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Abstract

Recent advances in single-frame object detection and

segmentation techniques have motivated a wide range of

works to extend these methods to process video streams. In

this paper, we explore the idea of hard attention aimed for

latency-sensitive applications. Instead of reasoning about

every frame separately, our method selects and only pro-

cesses a small sub-window of the frame. Our technique

then makes predictions for the full frame based on the sub-

windows from previous frames and the update from the cur-

rent sub-window. The latency reduction by this hard atten-

tion mechanism comes at the cost of degraded accuracy. We

made two contributions to address this. First, we propose

a specialized memory cell that recovers lost context when

processing sub-windows. Secondly, we adopt a Q-learning-

based policy training strategy that enables our approach

to intelligently select the sub-windows such that the stale-

ness in the memory hurts the performance the least. Our

experiments suggest that our approach reduces the latency

by approximately four times without significantly sacrificing

the accuracy on the ImageNet VID video object detection

dataset and the DAVIS video object segmentation dataset.

We further demonstrate that we can reinvest the saved com-

putation into other parts of the network, and thus result-

ing in an accuracy increase at a comparable computational

cost as the original system and beating other recently pro-

posed state-of-the-art methods in the low latency range.

1. Introduction

The human visual system is confronted with an over-

whelming amount of information in a constant visual

stream. Fortunately, our brain is capable enough to remem-

ber our environment from previous experiences and can in-

stantly find the best sequence of visual attention decisions to

achieve a seemingly effortless perception of our visual sur-

roundings. As [4, 26] pointed out, we do not perceive our
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entire environment at once, and the “secret” to our success

lies in a clever interplay between our ability to remember

the bigger picture while focusing our attention to the objects

of interests.

In recent years, there has been tremendous progress in

object detection [9, 11, 25, 31] and segmentation [5, 6, 14]

techniques thanks to the emergence of deep convolutional

networks [15, 21, 35, 38]. It is natural to extend these pow-

erful methods to applications that require continuous stream

processing. However, our own human visual perception ex-

perience suggests that it is not efficient to naively apply

single-frame detectors to every frame of a video at a fixed

time interval without any temporal context.

Inspired by the human visual attention system [26], we

introduce Patchwork, a model that explores the subtle in-

terplay between memory and attention for efficient video

stream processing. Fig. 1a illustrates an overview of Patch-

work. At each time step, Patchwork crops a small window

from the input frame and feeds it into the feature extrac-

tor network, which has been modified to contain a set of

specialized memory cells scattered throughout the body of

the network. The network eventually predicts task-specific

outputs: a set of boxes for object detection or a mask for

segmentation. Besides, the network predicts the attention

window for the next frame that is most likely to contain

useful information for the task.

The primary motivation for Patchwork is efficient stream

processing. In other words, we aim to achieve the high-

est possible detection or segmentation quality while reduc-

ing latency and computational cost. For applications where

there is no need to reduce the latency, we can re-invest the

saved resources and boost quality. We demonstrate this

latency reduction and quality improvement on two bench-

mark datasets: ImageNet VID [32] for video object detec-

tion, and DAVIS [29] for video object segmentation. This

latency reduction is controlled a priori by a pair of hyperpa-

rameters. We explain a few hyperparameter choices in the

experimental section. Some choices significantly reduce la-

tency but take a hit in quality, and others save resources but

achieve similar quality. There are also configurations where
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(a) Overview of the Patchwork architecture.
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Figure 1: a) The proposed Patchwork architecture. At each time step in the video stream, our method only processes a small

sub-window of the frame, but can still reasons about the full frame thanks to a series of stateful Patchwork Cells (pc). b)

A zoomed-in view of the stateful Patchwork Cell, which modulates the input feature by encasing it with contextual features

from previous states. t denotes the time step while l denotes a particular deep net layer. Please see Sec. 3.2 for details. These

cells replace all traditional convolutional filters in a network, as shown in Supplementary Fig. 9.

a quality gain can be observed at a comparable amount of

computation.

