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Abstract

Depth estimation and 3D object detection are critical

for scene understanding but remain challenging to perform

with a single image due to the loss of 3D information during

image capture. Recent models using deep neural networks

have improved monocular depth estimation performance,

but there is still difficulty in predicting absolute depth and

generalizing outside a standard dataset. Here we introduce

the paradigm of deep optics, i.e. end-to-end design of optics

and image processing, to the monocular depth estimation

problem, using coded defocus blur as an additional depth

cue to be decoded by a neural network. We evaluate sev-

eral optical coding strategies along with an end-to-end op-

timization scheme for depth estimation on three datasets,

including NYU Depth v2 and KITTI. We find an optimized

freeform lens design yields the best results, but chromatic

aberration from a singlet lens offers significantly improved

performance as well. We build a physical prototype and val-

idate that chromatic aberrations improve depth estimation

on real-world results. In addition, we train object detec-

tion networks on the KITTI dataset and show that the lens

optimized for depth estimation also results in improved 3D

object detection performance.

1. Introduction

Depth awareness is crucial for many 3D computer vi-

sion tasks, including semantic segmentation [33, 38, 10],

3D object detection [37, 22, 11, 40, 41], 3D object classifi-

cation [45, 24, 30], and scene layout estimation [49]. The

required depth information is usually obtained with spe-

cialized camera systems, for example using time-of-flight,

structured illumination, pulsed LiDAR, or stereo camera

technology. However, the need for custom sensors, high-

power illumination, complex electronics, or bulky device

form factors often makes it difficult or costly to employ

these specialized devices in practice.

Single-image depth estimation with conventional cam-

eras has been an active area of research. Traditional ap-

proaches make use of pre-defined image features that are

Figure 1. We apply deep optics, i.e. end-to-end design of optics

and image processing, to build an optical-encoder, CNN-decoder

system for improved monocular depth estimation and 3D object

detection.

statistically correlated with depth, e.g. shading, perspec-

tive distortions, occlusions, texture gradients, and haze

[17, 35, 16, 48, 36, 18]. Recently, significant improvements

have been achieved by replacing hand-crafted features with

learned features via convolutional neural networks (CNNs)

[5, 19, 8, 6]. While these methods tend to perform decently

within consistent datasets, they do not generalize well to

scenes that were not part of the training set. In essence, the

problem of estimating a depth map from pictorial cues alone

is ill-posed. Optically encoding depth-dependent scene in-

formation has the potential to remove some of the ambi-

guities inherent in all-in-focus images, for example using

(coded) defocus blur [28, 26, 20, 43, 1] or chromatic aber-

rations [42]. However, it is largely unclear how different

optical coding strategies compare to one another and what

the best strategy for a specific task may be.

Inspired by recent work on deep optics [2, 39, 12], we

interpret the depth estimation problem with coded defo-

cus blur as an optical-encoder, electronic-decoder system

that can be trained in an end-to-end manner. Although co-

designing optics and image processing is a core idea in com-

putational photography, only differentiable estimation algo-

rithms, such as neural networks, allow for true end-to-end

computational camera designs. Here, error backprograpa-

gation during training not only optimizes network weights

but also physical lens parameters. With the proposed deep
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optics approach, we evaluate several optical coding strate-

gies for two important 3D scene understanding problems:

monocular depth estimation and 3D object detection.

In a series of experiments, we demonstrate that the deep

optics approach optimizes the accuracy of depth estimation

across several datasets. Consistent with previous work, we

show that optical aberrations that are typically considered

undesirable for image quality are highly beneficial for en-

coding depth cues. Our results corroborate that defocus

blur provides useful information, and we additionally find

that adding astigmatism and chromatic aberrations further

improves accuracy. We achieve the best results by jointly

optimizing a freeform lens, i.e. the spatially varying sur-

face height of a lens, together with the CNN’s weights.

Surprisingly though, we find that the accuracy of the op-

timized lenses is only slightly better than standard defocus

with chromatic aberrations. This insight motivates the use

of simple cameras with only a single lens over complex lens

systems when prioritizing depth estimation quality, which

we validate with an experimental prototype.

