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Abstract

In digital pathology, tissue slides are scanned into

Whole Slide Images (WSI) and pathologists first screen for

diagnostically-relevant Regions of Interest (ROIs) before re-

viewing them. Screening for ROIs is a tedious and time-

consuming visual recognition task which can be exhausting.

The cognitive workload could be reduced by developing a

visual aid to narrow down the visual search area by high-

lighting (or segmenting) regions of diagnostic relevance,

enabling pathologists to spend more time diagnosing rele-

vant ROIs. In this paper, we propose HistoSegNet, a method

for semantic segmentation of histological tissue type (HTT).

Using the HTT-annotated Atlas of Digital Pathology (ADP)

database, we train a Convolutional Neural Network on

the patch annotations, infer Gradient-Weighted Class Ac-

tivation Maps, average overlapping predictions, and post-

process the segmentation with a fully-connected Condi-

tional Random Field. Our method out-performs more com-

plicated weakly-supervised semantic segmentation methods

and can generalize to other datasets without retraining.

1 Introduction
Digital pathology with Whole Slide Imaging (WSI) plat-

forms allows pathologists to conveniently navigate tissue

slides for diagnosis. Typically, pathologists quickly screen

slides for tissue regions relevant to the disease being diag-

nosed, known as regions-of-interest (ROI) and then review

these regions for tissues with abnormal appearance [31].

For instance, a pathologist diagnosing a slide for adenocar-

cinoma will first screen for glandular tissue regions, and re-

view those that appear abnormally disordered before assign-

ing a diagnosis. However, histology slides are very large

images and the visual search can be exhausting. This is

further complicated when pathology departments typically

Figure 1. Our approach trains on patch-level histological tissue

type annotations and predicts morphological and functional tissue

types at the pixel level.

diagnose hundreds to thousands of slides each day [8], and

diagnostic accuracy suffers when pathologists are fatigued

[19, 26]. Computer-Aided Diagnosis (CAD) tools to high-

light (segment) regions of diagnostic relevance as a visual

aid are already widespread in radiology [40] and similar

tools can be applied to pathology, where screening slides

for relevant tissues occupies 36%-57% of productive time

[19]. With an increasing number of histopathology cases

and chronic shortage of pathologists in coming years, de-

veloping a CAD tool could decrease time to diagnosis and

improve diagnostic accuracy for patients [46].

Semantic segmentation methods have been developed

for histopathological images, but are trained on only spe-

cific tissues from specific organs for diagnosing specific dis-

eases. If these methods were used as diagnostic aids, they

would need to be retrained for every new diagnostic case. In

this paper, we propose a semantic segmentation algorithm

that is trained on annotated patch-level of histological tis-

sue type (HTT) drawn from healthy tissues from different

organs and predicts pixel-level labels (see Figure 1 for visu-
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alization of HTTs in both patch and pixel levels). Our aim

is to develop a feasible diagnostic aid to highlight regions

of relevant tissues within WSI scans.

1.1 Problem and Contributions

The problem we aim to solve is to assign a semantic la-

bel to each image pixel of a WSI that is populated by di-

verse HTTs. The HTT of a pixel can be either non-tissue

related (e.g. background, dust speck) or tissue related, in

which case it can be further classified with a morphologi-

cal type (the type of constituent cell) and sometimes also a

functional type (whether it belongs to a glandular or vascu-

lar structure). This is similar to the stuff-thing distinction

in computer vision [9], whereby all objects have “stuff” but

might not be “things”. In this paper we (1) propose the first

publicly-released semantic segmentation tool on brightfield

histopathology images for a wide variety of HTTs (> 10)

trained on healthy tissues from different organs, (2) demon-

strate its quantitative performance on a hand-segmented

subset of the Atlas of Digital Pathology (ADP) database

[11] and compare against two recent semantic segmenta-

tion methods, (3) evaluate its qualitative performance on

unseen slides with a pathologist’s feedback, and (4) analyze

its generalizability to other pathology datasets. The novel

stagewise system design is more sophisticated than previous

methods for histological semantic segmentation [16, 3] and

is shown to out-perform more complicated state-of-the-art

weakly-supervised semantic segmentation (WSSS) meth-

ods applied to histopathology images.