The contributions of this paper are three-fold: 1) We

present Patchwork, a recurrent architecture inspired by the

human visual perception system to perform efficient video

stream processing. Our method makes use of 2) The Patch-

work Cell that serves as the memory unit to carry environ-

mental information across time and 3) An attention model

that can predict the best location to attend to in the next

frame. Our method is trained via Q-learning with novel ob-

ject detection and segmentation reward functions.

2. Related work

Efficient stream processing. Driven by application needs,

there is increasingly more interest in running deep learning

models fast and in real-time. These advances fall into two

buckets. The first bucket contains methods that change the

network at its rudimentary level, e.g., quantization [17, 43],

and layer decomposition [8, 22, 33]. The other bucket of

methods, where this work also falls into, operates at a higher

and algorithmic level. For image object detection, there

are SSD [25] and YOLO [30], both of which are one-stage

detectors aimed to achieve a better speed-accuracy trade-

off over the two-stage approaches such as Faster-RCNN

[31]. Specifically for video streams, under the assumption

that the outputs for neighboring frames are often similar,

[23, 34, 45] spend heavy computation only on dynamically

select key frames, thus trading accuracy for computation.

Our work also exploits the temporal consistency, but instead

of only selecting key frames, we select spatial locations per

frame in the hope of achieving a better latency-accuracy

trade-off.

Recurrent attention models. Most attention models so far

have been designed to repeatedly look at parts of the same

image rather than across different frames in a video. One of

the earliest works is the recurrent attention model (RAM)

[27], which repeatedly places attention windows onto an

MNIST image to classify digits. Several works extended

the RAM framework to multi-label classification [1], image

generation [12] and single-image object detection [3]. The

object detector in [3] gradually moves the attention window

around the image until an object is detected, which is vastly

different than our approach. More importantly, its complex-

ity grows linearly with the number of objects, where our

method has a constant processing time per frame. In the

video domain, [13, 19] applied the attention model to video

streams, though they do not address the problem of lost con-

text by the spatial attention, which is a key contribution of

this work.

3. Patchwork

As shown in Fig. 1a, the Patchwork architecture is a re-

current system where the prediction for the current frame

may depend on all previous frames. At each time step,
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Figure 2: (Best viewed in color) The evolution of a Patch-

work Cell memory over five time steps. Top: Input frames

with attention windows in red rectangles. Bottom: The

Patchwork Cell aggregates raw input patches cropped by

the attention windows over time. Note that only features

in the red rectangles are updated. Therefore, the fea-

ture map looks in disarray, forming a patchwork pattern

(https://en.wikipedia.org/wiki/Patchwork).

the input frame undergoes four stages: cropping, feature

extraction, task-specific prediction (detection or segmenta-

tion) and attention prediction. During cropping, a window

of fixed size is cropped from the input frame, where the

attention predictor from the previous frame dictates the lo-

cation of the crop. Our choice to limit the window size to

be constant is deliberate so that it allows us to control the

computational cost ahead of time, as the cost is roughly pro-

portional to the area of the window. For the feature extrac-

tion stage, we use a stateful network adapted from a stan-

dard backbone network, MobileNetV2 [33]. We replace all

its convolutional layers which have kernel size larger than

1x1 with a custom stateful Patchwork Cell, which appears

in details in Sec. 3.2. Finally, the attention and task-specific

predictors build on an appropriate layer on top of the feature

extraction. Please see Supplementary Sec. A for details.

We organize the rest of this section as follows: The two

critical pieces of the model, the recurrent attention mod-

ule and the Patchwork Cell, are described in Sec. 3.1 and

Sec. 3.2. The last two sub-sections describe the model train-

ing: Sec. 3.3 describes the reward function for both the

object detection and segmentation task, and the rest of the

training details are concluded in Sec. 3.4.

Patchwork has two meanings. For one, it is a port-

manteau for a PATCH-wise attention netWORK. However,

Patchwork is also the English word for a form of needle-

work where multiple pieces of fabric are sewn together into

a larger design—this resembles how the memory within

each Patchwork cell appears during inference (see Fig. 2).