We also evaluate the benefits of deep optics for higher-

level 3D scene understanding tasks. To this end, we train

a PointNet [29] 3D object detection network on the KITTI

dataset. We find that, compared to all-in-focus monocular

images, images captured through the optimized lenses also

perform better in 3D object detection, a task which requires

semantic understanding on top of depth estimation to pre-

dict 3D bounding boxes on object instances.

In sum, our experiments demonstrate that an optimized

lens paired with a concurrently trained neural network can

improve depth estimation without sacrificing higher-level

image understanding. Specifically, we make the following

contributions:

• We build a differentiable optical image formation model

that accounts for either fixed (defocus, astigmatism, chro-

matic aberration) or optimizable (freeform or annular)

lens designs, which we integrate with a differentiable re-

construction algorithm, i.e. a CNN.

• We evaluate the joint optical-electronic model with the

various lens settings on three datasets (Rectangles, NYU

Depth-v2, KITTI). The optimized freeform phase mask

yields the best results, with chromatic aberrations coming

in a close second.

• We build a physical prototype and validate that captured

images with chromatic aberrations achieve better depth

estimation than their all-in-focus counterparts.

• We train a 3D object detection network with the opti-

mized lens and demonstrate that the benefits of improved

depth estimation carry through to higher level 3D vision.

Note that the objective of our work is not to develop the

state-of-the-art network architecture for depth estimation,

but to understand the relative benefits of deep optics over

fixed lenses. Yet, our experiments show that deep optics

achieves lower root-mean-square errors on depth estimation

tasks with a very simple U-Net [34] compared to more com-

plex networks taking all-in-focus images as input.

2. Related Work

Deep Monocular Depth Estimation Humans are able to

infer depth from a single image, provided enough contex-

tual hints that allow the viewer to draw from past experi-

ences. Deep monocular depth estimation algorithms aim

to mimic this capability by training neural networks to per-

form this task [5, 19, 8, 6]. Using various network architec-

tures, loss functions, and supervision techniques, monocu-

lar depth estimation can be fairly successful on consistent

datasets such as KITTI [7] and NYU Depth [38]. However,

performance is highly dependent on the training dataset. To

address this issue, several recent approaches have incorpo-

rated physical camera parameters into their image forma-

tion model, including focal length [14] and defocus blur

[1], to implicitly encode 3D information into a 2D image.

We build on these previous insights and perform a signifi-

cantly more extensive study that evaluates several types of

fixed lenses as well as fully optimizable camera lenses for

monocular depth estimation and 3D object detection tasks.

Computational Photography for Depth Estimation

Modifying camera parameters for improved depth estima-

tion is a common approach in computational photogra-

phy. For example, coding the amplitude [20, 43, 50] or

phase [21] of a camera aperture has been shown to improve

depth reconstruction. Chromatic aberrations have also been

shown to be useful for estimating the depth of a scene [42].

Whereas conventional defocus blur is symmetric around the

focal plane, i.e. there is one distance in front of the focal

plane that has the same PSF as another distance behind the

focal plane, defocus blur with chromatic aberrations is un-

ambiguous. In all these approaches, depth information is

encoded into the image to help an algorithm succeed at a

certain task, such as depth estimation. In this paper, we

combine related optical coding techniques with more con-

temporary deep-learning methods. The primary benefit of a

deep learning approach over previous work is that it allows

a loss function to be applied to a high-level vision task, e.g.

object detection, which can then directly influence physical

camera parameters in a principled manner.

Deep Optics Deep learning can be used for jointly train-

ing camera optics and CNN-based estimation methods.

This approach was recently demonstrated for extended

depth of field and superresolution imaging [39], image clas-

sification [2], and multicolor localization microscopy [25].

For the application of monocular depth estimation, Haim

et al. designed a phase mask consisting of concentric rings

10194



sensor
phase, amplitude mask | thin lens

free space propagation free space propagation

point sources at

different depths

PSFs 

at depth:

d
e
fo

c
u
s

o
n
ly

c
h
ro

m
a
ti
c

a
b
e
rr

a
ti
o
n

o
p
ti
m

iz
e
d

m
a
s
k

intensity

0.50 m 0.57 m

cross-section

0.65 m 0.94 m 1.21 m 1.68 m 2.78 m 8.00 m0.77 m

Figure 2. PSF simulation model. (Top) Optical propagation model of point sources through a phase mask placed in front of a thin lens.

