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Abstract

State-of-the-art neural network architectures such as
ResNet, MobileNet, and DenseNet have achieved outstand-
ing accuracy over low MACs and small model size coun-
terparts. However, these metrics might not be accurate for
predicting the inference time. We suggest that memory traf-
fic for accessing intermediate feature maps can be a factor
dominating the inference latency, especially in such tasks
as real-time object detection and semantic segmentation of
high-resolution video. We propose a Harmonic Densely
Connected Network to achieve high efficiency in terms of
both low MACs and memory traffic. The new network
achieves 35%, 36%, 30%, 32%, and 45% inference time re-
duction compared with FC-DenseNet-103, DenseNet-264,
ResNet-50, ResNet-152, and SSD-VGG, respectively. We
use tools including Nvidia profiler and ARM Scale-Sim to
measure the memory traffic and verify that the inference la-
tency is indeed proportional to the memory traffic consump-
tion and the proposed network consumes low memory traf-
fic. We conclude that one should take memory traffic into
consideration when designing neural network architectures
for high-resolution applications at the edge.

1. Introduction

Convolutional Neural Networks (CNN) have been pop-
ular for computer vision tasks, ever since the explosive
growth of computing power has made possible training
complex networks like AlexNet [22,23], VGG-net [32], and
Inception [34] in a reasonable amount of time. To bring
these fascinating research results into mass use, performing
a neural network inference on edge devices is inevitable.
However, edge computing relies on limited computation
power and battery capacity. How to increase computation
efficiency and reduce the power consumption for neural net-
work inference at the edge has therefore become a critical
issue.

Reducing model sizes (the number of parameters or
weights of a model) is a hot research topic in improving
both computation and energy efficiency, since a reduced
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model size usually implies fewer MACs (number of
multiply-accumulate operations or floating point opera-
tions) and less dynamic random-access memory (DRAM)
traffic for read and write of model parameters and feature
maps.  Several researches have steered toward maxi-
mizing the accuracy—parameters ratio. State-of-the-art
networks such as Residual Networks (ResNets) [16],
SqueezeNets [20], and Densely Connected Networks
(DenseNets) [18] have achieved high parameter efficiency
that have dramatically reduced the model size while main-
taining a high accuracy. The model size can be reduced
further through compression. Han et al. [15] showed
that the large amount of floating-point weights loaded
from DRAM may consume more power than arithmetic
operations do. Their Deep Compression algorithm employs
weight pruning and quantization to reduce the model size
and power consumption significantly.

In addition to the power consumption, DRAM accesses
can also dominate system performance in terms of inference
time due to the limited DRAM bandwidth. Since we have
observed that the size summation of all the intermediate
feature maps in a CNN can be ten to hundred times larger
than its model size, especially for high resolution tasks
such as semantic segmentation using fully convolutional
networks [27], we suggest that reducing DRAM accesses
to feature maps may lead to a speedup in some cases.

Shrinking the size of feature maps is a straightforward
approach to reduce the traffic. While there are only a few
papers addressing lossless compression of feature maps,
lossy compression of feature maps has been intensively
studied in research of model precision manipulation and
approximation [8, 11, 14, 28,29]. The quantization used in
these works for model compression can usually reduce the
feature map size automatically. However, like other lossy
compression methods such as subsampling, they usually
penalize accuracy. In this paper, we explore how to reduce
the DRAM traffic for feature maps without penalizing
accuracy simply by designing the architecture of a CNN
carefully.
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To design such a low DRAM traffic CNN architecture,
it is necessary to measure the actual traffic. For a general-
purpose Graphics Processing Unit (GPU), we use Nvidia
profiler to measure the number of DRAM read/write bytes.
For mobile devices, we use ARM Scale Sim [30] to get
traffic data and inference cycle counts for each CNN ar-
chitecture. We also propose a metric called Convolutional
Input/Output (CIO), which is simply a summation of the in-
put tensor size and output tensor size of every convolution
layer as equation (1), where c is the number of channels and
w and h are the width and height of the feature maps for a
convolution layer /.

CIO = Z O s w® s B e scw® e nBy (1

CIO is an approximation of DRAM traffic proportional
to the real DRAM traffic measurement. Please note that the
input tensor can be a concatenation, and a reused tensor can
therefore be counted multiple times. Using a lot of large
convolutional kernels may easily achieve a minimized CIO.
However, it also damages the computational efficiency
and eventually leads to a significant latency overhead
outweighing the gain. Therefore, we argue that maintaining
a high computational efficiency is still imperative, and
CIO dominates the inference time only when the com-
putational density, which is, the MACs over CIO (MoC)
of a layer, is below a certain ratio that depends on platforms.