1.2 Related Works

Weakly-Supervised Semantic Segmentation. Fully-

supervised semantic segmentation approaches are highly

accurate due to training at the pixel-level [24]. However,

these annotations are time-consuming and expensive which

need weak (or inexact [52]) supervision to infer pixel-level

labels from image-level annotations. These methods fall

under four categories: (a) graphical model-based methods

which extract regions of homogeneous appearance and pre-

dict latent variable labels from the image level for each re-

gion e.g. superpixels [48] and graphlets [50], (b) multi-

instance learning (MIL) based methods which constrain

their optimization to assign at least one pixel per image

to each image label including STF [42], MIL-ILP [29] and

SPN [20], (c) self-supervised based methods which gener-

ate interim segmentation masks from image-level annota-

tions and learn pixel-level segmentations. Some methods

iterate between fine and coarse predictions, such as EM-

Adapt [28] and AF-SS [30]. Other methods produce CAMs

[51] or saliency maps [36] as initial seeds and refine them

to train a FCN, such as [10], DCSM [34], Guided Seg-

mentation [27], and AffinityNet [1], and (d) discriminative

localization-based methods which use image-level annota-

tions to generate discriminative object localizations as ini-

tial seeds (usually using a CNN and CAM) and then im-

prove these iteratively, such as SEC [17], SRG [12], AE-

PSL [45], and MCOF [44].

Histopathological Semantic Segmentation. In

histopathological images, semantic segmentation aims to

label each pixel with either diagnoses (e.g. cancer/non-

cancer [2]) or tissue/cell types (e.g. gland [38], nuclei [14],

mitotic/non-mitotic [32, 41]). These methods include: (a)

sliding patch-based methods which train and predict at the

center pixel of a sliding patch to obtain finer predictions

e.g. CNNs are commonly used for mitosis [6, 25], cellular

[35], neuronal [5] and gland [21, 15] segmentation, (b)

superpixel-based methods which train and predict at the

superpixel level e.g. CNNs applied to scaled superpixels

for tissue type [47] and nuclear [39] segmentation, (c)

pixel-based methods which train and predict at the pixel

level and typically apply a FCN with contour separation

processing [4, 22] and (d) weakly-supervised methods

which train at the image and predict at the pixel levels e.g.

using patch-based MIL in [49, 43].

Color HTT (code) % GT

Images

% ADP

Images*

% GT

Pixels

Background 100% - 17.91%

Simple Squamous Epithelial (E.M.S) 68% 18.91% 0.38%

Simple Cuboidal Epithelial (E.M.U) 34% 29.66% 6.62%

Simple Columnar Epithelial (E.M.O) 18% 14.34% 3.84%

Stratified Squamous Epithelial (E.T.S) 6% 2.01% 2.51%

Stratified Cuboidal Epithelial (E.T.U) 32% 20.73% 4.58%

Stratified Columnar Epithelial (E.T.O) 8% 4.43% 1.02%

Pseudostratified Epithelial (E.P) 6% 0.28% 1.18%

Dense Irregular Connective (C.D.I) 50% 25.36% 17.07%

Dense Regular Connective (C.D.R) 6% 0.38% 1.61%

Loose Connective (C.L) 54% 49.63% 11.71%

Erythrocytes (H.E) 72% 42.47% 2.28%

Leukocytes (H.K) 32% 9.84% 0.33%

Lymphocytes (H.Y) 60% 29.61% 1.33%

Compact Bone (S.M.C) 2% 1.69% 1.96%

Spongy Bone (S.M.S) 2% 1.32% 0.63%

Endochondral Bone (S.E) 4% 0.22% 0.14%

Hyaline Cartilage (S.C.H) 2% 0.06% 1.21%

Marrow (S.R) 4% 0.89% 1.63%

White Adipose (A.W) 18% 3.03% 2.69%

Brown Adipose (A.B) 2% 0.01% 0.31%

Marrow Adipose (A.M) 4% 0.78% 0.21%

Smooth Muscle (M.M) 50% 23.85% 4.80%

Skeletal Muscle (M.K) 8% 4.43% 0.68%

Neuropil (N.P) 14% 12.44% 10.28%

Nerve Cell Bodies (N.R.B) 12% 10.41% 1.73%

Nerve Axons (N.R.A) 6% 0.33% 1.32%

Microglial Cells (N.G.M) 6% 3.36% 0.05%

Schwann Cells (N.G.W) 2% 0.12% 0.01%

- Total 100% 100% 100.00%

Background 72% - 11.03%

Other 100% - 63.82%

Exocrine Gland (G.O) 36% 39.48% 15.44%

Endocrine Gland (G.N) 8% 6.31% 4.84%

Transport Vessel (T) 82% 34.21% 4.88%

- Total 100% 100% 100.00%

Table 1. ADP 3rdlevel morphological (top block) and functional

(bottom block) HTTs: occurrence frequency at image-level in tun-

ing set, at image-level in entire ADP, at pixel level in tuning set.
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Figure 2. The proposed HistoSegNet algorithm consists of four major stages. Initially, the whole slide image is divided into overlapping

