all experiments, we used

the following parameter setting unless stated otherwise:

nf = 12, nd = 12, nb = 32, λ1 = 800, λ2 = 80, and

λ3 = 5.

4.1. Implementation details

We have empirically found that putting a constraint on

parameters of each layer to clip their norm by 1 improves

the performance. Specifically, we have normalized the pa-

rameter matrices of which the Frobenius norms are larger

than 1 so that they have unit Frobenius norms. We have

also found out that alternatingly updating the parameters of

the 3D shape reconstructor and the rotation estimator shows

better performance. Note that the rotation estimation per-

formance might be crucial for training the 3D shape recon-

structor. Hence, we updated the parameters of the rotation

estimation network for 25 times before every update of the

parameters of the 3D shape reconstructor. The parameters

of both the networks were updated for 100 epochs based on

Adam [18] with a learning rate of 1.0 × 10−3. Lastly, in

our framework, x and y coordinates correspond to the input

coordinates. Hence, we concatenated the input 2D points

with the estimated depths for the final output.

4.2. Quantitative evaluation

For the quantitative evaluation, we have applied 3D-

URN on the PASCAL3D+ data set [30] and the face se-

quence [14]. In the PASCAL3D+ data set, ground truth 3D

CAD models are labeled to the samples of the PASCAL

VOC data set [9]. Following the practices in [2], we have

evaluated the performance on the instances in eight object

categories which have at least eight keypoints, and the per-

formance is measured in terms of the normalized mean 3D

error, e13D, as in [7, 13], which is defined as

e13D =
1

σnsp

ns
∑

i=1

p
∑

j=1

eij , σ =
1

3ns

ns
∑

i=1

(σix + σiy + σiz),

(12)

where σix, σiy , σiz are the standard deviations in x, y, and

z coordinates of the ground truth 3D shape for the i-th in-

stance, ns is the total number of instances, and eij is the Eu-

clidean distance error of the j-th point in the i-th instance.

Note that we have calculated eij for both the original re-

constructed shape and the reflected shape and picked the

smaller one, due to the inherent reflection ambiguity. We

have also considered full and clean 2D feature points in

each object category, following the practice in [2]. We have

compared the performance of 3D-URN to various meth-

ods [2, 7, 11, 13, 14, 21, 22, 24, 29, 31].

The results are summarized in Table 1. The proposed

method shows the state-of-the-art performance on aver-

age, which demonstrates the effectiveness of the proposed

method. Some reconstruction results are visualized in Fig-

ure 6. We have also evaluated 3D-URN on noisy input. For

this evaluation, zero mean Gaussian noises are added to 2D

feature points, of which the standard deviation of the noise

is set to 0.01dmax where dmax is the maximum absolute value

of the input feature points. The comparison results on the

noisy data are summarized in Table 2. Also in this case, 3D-

URN shows the state-of-the-art performance on average. In

case the standard deviation of the noise has doubled, the

average performance of 3D-URN was 0.189, which is com-

parable to the performance of [2] with small noise.

The face sequence is one of the popular benchmark data

sets in the field of NRSfM, which is a motion capture data

of facial feature points. We have compared the performance

of 3D-URN to various methods [7,22,26] based on the error

measure, e23D, used in [21, 22], which is defined as

e23D =
1

ns

ns
∑

i=1

‖XGT
i −X

infer
i ‖F

‖XGT
i ‖F

, (13)

where XGT
i and X

infer
i are the ground truth 3D shape and the

reconstructed 3D shape, respectively. Again, for this mea-

sure, both the original reconstructed shape and the reflected

shape have been used in calculating the error. Table 3 sum-

marizes the comparison results. Although the other NRSfM
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TK [29] MC [24] CSF [13] KSTA [14] BMM [7] EM-PND [21] TUS [31] GBNR [11] CNR [22] MUS [2] Ours Ours*