3.1. Recurrent attention

Fig. 1a shows an overview of the recurrent attention net-

work. In prior literature, the attention window (“attention”

in the figure) is parameterized using its center and size in a

continuous space [1, 12, 27]. As for the training, [12] used

a smooth attention window with gradients on the boundary
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Figure 3: The attention mechanism. The attention network

builds on top of the memory unit of a Patchwork Cell and

an action history, and predicts the Q-values for the next time

step. t denotes the time step and L is a fixed layer in the

network. See Sec. 3.1 for details.

and therefore could train the mechanism end-to-end in a su-

pervised way; [1, 27], on the other hand, made use of policy

gradients, a flavor of reinforcement learning (RL). Note that

experiments in these prior works are limited to datasets such

as the MNIST and CIFAR, which explains why we had only

limited success with either methodology on complex real-

world object detection and segmentation tasks. Our best

results were obtained from Q-learning on a discrete action

space.

This discrete action space consists of all possible atten-

tion sub-windows, and is parameterized by two integers M
and N . M denotes how many times a dimension is sliced,

while N denotes how many adjacent slices form an atten-

tion window. Our experiments contain three such configura-

tions. For M = 2, N = 1, there are 4 possible windows of

relative size [ 1
2
, 1

2
]. These windows have the top-left corners

at [ i
2
, j
2
], ∀i ∈ 0, 1; j ∈ 0, 1. M = 4, N = 2 has 9 possi-

ble windows of relative size [ 1
2
, 1

2
], with the top-left corners

at [ i
4
, j
4
], ∀i ∈ 0, 1, 2; j ∈ 0, 1, 2. M = 4, N = 1 has 16

possible windows of relative size [ 1
4
, 1

4
], with the top-left

corners at [ i
4
, j
4
], ∀i ∈ 0, 1, 2, 3; j ∈ 0, 1, 2, 3.

Note that M and N control the amount of computation

a priori. For example, the M = 2, N = 1 configuration

makes each attention window attending to 25% of the area

of a frame, and hence the total computation is reduced to

roughly 25%.

Next, we construct the attention network that takes a set

of features from the network at time t and map them to Q-

values Q(St, At; Θ) for deep Q-learning (DQN [28]). The

3417



attention network builds on top of the memory unit of a

Patchwork Cell, which has a view of the full frame. Addi-

tionally, we would also like the attention network to know

the action history, to encourage diversity among actions. To

this end, we designed a simple exponentially-decaying ac-

tion history Ft:

Ft = min(α · Ft−1 + onehot(At), 1.0) (1)

where At is the action (attention window) at the current time

step, and α is a discount factor. As shown in Fig. 3, a Patch-

work Cell memory is mapped to a one-dimensional fea-

ture vector and concatenated with the action history, where

a final fully-connected layer is applied to compute the Q-

values.

3.2. Patchwork Cell

Modern deep convolutional networks have receptive

fields that are typically larger than the size of the input im-

age. These large receptive fields are crucial in providing

later logic (e.g., a detector) with contextual information.

However, the hard attention in the recurrent attention mod-

ule severs these receptive fields, as a cropped input loses

any context beyond its own cropped view. Our experiments

in Tab. 2 show that this loss of context would cause a signif-

icant drop in accuracy if not handled properly. To remedy

this, we introduce a building block that is the core of this

paper, the Patchwork Cell (see Fig. 1b).

The Patchwork Cell is a stateful replacement for the

otherwise stateless 2D-convolution layer with the SAME

padding that appears throughout modern deep neural net-

works. The 2D-convolution is defined as the mapping

SameConv2d(X,Θ) → Y , where X is the input feature

map, and Θ is the weight with an odd filter size of (2k+1)2.

Without loss of generality, we assume the stride to be 1.

Hence, Xt and Yt have the same spatial resolution [H , W ].

The Patchwork Cell adds two states in the form of

a memory cell St and an action At into the mapping:

Patchwork(Xt, At, St,Θ)→ Yt, where the subscript t de-

scribes the time step. The cell consists of three components:

state update, feature propagation and 2D-convolution with

VALID padding.