PSFs are simulated by calculating intensity of the electric field at the sensor plane. (Bottom) Sample PSFs from thin lens defocus only,

with chromatic aberrations, and using an optimized mask initialized with astigmatism.

to induce chromatic aberrations that could serve as depth

cues [12]. The training process optimized the ring radii and

phase shifts within two or three annular rings but did not

allow for deviation from this ring-based template. Concur-

rently and independently of our work, Wu et al. also devel-

oped a jointly optimized phase mask for CNN-based depth

estimation [44]. However, unique to our paper, we evaluate

the comparative performances of non-optimized aberrated

lenses as well as fully optimizable freeform lenses, allow-

ing us to fairly compare the optimized optics to these types

of typically undesirable aberrations. Moreover, our work

provides results for additional commonly used datasets as

well as an evaluation of the benefits of our depth-optimized

lens for a higher-level vision task like 3D object detection.

3. Differentiable Image Formation Model

To optimize optical lens elements that best encode depth-

dependent scene information, we model light transport in

the camera using wave optics. This is not only physically

accurate but also allows for both refractive and diffractive

optical elements to be optimized. Due to the fact that the

light in most natural scenes is incoherent, we only rely

on a coherent light transport model to simulate the depth-

and wavelenth-dependent point spread function (PSF) of the

system, which we then use to simulate sensor images.

3.1. Modeling Conventional Cameras

We begin by building a camera model consisting of a

single convex thin lens with focal length f at a distance s
from the sensor (see Fig. 2). The relationship between the

in-focus distance and the sensor distance is given by the

thin-lens equation:

1/f = 1/d+ 1/s (1)

Hence an object at a distance d in front of the lens appears

in focus at a distance s behind the lens.

When imaging a real-world scene, there are likely to be

objects at multiple depths that are imaged with different

PSFs. To simulate the PSF at a depth z, we consider a point

emitter of wavelength λ centered on the optical axis located

a distance z away from the center of the thin lens. Our gen-

eral approach is to propagate the wave of light through the

optical system to the sensor. To begin, we first propagate the

light emitted by the point, represented as a spherical wave,

to the lens. The complex-valued electric field immediately

before the lens is given by:

Uin(x, y) = exp(ik
√

x2 + y2 + z2) (2)

where k = 2π/λ is the wavenumber.

The next step is to propagate this wave field through the

lens by multiplying the input by a phase delay, t(x, y), in-
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duced by the thickness and index of refraction at each loca-

tion on the lens. The thickness profile, ∆(x, y), of a convex

thin lens with focal length f and index of refraction n(λ) in

a paraxial regime [9] is

∆(x, y) = ∆0 −
x2 + y2

2f(n(λ)− 1)
(3)

where ∆0 is the center thickness. Note that the refractive

index is wavelength-dependent, which results in chromatic

aberrations when using a fixed singlet lens with multiple

wavelengths. Converting thickness to the corresponding

phase shift, φ = k(n − 1)∆, and neglecting the constant

phase offset from ∆0, the phase transformation is

t(x, y) = eiφ(x,y) = exp

[

−i
k

2f
(x2 + y2)

]

(4)

Additionally, since a lens has some finite aperture size, we

insert an amplitude function A(x, y) that blocks all light in

regions outside the open aperture. To find the electric field

immediately after the lens, we multiply the amplitude and

phase modulation of the lens with the input electric field:

Uout(x, y) = A(x, y) t(x, y) Uin(x, y) (5)

Finally, the field propagates a distance s to the sensor with

the exact transfer function [9]:

Hs(fx, fy) = exp

[

iks
√

1− (λfx)2 − (λfy)2
]

(6)

where (fx, fy) are spatial frequencies. This transfer func-

tion is applied in the Fourier domain as:

Usensor(x
′, y′) = F−1

{

F {Uout(x, y)} ·Hs(fx, fy)
}

(7)

where F denotes the 2D Fourier transform. Since the sensor

measures light intensity, we take the magnitude-squared to

find the final PSF:

PSFλ,z(x
′, y′) = |Usensor(x

′, y′)|2 (8)

By following this sequence of forward calculations, we can

generate a 2D PSF for each depth and wavelength of inter-

est. For chromatic aberrations, we calculate t(x, y) for each

color channel (Eq. 4), which results in three slightly differ-

ent PSFs. To approximate an achromatic lens, we use the

central wavelength PSF for all color channels (Fig. 2).