patches, then for each patch, (1) HTT confidence scores are generated with the patch-level classification CNN, (2) pixel-level class activa-

tion maps are generated, and (3) adjustments are made to the activation maps to account for relations between HTTs. Then, the activation

maps of overlapping maps are averaged and (4) post-processed before being stitched together to the whole slide image level.

2 Dataset

The ADP database was introduced in [11] and contains

digital pathology patches of different healthy histological

tissues with different stains from the same medical institute,

labeled from a hierarchical HTT taxonomy. The images are

sized 1088×1088 and scanned at 0.25µm/pixel with Huron

TissueScope LE1.2 scanner. HTTs are assigned if the la-

beler could find at least one occurrence of a non-cellular

tissue or at least five occurrences of a cellular tissue, see

[11] for details. Out of the third-level tissues, we have ig-

nored undifferentiated classes and those without any exam-

ples. We also added two non-ADP classes of “Background”

for non-tissue regions and “Other” for non-functional tis-

sue regions i.e. neither glandular nor vascular. We further

separate these 31 tissues into morphological (28 in total,

plus “Background”) and functional (3 in total, plus “Back-

ground” and “Other”) types. See Table 1 for the color-coded

morphological and functional HTTs; provided in the fourth

column are their occurrences in ADP. As the original ADP

database was annotated at the patch level, we additionally

hand-segmented a 50-patch subset to quantitatively tune our

method. To ensure this tuning set would contain tissues

representative of the larger ADP database, we ensured that

the frequency of image occurrence for each HTT (except

G.O) would be no lower than its proportion in ADP (see the

third and fourth columns in Table 1). We found that hand-

annotating each patch took about 18.7 minutes for the mor-

phological types and 2.6 minutes for the functional types.

3 Methodology

In this section, we explain our proposed four-stage His-

toSegNet algorithm. Once a patch is extracted from the

slide (with 25% overlap), it is passed to (1) the patch-level

HTT classification Convolutional Neural Network (CNN)

stage to predict possible tissue classes, (2) the pixel-level

HTT segmentation stage to predict pixel-level activation

maps, and (3) the inter-HTT adjustment stage to adjust

the activation maps with additional information. Then,

the activation maps of neighboring patches are averaged

at the overlapping areas and passed to (4) the HTT seg-

mentation post-processing stage before stitching back to

the slide level. Note that HistoSegNet accepts 224 × 224-

pixel patches that are resized from a scan resolution of

0.25 × 224
1088 = 1.2143µm/pixel. Processing is conducted

mostly independently for the morphological and functional

segmentation modes. We decided to overlap the patch pre-

dictions between stages (3) and (4) to minimize bound-

ary artifacts. A summary illustration of the HistoSegNet

pipeline is shown in Figure 2 and a detailed description of

the constituent operations in mathematical notation can be

found in the Supplementary Materials. Code and further

documentation for HistoSegNet can be found online 1.

3.1 Patch-level classification CNN

We use a HTT classification CNN to predict multiple

HTT labels for a given patch. The CNN is pre-trained

on predicting the 31 HTTs in the third level of the ADP

database, excluding undifferentiated and absent types. Our

network architecture (see Figure 3(a)) is identical to VGG-

16 [37] (see Figure 3(b)) but for several important differ-

ences: (1) the softmax layer is replaced by a sigmoid layer,

(2) batch normalization is added after each convolutional

layer activation, and (3) the flattening layer is replaced by

1https://github.com/lyndonchan/hsn_v1
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a global max pooling layer. Furthermore, dropout is used

between normalization and convolutional layers, and we

removed the last two convolutional blocks and two fully-

connected layers. We decided to add batch normalization

and dropout to regularize our network [13] and we used the

softmax layer to implement multi-label prediction. We were

inspired by the global average pooling layer [23], which

reduces overfitting, to use the related global max pooling

layer, since tissues are labeled regardless of their spatial ex-

tent. After some experimentation, we found that remov-

ing two convolutional blocks and fully-connected layers

was optimal for improving classification performance, re-

ducing training time, and increasing segmentation resolu-

tion (for Gradient-Weighted Class Activation Map / Grad-

CAM). As a result, our network consists of three convo-

lutional blocks, followed by a global max pooling layer,

a single fully-connected layer, and a sigmoid layer. Each

convolutional block consists of a single convolutional layer,

a ReLU activation layer, and a batch normalization layer.