State update. The feature extracted from the sub-window

Xt overwrites part of the memory St−1 at locations speci-

fied by the initial crop window at the time step t, and yields

the new state St:

Sm,n
t =











X
m−

at·H

h
,n−

bt·W

w

t , if 0 6 m− at·H
h

< H

and 0 6 n− bt·W
w

< W

Sm,n
t−1 , else

∀m ∈ 0, 1, ...,H/h, n ∈ 0, 1, ...,W/w. The superscripts de-

scribe coordinates. [at, bt] are the relative coordinates of the

top-left corner of the attention window. [h,w] are the rel-

ative height and width of the window, [0.5, 0.5] and [0.25,

0.25] in our experiments.

Feature propagation. We modulate the input feature Xt

by encasing it with features from the past state St−1. This

operation is equivalent to cropping a slightly larger feature

X̂t from the current state St:

The modulated feature X̂t

X̂i,j
t =











S
i−k+

at·H

h
,j−k+

bt·W

w

t , else if 0 6 i− k + at·H
h

< H
h

and 0 6 j − k + bt·W
w

< W
w

0, else

∀i ∈ 0, 1, ..., H + 2k, j ∈ 0, 1, ...,W + 2k.

Finally, Yt is obtained by performing a 2D-convolution

with VALID padding on the modulated feature X̂t: Yt =
V alidConv2d(X̂t,Θ).

The Patchwork Cell is placed numerous times through-

out the network, namely, in front of every SAME padding

convolution with a kernel size larger than 1, and be-

fore global operations. An exact comparison between the

off-the-shelf detector and segmenter and their respected

Patchwork-modified versions appears in Supplementary

Sec. A.

Note that the context provided by the Patchwork Cells is

not exact and is an approximation in two ways: 1) One type

of approximation is the temporal staleness in the cell mem-

ory, as these stale features are extracted from past frames

and used to augment features of the current frame. This ap-

proximation error becomes more severe the more drastically

a scene changes. 2) The context gradually provided by the

series of Patchwork Cells is not numerically identical to a

natural receptive field, i.e., that of the original pre-cropped

input frame. However, in a toy experiment, we found that

this type of error is almost negligible, as shown in Supple-

mentary Sec. B.

3.3. Q­Learning reward

Now that we have defined the state, the action, and the Q-

function, we need to choose an appropriate reward to train

the attention network. A good time-difference (TD(0)) re-

ward [37] should be continuous, as a moderately good ac-

tion shall receive a smaller reward than a vastly superior

action. It should also have low variance, and the reward

should associate more with the action than the overall diffi-

culty of the scene. Hence, it is inappropriate to naively use

the mean-average-precision (mAP) for object detection or

the mean intersect-over-union (mIoU) for segmentation as

the reward function, as they largely depend on the difficulty

of the scene.

In the literature, subtracting a fixed baseline from the raw

reward reduces the variance [27]. For our video case, we

can do slightly better by using the prediction of the previous
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Figure 4: (Best viewed in color) Sample results for the Patchwork network over ten consecutive frames. First three rows:

object detection results on ImageNet VID. Attention window appears in darker or lighter shading. Top row: When the object

does not move and can be enclosed within one possible attention window, the window stays until the object away. 2nd row:

When the object is too large for one attention window, the attention window moves around to cover the whole object. 3rd

row: When there are multiple objects of interest spread far apart, the attention window jumps between these objects. Bottom

row: object segmentation results on DAVIS 2016. Green denotes the segmentation mask, and the red rectangle shows the

attention window. Note that the attention window does not simply follow the object of interest. The Q-learning enables a

non-greedy attention mechanism that focuses on smaller and potentially new parts while memorizing parts that have been

attended before.

frame to form the baseline for the current action. Namely,

we define the TD(0) reward Rt as:

Rt = max(0, f(gtt, pt)− f(gtt, pt−1)) (2)

where gt and p are groundtruth and predictions, f(gt, p)
is the metric, and t is the time step. The intuition here is

that a reward should only be given if the new attention win-

dow has contributed to an increase of a metric f over doing

nothing. We force the reward to be non-negative since any

negative reward would indicate that having a fresh view of

the scene is detrimental in explaining a scene, which should

be strictly due to noise.

As for the task-specific metric f , for segmentation, we

use the frame-wide mIoU metric (also known as the J-

measure in DAVIS [29]). However, for object detection, the

mAP measure for object detection is inappropriate as it is

quantized and does not reflect incremental improvements.