3.2. Modeling Freeform Lenses

Several variables such as focal length, focus distance,

and aperture size are modeled by the above formulation.

For maximum degrees of freedom to shape the PSF, we can

also treat the optical element as a freeform lens by assuming

that is has an additional arbitrary thickness profile ∆ff(x, y).
The corresponding phase delay is

tff(x, y) = exp [jk(nff(λ)− 1)∆ff(x, y)] (9)

where nff(λ) is the wavelength-dependent index of refrac-

tion of the lens material. We parametrize ∆ff with the

Zernike basis (indices 1-36, [27]), which leads to smoother

surfaces. The intensity PSF of a freeform lens is then

PSFλ,z(x, y;λ) = |F−1{F{A · tlens · tff ·Uin} ·Hs}|
2(x, y)

(10)

3.3. DepthDependent Image Formation

We can use these simulated PSFs to approximate a cap-

tured image of a 3D scene on an RGB sensor. We use a

layered representation that models the scene as a set of sur-

faces on discrete depth planes [13]. This allows for precom-

putation of a fixed number of PSFs corresponding to each

depth plane. We make a few modifications here to suit our

datasets consisting of pairs of all-in-focus RGB images and

their discretized depth maps. For an all-in-focus image L,

a set of j = 1 . . . J discrete depth layers, and occlusion

masks {Mj}, we calculate our final image by:

Iλ =
J
∑

j=1

(Lλ ∗ PSFλ,j) ◦ Mj (11)

where ∗ denotes 2D convolution for each color channel cen-

tered on λ, and ◦ denotes element-wise multiplication. The

occlusion masks {Mj} represent the individual layers of the

quantized depth map, with blurring and normalization such

that
∑

j Mj = 1 at each pixel, to ensure smooth transitions

between depths (see Supplement).

4. Depth Estimation

In this section, we describe our experiments using deep

optics for monocular depth estimation with encoded blur.

4.1. Network and Training

For depth estimation, we connect our differentiable im-

age formation model to a U-Net [34] that takes as input

either the simulated sensor images or the original all-in-

focus dataset images. The network consists of 5 downsam-

pling layers ({Conv-BN-ReLU}×2→MaxPool2×2) fol-

lowed by 5 upsampling layers with skip connections

(ConvT +Concat→{Conv-BN-ReLU}×2). The output is

the predicted depth map, at the same resolution as the input

image. We use the ADAM optimizer with a mean-square-

error (MSE) loss on the logarithmic depth. We train for

40,000 iterations at a learning rate of .001 (decayed to 1e-4

for the Rectangles dataset) and batch size of 3.

We evaluate on (1) a custom Rectangles dataset, which

consists of white rectangles against a black background
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Figure 3. Depth-dependent image formation. Given a set of lens parameters, an all-in-focus image, and its binned depth map, the image

formation model generates the appropriate PSFs and applies depth-dependent convolution with masking to simulate the corresponding

sensor image, which is then passed into a U-Net for depth estimation.

placed at random depths (see Supplement), (2) the NYU

Depth v2 dataset with standard splits, and (3) a subset of the

KITTI depth dataset (5500 train, 749 val) that overlaps with

the object detection dataset for which we obtained dense

“ground truth” depth maps from Ma et al. [23]. We train on

full-size images. We calculate loss for NYU Depth on the

standard crop size, and for KITTI only on the official sparse

ground truth depth.

For the Rectangles and NYU Depth datasets, we ini-

tialize the phase mask as an f/8, 50 mm focal length lens,

focused to 1 m. For the KITTI dataset, we initialize an

f/8, 80 mm focal length lens, focused to 7.6 m. When the

lens is being optimized, we also initialize the U-Net with

the optimized weights for the fixed lens, and each training

step adjusts the parameters of the lens (Zernike coefficients

for freeform, ring heights for annular) and the U-Net. We

use 12 depth bins in our simulations, spaced linearly in in-

verse depth. When optimizing a freeform lens for the KITTI

dataset, we reduce this to 6 intervals due to GPU memory

constraints and train for 30,000 iterations; then we freeze

the lens and increase back to 12 intervals to fine-tune the

U-Net for an additional 30,000 iterations.