Aeroplane 0.679 0.584 0.363 0.145 0.843 0.578 0.294 - 0.263 0.261 0.121 0.157

Bicycle 0.309 0.440 0.424 0.442 0.308 0.763 0.182 0.221 - 0.178 0.328 0.305

Bus 0.202 0.238 0.217 0.214 0.300 1.048 0.129 0.214 - 0.113 0.097 0.105

Car 0.239 0.256 0.195 0.159 0.266 0.496 0.084 0.217 0.099 0.078 0.104 0.097

Chair 0.356 0.447 0.398 0.399 0.357 0.687 0.211 - - 0.210 0.115 0.141

Diningtable 0.386 0.512 0.406 0.372 0.422 0.670 0.265 0.351 - 0.264 0.115 0.107

Motorbike 0.339 0.346 0.278 0.270 0.336 0.740 0.228 0.268 - 0.222 0.287 0.265

Sofa 0.381 0.390 0.409 0.298 0.279 0.692 0.179 0.264 0.214 0.167 0.181 0.153

Average 0.361 0.402 0.336 0.287 0.388 0.709 0.196 0.256 0.192 0.186 0.168 0.166

Table 1. Results on the PASCAL3D+ data set based on the error measure e13D. The performances of the other methods are quoted from [2].

Here, “-” means failure of reconstructions, and “Ours*” is the performance of 3D-URN measured on unseen instances.

TK [29] MC [24] CSF [13] KSTA [14] BMM [7] EM-PND [21] TUS [31] GBNR [11] CNR [22] MUS [2] Ours Ours*

Aeroplane 0.677 0.583 0.233 0.183 0.566 0.760 0.297 - 0.294 0.271 0.144 0.163

Bicycle 0.308 0.442 0.455 0.457 0.307 0.808 0.195 0.231 - 0.188 0.320 0.355

Bus 0.204 0.241 0.227 0.218 0.255 1.197 0.139 0.223 - 0.122 0.103 0.127

Car 0.241 0.259 0.169 0.164 0.161 0.624 0.100 0.222 0.122 0.093 0.119 0.109

Chair 0.358 0.447 0.398 0.396 0.258 0.818 0.221 - - 0.220 0.125 0.151

Diningtable 0.392 0.522 0.414 0.383 0.358 0.807 0.268 0.370 - 0.267 0.121 0.113

Motorbike 0.342 0.348 0.295 0.290 0.299 0.748 0.237 0.277 - 0.233 0.295 0.240

Sofa 0.384 0.392 0.303 0.294 0.240 0.726 0.188 0.271 0.228 0.174 0.185 0.157

Average 0.363 0.404 0.312 0.298 0.305 0.811 0.206 0.266 0.215 0.196 0.177 0.177

Table 2. Results on the PASCAL3D+ data set with noise based on the error measure e13D. The performances of the other methods are quoted

from [2]. Here, “-” means failure of reconstructions, and “Ours*” is the performance of 3D-URN measured on unseen instances.

schemes show better performance, the performance of 3D-

URN is comparable and is good enough for practical ap-

plications. This result shows that 3D-URN can reconstruct

not only the instances in rigid object categories but also in

non-rigid object categories.

On the one hand, to verify the fact that the proposed 3D-

URN can reconstruct the 3D shape of an unseen instance

after we train the proposed network, we have divided the in-

stances of each object category into a training set and a test

set. Specifically, we put 80% of the instances into the train-

ing set, and the remaining instances into the test set. The

results on clean and noisy inputs are summarized in Table 1

and Table 2, respectively, which are represented as “Ours*”.

We can verify that 3D-URN is capable of reconstructing the

3D structures of unseen instances.