Instead, we draw inspiration from the segmentation task,

and define an average box overlap measure as the reward

function for object detection:

f(gt, p) =
1

K

K
∑

1

IoU(gtk, p̃k) (3)

where each prediction with a score larger than 0.5 is greed-

ily matched to one of the groundtruth boxes gtk to yield

p̃k. We then average the IoU scores over all K groundtruth

boxes. Note that we omit the class label altogether for sim-

plicity.

We use the DDQN [41] method to train the weights Θ in

the Q-function approximation Q(St, At; Θ):

Θ← Θ+ α(Y Q
t −Q(St, At; Θ))∇ΘQ(St, At; Θ) (4)

where

Y Q
t ≡ Rt+1 + γQ(St+1, argmax

a

Q(St+1, a; Θ);Θ′) (5)

Θ′ is a delayed copy of the weight to make the Q-learning

procedure less overly confident. γ is the discount factor and

α is the learning rate.

3.4. Training details

There are two significant challenges associated with the

training of Patchwork. First, the amount of video train-

ing data in the benchmark datasets in the experiments is

tiny. ImageNet VID has roughly a thousand unique train-

ing videos (technically 3862 but not all unique) whereas

DAVIS 2016 only has 30. We decided to make use of the

vast amount of single-frame data sources by generating fake

videos from them. For a single static image, we randomly

sample 2 boxes and build a video sequence by moving the
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view from one box to the other. We make sure that at

least one of the two boxes overlaps with a certain amount

of groundtruth detection boxes or segmentation foreground

pixels, so that the faked video is not all background. The

speed with which the view window moves adheres to a

Gaussian distribution. For both the detection and segmen-

tation tasks, we use the COCO and Pascal VOC datasets

to augment the original training sets. The usage of these

datasets to aid ImageNet VID is not new, as [24] also used

them to pre-train their networks.

A second challenge is training with highly correlated

samples in mini-batches. This correlation makes the op-

timization less efficient since multiple samples push gra-

dients roughly in the same direction. More importantly,

this makes batch normalization (BN) [16], a critical mod-

ule to train any deep image model, no longer applicable. To

remedy this, we adopt a three-stage training procedure: 1)

The video data is split into single frames and mixed with

augmentation data to train a single-image model with BN;

2) We place the trained single-image model in a recurrent

Patchwork setting and only train the attention network part

with Q-learning; 3) With BN frozen, we fine-tune the main

network jointly using the task-specific loss and the attention

network with Q-learning at a lower learning rate.

4. Experiments

Before diving into the experimental results, we would

like to discuss one of the core metrics that is the per-frame

latency of the system, which has had different definitions in

the past [24, 33].

Average vs. maximum latency. Some algorithms require

a variable amount of computation per frame [10, 44]. One

notable case is the naive application of a slow model ev-

ery K frames (keyframes) in a sequence to achieve real-

time. Predictions for non-key frames copy from the closest

past keyframe. Since copying does not incur any real la-

tency, K − 1 frames have no latency at all, while one single

keyframe takes T amount of time. In this case, the average

latency is T/K, which is very different than the maximum

latency at T . Both the mean and maximum metrics have

their own merits. However, we argue that for most latency-

sensitive application, the maximum latency is more critical,

as the peak device usage is the bottleneck of the system.

Therefore, we report the maximum latency in the experi-

ments section. The average latency appears in Supplemen-

tary Sec. C.

Theoretical (FLOPs) vs. empirical latency metric (sec-

onds). The theoretical latency metric measures the latency

in the number of floating point operations, which represents

the intrinsic complexity of an algorithm. It is independent

of the particular implementation and hardware, and there-

fore, conclusions drawn based on the theoretical measure

may remain significant for a long time as implementations

are optimized and hardware gets deprecated. The empiri-

cal latency metric, on the other hand, measures the latency

in absolute time units (e.g., milliseconds). It depends on a

particular implementation, so a conclusion can be valid for

one hardware, but does not hold for another. We report both

metrics in the experiments section as complete as possible.

The empirical latency in our experiments is measured using

Tensorflow and on a single core Intel Xeon at 3.7GHz.