4.2. Analysis and Evaluation

Table 1 shows a summary of results for all datasets.

Examples of simulated sensor images and predicted depth

maps from NYU Depth and KITTI are shown in Fig. 4 (see

Supplement for Rectangles).

We observe common trends across all datasets. When

using the all-in-focus images, errors are highest. This is

most intuitive to understand with the Rectangles dataset. If

there is a randomly-sized white rectangle floating in space

that is always in focus, there are no depth cues for the net-

work to recognize, and the network predicts the mean depth

for every rectangle. Depth from defocus-only improves per-

formance, but there is still ambiguity due to symmetric blur

along inverse depth in both directions from the focal plane.

Astigmatism (see Supplement for details) helps resolve this

ambiguity, and the inherent chromatic aberration of a sin-

glet lens further improves results.

We optimize two freeform lenses for each dataset. The

annular lens consists of three concentric layers of differ-

ent heights, inspired by [12]. While these optimized lenses

outperformed all-in-focus experiments, they did not yield

higher accuracy than chromatic aberration from a fixed lens.

In contrast, the optimized freeform lens showed the best re-

sults, demonstrating the ability of the end-to-end optimiza-

tion to learn a new freeform lens that better encodes depth

information. For NYU Depth, we found that additionally

initializing ∆ff with astigmatism yielded better results.

Table 2 compares default metrics on the NYU Depth

test set with reported results from previous works. These

comparisons suggest that adding this optical portion of the

model can yield results on par with state-of-the-art methods

with more heavyweight and carefully designed networks.

4.3. Experimental Results

We build a prototype for monocular depth estimation us-

ing chromatic aberration on real-world scenes. Although

the fully optimized lens performed best in simulations,

chromatic aberrations yield surprisingly good results almost

on par with optimized optics. Unlike custom-manufactured

optimized lenses, simple lenses with such aberrations are

readily available, inexpensive, and provide a small form fac-

tor. Thus we chose to utilize off-the-shelf lenses with aber-

rations for our physical experiments. Our camera consisted

of a Canon EOS Rebel T5 camera and a biconvex singlet

lens (f = 35mm, Thorlabs) with a circular aperture (D =

0.8 mm). We captured a series of images of a point white

light source to calibrate the modeled PSFs, primarily by tun-
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Rectangles NYU Depth v2 KITTI*

Optical model RMSElin RMSElog RMSElin RMSElog10 RMSElin RMSElog

All-in-focus 0.4626 0.3588 0.9556 0.1452 2.9100 0.1083

Defocus, achromatic 0.2268 0.1805 0.4814 0.0620 2.5400 0.0776

Astigmatism, achromatic 0.1348 0.0771 0.4561 0.0559 2.3634 0.0752

Chromatic aberration 0.0984 0.0563 0.4496 0.0556 2.2566 0.0702

Optimized, annular 0.1687 0.1260 0.4817 0.0623 2.7998 0.0892

Optimized, freeform 0.0902 0.0523 0.4325 0.0520 1.9288 0.0621

Table 1. Depth estimation error with different optical models for various datasets. RMSEs are reported for linear and log (base e or 10)

scaling of depth (m or log(m)). Lowest errors are bolded, and second-lowest are italicized. The KITTI* dataset is our KITTI dataset subset.

NYU Depth v2 depth estimation examples

ground truth all-in-focus defocus

original image

chromatic 

aberration

sensor image

of optimized lens
original image

optimized,

freeform

ground truth all-in-focus sensor image

KITTI depth estimation examples

optimized, freeform

RMSE = 1.022

RMSE = 0.824

RMSE = 1.001 RMSE = 0.437 RMSE = 0.417 RMSE = 0.370

RMSE = 0.353 RMSE = 0.158RMSE = 0.223

RMSE = 0.329RMSE = 0.484 RMSE = 0.394

RMSE = 4.0783RMSE = 10.165

RMSE = 3.160RMSE = 6.089

0

(m)

7 or 50

Figure 4. Depth estimation. (Top) Examples with RMSE (m) from the NYU Depth v2 dataset with all-in-focus, defocus, chromatic

aberration, and optimized models. The simulated sensor image from the optimized system is also shown. (Bottom) Examples with RMSE