For example, under a fixed CIO, changing the channel
ratio between the input and output of a convolutional layer
step by step from 1:1 to 1:100 leads to reductions of both
MAC:s and latency. For the latency, it declines more slowly
than the reduction of MACs, since the memory traffic re-
mains the same. A certain value of MoC may show that,
below this ratio, the latency for a layer is always bounded
to a fixed time. However, this value is platform-dependent
and obscure empirically.

In this paper, we apply a soft constraint on the MoC
of each layer to design a low CIO network model with a
reasonable increase of MACs. As shown in Fig. 1, we
avoid to employ a layer with a very low MoC such as a
Convlixl layer that has a very large input/output channel
ratio. Inspired by the Densely Connected Networks [18] we
propose a Harmonic Densely Connected Network (HarD-
Net) by applying the strategy. We first reduce most of the
layer connections from DenseNet to reduce concatenation
cost. Then, we balance the input/output channel ratio by
increasing the channel width of a layer according to its
connections.
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Figure 1: Concept of MoC constraint. A Conv layer with
MoC below the constraint is avoided.

The contribution of this paper is that we introduce
DRAM traffic for feature map access and its platform-
independent approximation, CIO, as a new metric for eval-
uating a CNN architecture and show that the inference la-
tency is highly correlated with the DRAM traffic. By con-
straining the MoC of each layer, we propose HarDNets that
reduces DRAM traffic by 40% compared with DenseNets.
We evaluate the proposed HarDNet on the CamVid [3], Im-
ageNet (ILSVRC) [9], PASCAL VOC [12], and MS COCO
[26] datasets. Compared to DenseNet and ResNet, HarD-
Net achieves the same accuracy with 30%~50% less CIO,
and accordingly, 30%~40% less inference time.

2. Related works

A significant trend in neural network research is ex-
ploiting shortcuts. To cope with the degradation problem,
Highway Networks [33] and Residual Networks [16] add
shortcuts to sum up a layer with multiple preceeding layers.
The stochastic depth regularization [19] is essentially
another form of shortcuts for crossing layers that are
randomly dropped. Shortcuts enable implicit supervision
to make networks continually deeper without degradation.
DenseNets [18] concatenates all preceeding layers as a
shortcut achieving more efficient deep supervision. Short-
cuts have also been shown to be very useful in segmentation
tasks [10]. Jégou et al. [21] showed that without any pre-
training, DenseNet performs semantic segmentation very
well. However, shortcuts lead to both large memory usage
and heavy DRAM traffic. Using shortcuts elongates the
lifetime of a tensor, which may result in frequent data
exchanges between DRAM and cache.

Some sparsified versions of DenseNet have been pro-
posed. LogDenseNet [17] and SparseNet [36] adopt a
strategy of sparsely connecting each layer k£ with layer
k—2™ for all integers n > 0 and £—2" > 0 such that the in-
put channel numbers decrease from O(L?) to O(Llog L).
The difference between them is that LogDenseNet applies
this strategy globally, where layer connections crossing
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blocks with different resolutions still follow the log con-
nection rule, while SparseNet has a fixed block output that
regards the output as layer L + 1 for a block with L layers.
However, both network architectures need to significantly
increase the growth rate (output channel width) to recover
the accuracy dropping from the connection pruning, and the
increase of growth rate can compromise the CIO reduction.
Nevertheless, these studies did point out a promising
direction to sparsify the DenseNet.

The performance of a classic microcomputer architec-
ture is dominated by its limited computing power and mem-
ory bandwidth [4]. Researchers focused more on enhancing
the computation power and efficiency. Some researchers
pointed out that limited memory bandwidth can dominate
the inference latency and power consumption in GPU-based
systems [25,27], FPGA-based systems [5,13], or custom ac-
celerators [6,7, 11]. However, there is no systematic way to
correlate DRAM traffic and the latency. Therefore, we pro-
pose CIO and MoC and present a conceptual methodology
for enhancing efficiency.

3. Proposed Harmonic DenseNet
3.1. Sparsification and weighting

We propose a new network architecture based on the
Densely Connected Network. Unlike the sparsification pro-
posed in LogDenseNet, we let layer k& connect to layer
k—2™ if 2™ divides k, where n is a non-negative integer and
k-2™ > 0; specifically, layer O is the input layer. Under
this connection scheme, once layer 2™ is processed, layer 1
through 2”1 can be flushed from the memory. The connec-
tions make the network appear as an overlapping of power-
of-two-th harmonic waves, as illustrated in Fig. 2, hence we
name it the Harmonic Densely Connected Network (HarD-
Net). The proposed sparsification scheme reduces the con-
catenation cost significantly better than the LogDenseNet
does. This connection pattern also looks like a Fractal-
Net [24], except the latter uses averaging shortcuts instead
of concatenations.