4.3. Qualitative evaluation

We have evaluated the proposed framework on MUCT

data set [25] and the two cloths sequence [28]1 for the qual-

itative evaluation. MUCT is a face image data set which

has labeled 2D landmark feature points. It consists of 86
RGB face images of diverse ages, races, and lighting con-

ditions, and each image has 68 2D feature points. On the

one hand, the two cloths sequence is one of the popular se-

quences in the field of NRSfM, which is a sequence of two

independently moving cloths. It consists of 163 frames, and

each frame has 525 points. In this case, we set nf = 24
to handle the large number of 2D feature points. Since no

ground truth 3D points are provided for both cases, we only

report the qualitative results. An illustration of the recon-

1The reconstruction video is provided in the supplementary material.

struction results on MUCT data set is visualized in Figure

4. We can verify that the proposed scheme has successfully

reconstructed the 3D shapes of faces. Some reconstruction

results of the two cloths sequence are visualized in Figure

5. A notable thing is that 3D-URN has successfully recon-

structed multiple parts of an instance at once without a sep-

arate segmentation process. Again from the results of the

MUCT data set and the two cloths sequence, we can verify

that 3D-URN can reconstruct instances in non-rigid object

categories.

4.4. Additional experiments

We have performed ablation experiments on the PAS-

CAL3D+ data set. The performance was evaluated by re-

moving some components of the proposed scheme. The re-

sults are summarized in Table 4. Removing the low-rank

prior loss increased the error by 0.007. The error was in-

creased by 0.006 when we removed the weight regulariza-

tion loss, and by 0.100 when the intermediate loss was not

incorporated.

In addition, we have evaluated the performance of 3D-

URN on the PASCAL3D+ data set with various numbers of

3D reconstructors, of which the results are summarized in

Table 5. We can see that the performance gets improved as

the number of 3D reconstructors increases, which shows the

validity of incorporating multiple 3D reconstructors. Lastly,

we have performed experiments on the PASCAL3D+ data

set with other low-rank losses. The use of the determi-

nant cost increases the error by 0.009, and using the log-

determinant cost causes numerical instability, resulting in a

training failure.
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Figure 4. Some example reconstructions of the MUCT data set. Left: It shows the input 2D feature points and the projection of the

reconstructed 3D shape. Here, green circle means the input 2D feature point, and the red “+” means the estimated 2D feature point.

Middle, Right: They visualize the reconstructed 3D shape in the camera view and the side view.

Figure 5. Some example reconstructions of the two cloths sequence. In each pair, the left figure represents the input 2D feature points, and

the right figure shows the reconstruction result.

MP [26] BMM [7] CNR [22] Ours

Error 0.032 0.023 0.025 0.044

Table 3. Results on the face sequence based on the error measure

e
2

3D.

Variant Ours w/o Llr w/o Lreg w/o Lint

Error 0.168 0.175 0.174 0.268

△ - 0.007 0.006 0.100

Table 4. Ablation experiments on different components in our

framework.

nf 2 3 5 9 10 12

Error 0.257 0.211 0.211 0.211 0.176 0.168

Table 5. Average errors for various numbers of 3D reconstructors

on the PASCAL3D+ data set.

5. Conclusion

In this paper, we have proposed 3D-URN, a 3D struc-

ture reconstruction network of which the goal is to recon-

struct 3D structures of instances in an object category given

their 2D feature points. The proposed network consists of a

3D shape reconstructor and a rotation estimator, which are

trained in a fully-unsupervised manner based on the pro-

posed loss functions. The 3D shape reconstructor recon-

structs the 3D shape of an instance from 2D feature points,

which is a highly non-linear procedure. To alleviate the dif-

ficulty, we incorporated multiple 3D reconstructions, which

are weighted summed to estimate the final 3D shape. The

rotation estimator estimates the camera pose of the given

instance. To handle the orthogonality constraint and the re-

flection ambiguities in the rotations, we proposed a rotation

refiner, which consists of differentiable operations. The pro-

posed method shows the state-of-the-art performance on the

popular PASCAL3D+ data set, demonstrating the effective-

ness of the proposed scheme. Meanwhile, reconstructing

multiple object categories simultaneously with a single net-

work and extending the proposed scheme to handle missing

data and the temporal smoothness assumption are key prob-

lems that can broaden the practical applications, which are

left as future work.
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Figure 6. Some example reconstructions of the PASCAL3D+ data set. Left: Given 2D feature points, Middle, Right: 3D reconstruc-

tion results in two different views. Here, the empty circles represent the ground-truth 3D structures, and the filled circles represent the

reconstructed 3D shapes.
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