Furthermore, no color normalization was applied since the

same WSI scanner and staining protocol were used for all

images. We provide additional validation of the CNN’s per-

formance in the Supplementary Materials.

(a) Our Modified Architecture

(b) VGG16 Architecture

Figure 3. Adoption of the modified CNN from VGG16.

3.2 Pixel-level Segmentation

To infer pixel-level HTT predictions from the patch-level

predictions of the CNN, we use Gradient-Weighted Class

Activation Maps (Grad-CAM), a weakly-supervised seman-

tic segmentation (WSSS) method [33] which generalizes

the Class Activation Map (CAM) method [51]. We decided

to use Grad-CAM over similar WSSS methods because of

its simplicity (no re-training is required) and versatility (it

is applicable to any CNN architecture). See Figure 4 for

an overview of the constituent operations of the pixel-level

segmentation stage.

Grad-CAM. The Grad-CAM method first conducts a

partial backpropagation from the class confidence score yc
to the final convolutional activation output ÂL

dL
and then

performs a 2D average to obtain the “importance” of the

dL-th feature map to the c-th output class, αc,dL
:

αc,dL
←

1

N2
L

NL
∑

i=1

NL
∑

j=1

∂yc

∂ÂL
dL
(i, j)

(1)

Then, the incoming feature maps are weighted and summed

before passing them through a ReLU activation:

Ũc ← ReLU(

DL
∑

dL=1

αc,dL
ÂL

dL
) (2)

Finally, the Grad-CAM is upsampled back to the original

image size using bilinear interpolation.

Scaling by HTT Confidence Scores. Afterwards, we

scale the Grad-CAMs by their patch-level HTT confidence

scores yc wherever they pass the confidence threshold θc,

i.e. Ûc ← ycǓc. This is necessary because Grad-CAM val-

ues invariably range from 0 to 1, so scaling them by their

patch-level confidence scores ensures that confident activa-

tions get boosted relative to non-confident ones, as can be

seen in the activation for E.M.U in Figure 4.

Figure 4. The constituent operations of the pixel-level segmen-

tation stage: activation maps are obtained with Grad-CAM and

scaled with their HTT confidence scores.

3.3 Inter-HTT Adjustments

The original ADP database has no non-tissue and non-

functional labels where we must artificially produce the

added “Background” for both morphological and functional

modes and “Other” activations for functional mode. These

activation maps must be produced to avoid predictions

where no valid pixel class from ADP exists.

“Background” Activation. Background pixels in dig-

ital pathology images are known to have high white-

illumination values, except for tissues which stain trans-

parent (i.e. white adipose and brown adipose tissues for

the morphological mode; and exocrine glandular, endocrine

glandular, and transport vessels for the functional mode).

First, the smoothed white-illumination image is obtained

by applying a scaled-and-shifted sigmoid to the mean-RGB

image X; then, we subtract the appropriate transparent-

staining class activations; and finally we filter with a 2D

Gaussian blur Hµ,σ to reduce the prediction resolution

ÛB ←
0.75

1 + exp
[

−4(X− 240)
]

Ûmorph
B ← (ÛB −max(ÛA.W, ÛA.B)) ∗H0,2

Û func
B ← (ÛB −max(ÛG.O, ÛG.N, ÛT)) ∗H0,2.

“Other” Activation. For the functional mode, non-

background pixels belonging to non-functional tissues intu-

itively must have low activations for both background and
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all other functional tissues. First, we take the 2D maximum

of: (1) all other functional type activations, (2) white and

brown adipose activations (from the morphological mode),

and (3) the background activation. Then, we subtract this

probability map from one and scale it

Û func
O ← 0.05

[

1−max
(

{Û func
c }Cc=1, Û

func
B , ÛA

)]

. (3)

Class-Specific Grad-CAM. A final adjustment is made

to differentiate Grad-CAMs overlapping in the same patch;

inspired by Shimoda et al. [34], we subtracted each activa-

tion map from the 2D maximum of the other Grad-CAMs,

producing an activation map that we call a “Class-Specific

Grad-CAM” (CSGC). Note how, in Figure 5, the functional

background activation at the top of the patch is suppressed

by the exocrine gland activation at the same location.