Model variants. We conducted experiments on multiple

variants of the baseline single-frame model and Patchwork

for both the object detection and segmentation tasks. The

variations include: depth: Depth multiplier, with which the

number of channels in all layers is multiplied. The latency

is roughly proportional to the square of this multiplier. flip:

Also process the left-right flipped frame and average pre-

dictions, and doubles the latency. resolution: The default

resolution is 384x384. 0.25 resolution has roughly 25% of

the original latency. interval: The model runs on keyframes

that are this many time steps apart, and predictions from

keyframes propagate to non-keyframes. While the average

latency is proportional to the reciprocal interval, the interval

alone has no impact on the maximum latency. delay: Pre-

dictions are delayed by this many time steps. The delay has

no impact on the average latency but can reduce the maxi-

mum latency at when combined with a well-chosen interval.

4.1. Object detection

For the object detection task, we conducted our experi-

ments on ImageNet VID 2015 [32], which contains 30 cat-

egories with 3862 training and 555 validation video clips.

We report our results on the validation set and the mean-

average-precision (mAP) at 0.5 IoU, as it is the norm for

this dataset.

The system inherits from an off-the-shelf MobileNetV2

+ SSD detection architecture [33]. In this work, we do

not yet consider more expensive models, e.g., ResNet +

Faster RCNN, since these models are too slow to run in

real-time. For the baseline, we trained a single-frame de-

tection model by fine-tuning from an ImageNet checkpoint

using data sampled from ImageNet VID, ImageNet DET

and COCO. This baseline detector achieves 54.7%, which

is competitive with other recent works that focus on the low-

latency case [24, 45].

The left figure in Fig. 5 shows a theoretical maximum

latency vs. accuracy comparison between Patchwork vari-

ants and their equivalent single-frame setups. Patchwork is

consistently superior than the baseline. Most notably, the

M=4,N=2 configuration at roughly 25% of its original com-

putation, only loses 0.4% in mAP (54.7% vs. 54.3%) com-

pared to the baseline single-frame MobileNetV2 model.

Moreover, when we reinvest the saved resource in addi-

tional channels in the layers and model ensembling, we

show that we can boost the results to 58.7% at the origi-
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Low latency region

Figure 5: (Best viewed in color) A theoretical maximum latency vs. accuracy comparison on ImageNet VID. Left figure:

Comparison between single-frame and Patchwork variants (exact values given in Supplementary Tab. 4). Right figure: We

put Patchwork in perspective with other published works on ImageNet VID: ConvLSTM [24], FGFA [44, 45], D&T [10],

STSN [2] and STMN [42]. Most of these use the ResNet-101 as the feature extractor, which by itself has 90 billion FLOPs

when applied on a 600x600 image as described in the papers. Methods that require to look ahead for more than ten frames

or optimize for the whole video at once are considered to have an infinite latency.
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Figure 6: An empirical maximum latency vs. accuracy

comparison between single-frame (blue) and Patchwork

(red) variants. Same legends as in Fig. 5.

nal computational cost. The empirical maximum latency vs.

accuracy figure tells a similar story (Fig. 6) in the high and

mid-accuracy range. For the low latency range, the over-

head caused by the Patchwork ops starts to dominate. This

overhead is mostly because the Patchwork ops are not as op-

timized as the rest of the network, which mostly consists of

highly optimized convolutions. Sampled qualitative results

appear in Fig. 4.

Two ablations studies were conducted to highlight the

two main contributions of this work: the Q-learned attention

mechanism and the Patchwork cell.

Q-learned vs. hand-designed policies. Instead of train-

ing the attention mechanism via Q-learning, one could use

a manually designed policy. One such policy is the random

policy, where we select one of the possible actions at ran-

dom. Another baseline policy is the scanning policy, where

the policy deterministically scans through all possible spa-

tial locations. Tab. 1 shows a comparison on the 1/4 and the
1/16 cost setups. In both cases, the results from the random

and scanning policies are fairly comparable. The Q-learned

policy is roughly 2-4% better than the manually designed

M N Policy MFLOPs mAP ↑

- - Single-frame 512 49.3

4 2 Random 541 52.5

2 1 Scanning 541 51.7

4 2 DQN 543 54.3

- - Single-frame 128 34.3

4 1 Random 161 37.0

4 1 Scanning 161 37.9

4 1 DQN 162 41.6

Table 1: A comparison between different attention policies.