In the proposed network, layers with an index divided
by a larger power of two are more influential than those
that divided by a smaller power of two. We amplify these
key layers by increasing their channels, which can balance
the channel ratio between the input and output of a layer
to avoid a low MoC. A layer [ has an initial growth rate
k, and we let its channel number to be k x m"™, where n
is the maximum number satisfying that [ is divided by 2".
The multiplier m serves as a low-dimensional compression
factor. If the input layer O has k channels and m = 2, we
get a channel ratio 1:1 for every layer. Setting m smaller
than two is tantamount to compress the input channels into

Next Block D

Next Block D

HarDNet

Figure 2: [Illustrations for DenseNet, LogDenseNet,
SparseNet, and the proposed Harmonic DenseNet (HarD-
Net), in which each of the layers is a 3x3 convolution.

fewer output channels. Empirically, setting m between 1.6
and 1.9 achieves a good accuracy and parameter efficiency.

3.2. Transition and Bottleneck Layers

The proposed connection pattern forms a group of layers
called a Harmonic Dense Block (HDB), which is followed
by a Convlxl layer as a transition. We let the depth of
each HDB to be a power of two such that the last layer of
an HDB has the largest number of channels. In DenseNet,
a densely connected output of a block directly passes the
gradient from output to all preceding layers to achieve
deep supervision. In our HDB with depth L, the gradient
will pass through at most log L layers. To alleviate the
degradation, we made the output of a depth-LL HDB to be
the concatenation of layer L and all its preceeding odd
numbered layers, which are the least significant layers with
k output channels. The output of all even layers from 2 to
L—2 can be discarded once the HDB is finished. Their total
memory occupation is roughly two to three times as large
as all the odd layers combined when m is between 1.6 to
1.9.

DenseNet employees a bottleneck layer before every
Conv3x3 layer to enhance the parameter efficiency. Since
we have balanced the channel ratio between the input and
output for every layer, the effect of such bottleneck lay-
ers became insignificant. Inserting a bottleneck layer for
every four Conv3x3 layer is still helpful for reducing the
model size. We let the output channels of a bottleneck layer

to be \/Cin/Cout X Cout, Where c¢;, is the concatenated in-
put channels and ¢, is the output channels of the follow-
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Figure 3: (a) Inverted transition down module,
(b)Depthwise-separable convolution for HarDNet

ing Conv3x3 layer. To further improve the inference time,
these Conv1x1 bottleneck layers can be discarded to meet
our MoC constraint.

The transition layer proposed by DenseNet is a Conv1x1
layer followed by a 2x2 average pooling. As shown in Fig.
3a, we propose an inverted transition module, which maps
input tensor to an additional max pooling function along
with the original average pooling, followed by concatena-
tion and Convlx1l. This module reduces 50% of CIO for
the Conv1x1 while achieving roughly the same accuracy at
the expense of model size increase.

3.3. Detailed Design

To compare with DenseNet, we follow its global dense
connection strategy that bypasses all the input of an HDB
as a part of its output and propose six models of HarDNet.
The detailed parameters are shown in Table 1. We use
a 0.85 reduction rate for the transition layers instead
of the 0.5 reduction rate used in the DenseNet, since a
low-dimensional compression has been applied to the
growth rate multiplier as we mentioned before. To achieve
a flexible depth, we partition a block into multiple blocks
with 16 layers (20 when bottleneck layers are counted).

We further propose a HarDNet-68, in which we re-
move the global dense connections and use MaxPool for
down-sampling, and we change the BN-ReLLU-Conv order
proposed by DenseNet into the standard order of Conv-BN-
ReLU to enable the folding of batch normalization. The
dedicated growth rate k for each HDB in the HarDNet-68
enhances the CIO efficiency. Since a deep HDB has a
larger number of input channels, a larger growth rate helps
to balance the channel ratio between the input and output
of a layer to meet our MoC constraint. For the layer
distribution, instead of concentrating on stride-16 that is
adopted by most of the CNN models, we let stride-8 to have
the most layers in the HarDNet-68 that improves the local
feature learning benefiting small-scale object detection. In
contrast, classification tasks rely more on the global feature
learning, so concentrating on the low resolution achieves a
higher accuracy and a lower computational complexity.