(m) from the KITTI dataset (cropped to fit) with all-in-focus and optimized models; the sensor image from the optimized model is also

shown. All depth maps use the same colormap, but the maximum value is 7 m for NYU Depth and 50 m for KITTI.

ing a spherical aberration parameter. We retrain a depth

estimation network for the calibrated PSFs with the NYU

Depth dataset, including a downsampling factor of four due

to the smaller image size of dataset compared to the cam-

era sensor. For this network, we apply sRGB conversion

to produce the simulated sensor image, which allows us to

directly input sRGB camera images during evaluation.

We capture pairs of images with the prototype as de-

scribed along with an all-in-focus image obtained by adding

a 1 mm pinhole (see Supplement). We use our retrained

depth estimation network to predict a depth map from the

blurry images, and we use the all-in-focus network to pre-

dict the corresponding depth map from the all-in-focus im-

ages. Fig. 5 shows a few examples; more are included in the

supplement. Depth estimation with the optical model per-

forms significantly better on the captured images, as physi-

cal depth information is encoded into the images, allowing

the network to rely not just on dataset priors for prediction.
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Figure 5. Real-world capture and depth estimation. (Top) Captured and calibrated depth-dependent PSFs, displayed at the same scale.

(Bottom) Examples of images captured using our prototype with a zoomed region inset, depth estimation with chromatic aberration, and

depth estimation from the corresponding all-in-focus image (not shown). Depth map colorscale is the same for all depth maps.

Method rel log10 rms δ1 δ2 δ3

Laina et al. [19] 0.127 0.055 0.573 0.811 0.953 0.988

MS-CRF [47] 0.121 0.052 0.586 0.811 0.954 0.987

DORN [6] 0.115 0.051 0.509 0.828 0.965 0.992

All-in-focus 0.293 0.145 0.956 0.493 0.803 0.936

Defocus 0.108 0.062 0.481 0.893 0.981 0.996

Astigmatism 0.095 0.056 0.456 0.916 0.986 0.998

Chromatic 0.095 0.056 0.450 0.916 0.987 0.998

Freeform 0.087 0.052 0.433 0.930 0.990 0.999

Table 2. Comparative performance on NYU Depth v2 test set, as

calculated in [5]. Units are in meters or log10(m). Thresholds are

denoted δi : δ > 1.25
i. Lowest errors and highest δs are bolded.

A limitation of our prototype is its smaller field of view,

mainly due to the spatially varying nature of the real PSF,

which prevented processing of full indoor room scenes.

This could be improved by adding another lens to cor-

rect for off-axis aberrations [4] or by including these vari-

ations in the image formation model [15]. Modeling spa-

tially varying PSFs is challenging because the image forma-

tion model becomes a much more computationally intensive

simulation, and our U-Net-based network that works best

for shift invariance may not be as well-suited. For these and

other reasons, no existing deep optics-like approach actu-

ally models off-axis aberrations, yet this would be a very

valuable direction of future work.

Object detection metric All-in-focus Optimized

2D mAP 78.01 78.96

2D AP, Car 95.50 95.15

2D AP, Pedestrian 80.06 80.22

2D AP, Cyclist 89.77 88.11

3D AP, Ped., Easy 9.74 13.86

3D AP, Ped., Moderate 7.10 11.74

3D AP, Ped., Hard 6.21 11.90

3D AP, Cyc., Easy 2.27 7.18

3D AP, Cyc., Moderate 2.36 4.89

3D AP, Cyc., Hard 1.98 4.95

Table 3. Object detection performance measured by 2D AP %

(IoU = 0.5) and 3D AP % (IoU = 0.5) on our validation split of

the KITTI object detection dataset using the all-in-focus and opti-

mized mask models. Higher values are bolded.