Figure 5. The constituent operations of the inter-HTT adjustment

stage: the “Background” is concatenated to the activation maps

for both morphological and functional types and the “Other” ac-

tivation for functional types only, then each activation map is sub-

tracted from the maximum of the others.

3.4 Segmentation Post-Processing

The resultant CSGCs produce blobby predictions which

poorly conform to object contours - this is a well-known

problem of CNN-based segmentation algorithms. Hence,

we post-process the segments to maximize the visual homo-

geneity of their constituent pixels using a fully-connected

Conditional Random Field (CRF) proposed by Krähenbühl

et al. [18]. For multi-class segmentation, the CRF uses an

appearance kernel and a smoothness kernel to compute the

pairwise distance between two pixels’ features f = [p, I]
(position p = (px, py) and RGB values I = (IR, IG, IB)):

k(fi, fj) =w(1)e
−

|pi−pj |
2

2θ2α
−

|Ii−Ij |
2

2θ2
β + w(2)e

−
|pi−pj |

2

2θ2γ

We applied the CRF for 5 iterations and used different

settings for the two modes: for the morphological mode, we

used w(1) = 50, θα = 10, θβ = 40, w(2) = 20, and θγ = 1;

for the functional mode, we used w(1) = 25, θα = 10,

θβ = 4, w(2) = 40, and θγ = 3.

3.5 Stage-by-Stage Ablative Analysis

To assess the contributions of each stage in our proposed

method, we analyze each stage’s segmentation performance

in Figure 6 and runtime cost in Table 2. Our method was ap-

plied on the 50-image tuning set for measuring performance

and on a typical slide of 3343 patches for measuring runtime

(with an NVIDIA RTX 2070 GPU).

Stage morph func

(2) Pixel-level Segmentation 0.2549 0.2059

(3) Inter-HTT Adjustments 0.2067 0.5174

(4) Segmentation Post-Processing 0.2206 0.5505

Overall 0.2206 0.5505

(a) Quantitative results (mIoU)

(b) Qualitative results on sample patch

Figure 6. Ablative analysis of HistoSegNet performance

Table 2. Run time of HistoSegNet (sec/img) stages: segmenting a

slide of 3343 patches

Stage morph func

(1) Patch-level Classification CNN 0.0050 0.0050

(2) Pixel-level Segmentation 0.3033 0.0956

(3) Inter-HTT Adjustments 0.2569 0.0212

Average Overlapping Patch Activations 0.7584 0.1855

(4) Segmentation Post-Processing 0.2644 0.2898

Stitch Overlapping Patches 0.0006 0.0006

Overall 1.5879 0.5970

4 Results

In this section, we present our results for evaluating His-

toSegNet at both patch and slide levels. For patch-level

evaluation, we employ (1) the tuning set introduced in Sec-

tion 2, and (2) the Gland Segmentation (GlaS) Challenge

database. For slide-level evaluation, we obtained a pathol-

ogist’s expert opinion on our segmentation of several un-

seen slides. For the following experiments, both training

and testing were conducted in Keras (TensorFlow backend)

with an NVIDIA GTX 1080 Ti GPU.

4.1 Quantitative Evaluation

Since we have hand-segmented 50 images from the ADP

database at the pixel level, we assess the pixel-level quan-

titative performance of HistoSegNet and present the re-

sults below. Each patch is processed independently and

for the c-th HTT, the resultant pixel-level predictions Pc
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are compared with the ground truth segmentations Tc us-

ing the intersection-over-union metric (or Jaccard index)

i.e. IoUc = |Pc ∩ Tc|/|Pc ∪ Tc|. To obtain the over-

all performance over all HTTs, we utilize the mean IoU

mIoU = 1
C

∑C
c=1 IoUc which weighs all HTTs equally, and

our custom “inverse log frequency-weighted IoU” fIoU =
∑C

c=1
1

log |Tc|
IoUc which weighs HTTs with fewer ground-

truth pixels more. From Figures 7(a) (morphological types)

and 7(b) (functional types), it can be seen that HistoSegNet

performs better on the tuning set overall for functional types

(mIoU = 0.5505, fIoU = 0.5421) than for morphological

types (mIoU = 0.2206, fIoU = 0.2057). For the morpho-

logical mode, the best performing HTTs are Compact Bone

(S.M.C) and Skeletal Muscle (M.K) and the worst perform-

ing HTTs are those with few ground-truth examples (e.g.