Single-frame and DQN results match those in Fig. 5. Ran-

dom picks an action at random. Scanning iterates over the

action space following a fixed pattern.

Policy Patchwork Cell? mAP ↑

Scanning
✗ 39.5

✓ 51.7

DQN
✗ 43.2

✓ 54.3

Table 2: An ablation study demonstrating the necessity for

the proposed Patchwork Cell in recurrent attention models

[27]. Experiments are performed using both the reinforced

and the scanning policy.

policies, which are in turn 2-3% better than the best baseline

single-frame method with a comparable maximum latency.

In other words, even without a smart attention mechanism,

one can still achieve a reasonable improvement by using

Patchwork Cells alone.

Patchwork Cell vs. vanilla recurrent attention net-

work. The Patchwork Cell is a core contribution to previ-

ous recurrent attention models [27] and is the key to make

them successful on complex object detection and segmen-

tation tasks. Tab. 2 shows the results of the Patchwork net-
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Low latency region

Figure 7: (Best viewed in color) A theoretical maximum latency vs. accuracy comparison on the DAVIS 2016 video object

segmentation dataset. J and F are the metrics commonly used in DAVIS. Left figure: Comparison between single-frame

and Patchwork variants (exact values given in Supplementary Tab. 5). Right figure: We put Patchwork in perspective with

other published works on DAVIS 2016: MobileNetV2 [33], SFL [7], LMP [40], FSEG [18], LVO [39], ARP [20] and PDB

[36]. Most works are based on ResNet-101 and has a substantially higher latency than Patchwork.
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Figure 8: An empirical maximum latency vs. accuracy

comparison between single-frame (blue) and Patchwork

(red) variants. Same legends as in Fig. 7.

work with or without the Patchwork Cells, by using either

the scanning policy or the DQN-learned policy. In both

cases, we observe a significant drop in mAP if the Patch-

work Cells are not present.

Finally, the right figure in Fig. 5 shows our results with

other recent publications on ImageNet Video. Note that

most of the other works are based on ResNet-101 and has

a significantly higher latency than Patchwork and are not

suited for latency-sensitive applications.

4.2. Object segmentation

DAVIS [29] has been instrumental in driving the research

in video object segmentation. It has been used in two se-

tups: in the semi-supervised setup where the groundtruth

segmentation mask for the first frame is present, or the un-

supervised configuration where there is no prior informa-

tion at all. For the 2016 version of DAVIS, where there is

at most one object per video, the unsupervised setting be-

comes a binary foreground-background segmentation task.

For simplicity, we choose to test Patchwork in the unsuper-

vised environment. Note that the task of segmenting the

foreground per frame is relatively ambiguous and DAVIS is

not exhaustively labeled. However, we hope that an algo-

rithmic improvement is still reflected in an increase in our

quantitative measure. DAVIS 2016 contains 30 training and

20 validation sequences, each of which includes a single

object, be it a person on a bike, a car in a busy street.

Our baseline single-frame architecture is again directly

taken from the MobileNetV2 paper [33]. A maximum la-

tency vs. accuracy comparison is shown in the left figure in

Fig. 7 and in Fig. 8 (see Supplementary Sec. C for more de-

tails). Patchwork occupies the Pareto points in the mid- and

low latency range. Notably, at roughly 1/4 of computation,

we only observe a minimal loss in the J (63.6% vs. 62.1%)

and the F (59.5% vs. 58.8%) metrics. Results from other

works on the unsupervised DAVIS 2016 appears in the right

figure in Fig. 7. Note that most referenced works are based

on ResNet-101 and has a substantially higher latency than

Patchwork.

5. Conclusion

The lost spatial context presents a fundamental limitation

for the hard attention mechanism in deep networks, and we

believe it is one of the main reasons why the hard attention

idea has not been more popular in real-world applications.

As demonstrated in the experiments, Patchwork success-

fully mitigates this issue. Together with a Q-learned atten-

tion mechanism, in the Patchwork architecture, we present

a new paradigm to efficient stream processing.
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