5. 3D Object Detection

To assess whether an optical system optimized for im-

proved depth estimation is beneficial for higher-level 3D

scene understanding as well, we evaluate 3D object de-

tection performance on the KITTI dataset using the earlier

depth-optimized lens. 3D object detection requires recog-

nizing different instances of objects and regressing an ori-

ented 3D bounding box around each object instance. Depth

information, whether implicitly contained in an image or
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3D object localization 3D object detection

Method Input Easy Moderate Hard Easy Moderate Hard

Mono3D [3] RGB 5.22 5.19 4.13 2.53 2.31 2.31

MF3D [46] RGB 22.03 13.63 11.6 10.53 5.69 5.39

MonoGRNet [31] RGB - - - 13.88 10.19 7.62

VoxelNet [51] RGB+LIDAR 89.6 84.81 78.57 81.97 65.46 62.85

FPointNet [29] RGB+LIDAR 88.16 84.02 76.44 83.76 70.92 63.65

(Ours) All-in-focus RGB 26.71 19.87 19.11 16.86 13.82 13.26

(Ours) Optimized, freeform RGB 37.51 25.83 21.05 25.20 17.07 13.43

Table 4. 3D object localization AP % (bird’s eye view) and 3D object detection AP % (IoU= 0.7) for the car class. The listed numbers

from literature are reported on the KITTI validation set; results from our methods are reported on our KITTI* validation split (Sec. 4.1).

explicitly provided from a depth sensor, is critical for this

task, as is evidenced in the large gap in performance be-

tween the RGB and RGB+LIDAR methods in Table 4.

We train a 3D object detection network specific to the

freeform lens optimized for KITTI depth estimation. In par-

ticular, we use a Frustum PointNet v1 (FPointNet, [29]),

which was demonstrated to work with both sparse LIDAR

point clouds and dense depth images. FPointNet uses 2D

bounding box predictions on the RGB image to generate

frustum proposals that bound a 3D search space; then 3D

segmentation and box estimation occur on the 3D point

cloud contained within each frustum. In our modified net-

work, we substitute the LIDAR point clouds with our esti-

mated depth projected into a 3D point cloud. As in the origi-

nal method, ground truth 2D boxes augmented with random

translation and scaling are used during training, but esti-

mated 2D bounding boxes from a separately trained 2D ob-

ject detection network (Faster R-CNN, [32]) are used dur-

ing validation. For comparison, we train the same networks

with all-in-focus images and their estimated depth maps.

More details and videos are included in the Supplement.

Results of our object detection experiments are shown

in Tables 3 and 4. Average precision (AP) values are com-

puted by the standard PASCAL protocol, as described in the

KITTI development kit. 2D object detection performance

is similar between the all-in-focus and optimized systems,

which implies that even though the sensor images from the

optimized optical element appear blurrier than the all-in-

focus images, the networks are able to extract comparable

information from the two sets of images. More notably, 3D

object detection improves with the optimized optical sys-

tem, indicating that the FPointNet benefits from the im-

proved depth maps enabled with the optimized lens.

6. Discussion

Throughout our experiments, we demonstrate that a joint

optical-encoder, electronic-decoder model outperforms the

corresponding optics-agnostic model using all-in-focus im-

ages. We build a differentiable optical image formation

layer that we join with a depth estimation network to allow

for end-to-end optimization from camera lens to network

weights. The fully optimized system yields the most accu-

rate depth estimation results, but we find that native chro-

matic aberrations can also encode valuable depth informa-

tion. Additionally, to verify that improved depth encoding

does not need to sacrifice other important visual content, we

show that the lens optimized for depth estimation maintains

2D object detection performance while further improving

3D object detection from a single image.

As mentioned, our conclusions are drawn from the rela-

tive performances between our results. We do not claim to

conclusively surpass existing methods, as we use the ground

truth or pseudo-truth depth map in simulating our sensor im-

ages, and we are limited to a layer-based image formation

model. These simulation approximations are not straight-

forward to disentangle unless the entire dataset could be

recaptured through the different lenses. Nonetheless, our

real-world experimental results are promising in supporting

the advantage of optical depth encoding, though more ex-

periments, especially with a larger field-of-view, would be

valuable. We are interested in future work to see how an

optical layer can further improve leading methods, whether

for monocular depth estimation [19, 47, 6] or other tasks.

More broadly, our results consistently support the idea

that incorporating the camera as an optimizable part of the

network offers significant benefits over considering the im-

age processing completely separately from image capture.

We have only considered the camera as a single static op-

tical layer in this paper, but there may be potential in more

complex designs as research in both optical computing and

computer vision continues to advance.
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