E.P), whereas performance is more consistent for the func-

tional mode and is worst for Transport Vessel (T).

Background
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(b) Func.
Figure 7. Intersection over Union between predicted and ground-

truth segmentations in the tuning set.

Figure 8. Segmentation of selected patches from the tuning set,

compared with the ground-truth segmentations. For the segmenta-

tion color-keys, refer to the Table 1.

In Figure 8, the ground truth segmentations are closely

approximated by predicted segmentations which occasion-

ally recognize small regions of tissues omitted in the ground

truth. Some tissues are labeled at the cellular level in

the ground truth and our proposed method either segments

these individual cells or the general areas occupied by them.

4.2 Pathologist Validation on unseen WSIs

The quality of HistoSegNet on unseen WSI scans are

evaluated in this section by an experienced gastrointestinal

pathologist. In Figure 9, we visually demonstrate the merit

of producing a pixel-level diagnostic aid rather than at the

patch level.

Figure 9. The pixel-level segmentation captures fine details and

shapes in the simple columnar epithelium that are lost in the patch-

level prediction.

In Figure 10, we show a WSI of H&E stained colonic tis-

sue that was evaluated in parallel to segmented functional

and morphological images. In particular, five and three

different ROIs are annotated on segmented morphological

and functional images. The details of evaluation on each

ROI are listed in caption of the same figure. Overall, the

functional segmented images were found to be highly con-

cordant with the H&E WSI with respect to the location of

exocrine glands and transport vessels, and reliably distin-

guished these functional tissue types from surrounding tis-

sues. The morphological segmented image was found to

correctly identify and distinguish mucosal elements includ-

ing columnar epithelium, lymphocytes, and loose connec-

tive tissue, and very precisely delineated the smooth muscle

of the muscularis mucosae. Erythrocytes showed a high de-

gree of concordance. The segmented image also separated

other muscular structures from other kinds of soft tissue, but

was less reliable in distinguishing the specific type of mus-

cle (smooth vs. skeletal), particularly in thicker structures

such as large vessels or the muscularis propria. Nerve tis-

sues were also not reliably separated from other soft tissue

types. Further visual evaluations on more WSIs are pro-

vided in Supplementary Materials.

4.3 Comparison with State-of-the-Art WSSS

To determine whether our proposed method outperforms

mainstream WSSS methods retrained on ADP, we imple-

mented two state-of-the-art WSSS methods originally de-

veloped for the PASCAL VOC 2012 segmentation dataset

[7] with code available online: SEC [17] (test mIoU of 51.7)

and DSRG [12] (test mIoU of 63.4). We reconfigured these

methods for the ADP database by generating foreground

cues (sized 41 × 41 pixels) with the CNN portion of our

proposed method and transferring our background/other ac-

tivation maps as additional cues, and retraining the FCN

portions of SEC and DSRG on the ADP database (resized
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Figure 10. Semantic segmentation results (for both morphological and functional types) on colonic tissue slide evaluated by experienced

gastrointestinal pathologist in different ROIs, with displayed with comments.

Method morph func

SEC [17] 0.1628 0.3225

DSRG [12] 0.1375 0.4732

HistoSegNet (proposed) 0.2206 0.5505

(a) Quantitative results (mIoU)

(b) Qualitative results on sample patch

Figure 11. Comparison of different WSSS methods

to 321 × 321 pixels). A step-wise learning rate decay pol-

icy was used (decay of 0.5 every 4 epochs starting from

10−4) over 16 epochs with a momentum of 0.9 and batch

size of 12. Quantitative results (Table 4.3) show that our

proposed method outperforms both SEC and DSRG; visu-

ally, it is clear that SEC and DSRG are intended to segment

larger objects but our proposed method is capable of pro-

ducing finer segments (Figure 4.3).

4.4 GlaS Challenge Dataset Evaluation

The GlaS@MICCAI’2015 Gland Segmentation Chal-

lenge Contest evaluated different methods for instance seg-

mentation of colon glands in different cancer grades from

H&E-stained histology slides [38]. The images were

scanned at a resolution of 0.620µm/pixel with a Zeiss MI-

RAX MIDI and then split into (mostly 775 × 522-pixel)

patches annotated at the pixel level. In this section, we seg-

ment these GlaS images with HistoSegNet to assess its pre-

dictive performance on increasingly diseased tissues, as the

ADP dataset mainly consists of healthy tissues.

As HistoSegNet accepts 224× 224-pixel patches with a

scan resolution of 1.2143µm/pixel, we first down-sampled

the GlaS images by 1.9585 times, fed 224×224-pixel crops

from the GlaS image into HistoSegNet and then overlapped

the predictions before upsampling by 1.9585 times again.

Also, as only two classes are available in GlaS (i.e. glan-

dular or non-glandular), we applied HistoSegNet to predict

only G.O and “Other” in functional mode.

Figure 12. Qualitative performance of HistoSegNet on select im-

ages of GlaS dataset, demonstrating that HistoSegNet consistently

produces less confident predictions when given diseased tissues.

In Figure 12, the qualitative performance of HistoSegNet

can be seen on select images of the GlaS dataset. Note how

HistoSegNet generally detects the outlines of the glands

well, but tends not to form predictions within those outlines,

which shows the generalizability of our proposed method

to digital pathology images scanned with different setups.

Also note how HistoSegNet’s patch-level and pixel-level

predictions become progressively less confident and accu-

rate as the tumor grade worsens (from left to right) and even

the predicted outline eventually misses entire glands.
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In Table 3, we present a more thorough quantitative eval-

uation of the performance of HistoSegNet on segmenting

the GlaS images at each tumor grade: the G.O confidence

score and the Dice index and Hausdorff distance for both

“Single Gland” and “Multiple Glands” modes. The original

challenge metric evaluated the segmented glands as sepa-

rate instances (“Multiple Glands” mode) but HistoSegNet

tends to produce many disconnected gland predictions, so

we also evaluated the segmentations as single gland objects

(“Single Gland” mode). We assessed the performance at the

patch level with the G.O confidence score and at the pixel

level with the Dice index (measuring mask overlap) and the

Hausdorff distance (measuring shape dissimilarity).

Overall, HistoSegNet is still able to segment relevant tis-

sues in slides scanned by a different setup. Furthermore,

as the tumor grade worsens, its segmentations become in-

creasingly less confident, less overlapping, and more mis-

shapened, which suggests that they can be used to as a pre-

dictive indicator of the level of disease in tissue.

Single Gland Multiple Glands

Grade Avg.

G.O

Score

Mean

Dice

Mean

Haus-

dorff

Mean

Dice

Mean

Haus-

dorff

healthy 0.9750 0.5970 130.48 0.2359 466.22

adenomatous 0.7542 0.3705 236.79 0.1468 504.25

moderately differentiated 0.7506 0.4862 138.02 0.1604 515.46

moderately-to-poorly

differentated

0.7629 0.4585 153.12 0.1460 499.78

poorly differentiated 0.6628 0.4102 170.20 0.1137 584.62

Table 3. Segmentation performance on the GlaS Challenge

Dataset, over different tumour Grades: Avg. G.O Score is the

mean of confidence scores for G.O across all images in that grade,

semantic segmentation is evaluated for Single Gland mode, and

instance segmentation is evaluated for Multiple Glands mode.

5 Conclusion

In this paper, we presented a new semantic segmentation

method for computational pathology to annotate WSIs at

the pixel level with respect to different HTTs. Our method

is more sophisticated than previous methods for seman-

tic segmentation of histological tissue, but out-performs

more complicated state-of-the-art WSSS methods applied

to histopathology images. We achieved this by train-

ing a weakly-supervised semantic segmentation method on

patch-level annotations from the Atlas of Digital Pathol-

ogy database. The proposed segmentation method, which

we call HistoSegNet, consists of several sequential stages.

First, we trained a CNN using the ADP database, applied

the Grad-CAM to construct tissue activation maps, and

then performed proper HTT adjustments followed by fully-

connected CRF to enhance the visual homogeneity of seg-

mentation. We tuned our method on a hand-segmented sub-

set of 50 images from ADP. We evaluated the quantitative

performance of HistoSegNet the ground-truth tuning set and

its qualitative performance on unseen WSI scans by con-

sulting an experienced pathologist to provide a medical di-

agnostic opinion. We further studied the generalizability

of the HistoSegNet on the GlaS gland segmentation chal-

lenge dataset to segment exocrine glands without retraining

and observe how the segmentation deteriorates as the tumor

grade worsens.
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