96s/L. | 1175/L | 138s/L 68 39DS
K 2026 | 26/30 | 30/32 ;
m 16 1.6/1.65 17 16
red 0.85 -
bottleneck Y N
, 3x3,32, | 3x3, 24,
Stride 2 7x7, 64, stride=2 stride=2 | stride=2
3x3,64 | 1x1,48
. 8 (HDB 8 k=14 | 4 k=16
Stride 4 8 8
nide depth) =128 =96
16, k=16 | 16, k=20
Stride 8 16 16 16 =256 | =320
16, k=20
=320
16, k=40 | 8, k=64
ide 1 16x2 | 1 I ’ ’
Stride 16 6% 6x3 6x3 (=640 =640
. 4, k=160 | 4, k=160
Stride 32 16 16 16x2 |0 a

Table 1: Detailed implementation parameters. A “3x3, 64”
stands for a Conv3x3 layer with 64 output channels, and the
leading numbers below Stride 2 stand for an HDB with how
many layers, followed by its growth rate k and a transitional
Convlx1 with ¢ output channels.

The depth separable convolution that dramatically re-
duces model size and computational complexity is also
adoptable on the HarDNet. We propose a HarDNet-39DS
with pure depth-wise-separable (DS) convolutions except
the first convolutional layer by decomposing a Conv3x3
layer into a point-wise convolution and a depth-wise con-
volution as shown in Fig. 3b. The order matters in this
case. Since every layer in an HDB has a wide input and
a narrow output, inverting the order increases the CIO dra-
matically. Please note that CIO may not be a direct pre-
diction of inference latency for the comparison between a
model with standard Conv3x3 and a model with depth-wise
separable convolutions, because there is a huge difference
of MACs between them. Nevertheless, the prediction can
still be achieved when there is a weighting applied on the
CIO for the decomposed convolution.

4. Experiments
4.1. CamVid Dataset

To study the performance of HDB, we replace all the
blocks in a FC-DenseNet with HDBs. We follow the ar-
chitecture of FC-DenseNet with an encoder-decoder struc-
ture and block level shortcuts to create models for se-
mantic segmentation. For fair comparison, we made two
reference architectures with exactly the same depth for
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SegNet [2] 224 29.5 | 702 3.7 68.7 | 52.0 | 87.0 | 58.5 | 13.4 ‘ 86.2 | 253 | 179 | 16.0 | 60.5 | 24.8 || 46.4 | 62.5
FCNS [27] 143 135 318 4.9 77.8 | 71.0 | 88.7 | 76.1 | 32.7 912 | 41.7 | 244 | 199 | 72.7 | 31.0 || 57.0 | 88.0
FC-DenseNet56 [21] 60 1.4 | 1351 | 6.1 77.6 | 72.0 | 92.4 | 732. | 31.8 ‘ 92.8 | 37.9 | 26.2 | 32.6 | 79.9 | 31.1 || 58.9 | 88.9
FC-DenseNet67 [21] 140 35 | 2286 | 10.2 || 80.2 | 754 | 93.0 | 78.2 | 40.9 94.7 | 584 | 30.7 | 38.4 | 81.9 | 52.1 || 65.8 | 90.8
FC-DenseNet103 [21] 134 94 | 2150 | 11.4 || 83.0 | 77.3 | 93.0 | 77.3 | 43.9 ‘ 945 | 59.6 | 37.1 | 37.8 | 82.2 | 50.5 || 66.9 | 91.5
LogDenseNet-103 [17] 137 4.7 | 2544 - 81.6 | 755 | 923 | 81.9 | 444 92.6 | 583 | 423 | 37.2 | 77.5 | 56.6 || 67.3 | 90.7
FC-DenseNet-ref100 142 35 | 3337 | 152 || 81.1 | 77.1 | 929 | 77.7 | 40.8 ‘ 943 | 58.1 | 352 | 37.0 | 81.5 | 48.9 || 65.8 | 90.9
FC-SparseNet-ref100 223 32 | 2559 | 11.8 || 83.3 | 783 | 93.3 | 789 | 425 945 | 57.5 | 33.1 | 41.6 | 82.9 | 469 || 66.6 | 91.7
FC-HarDNet-ref100 151 3.6 | 2076 10 82.6 | 755 | 92.8 | 78.3 | 43.2 ‘ 95.4 | 59.2 | 349 | 389 | 85.1 | 52.6 || 67.1 | 91.7
FC-HarDNet68 15 1.4 473 3.1 80.8 | 744 | 92.7 | 76.1 | 40.6 93.3 | 479 | 293 | 33.3 | 78.3 | 45.7 || 62.9 | 90.2
FC-HarDNet76 54 3.5 932 4.9 82.0 | 758 | 92.7 | 76.8 | 42.6 ‘ 94.7 | 58.0 | 309 | 37.6 | 83.2 | 499 || 65.8 | 91.2
FC-HarDNet84 100 8.4 | 1267 | 6.7 814 | 762 | 929 | 783 | 489 94.6 | 61.9 | 379 | 38.2 | 80.5 | 54.0 || 67.7 | 91.1

Table 2: Results on CamVid dataset. The GPU inference time results are the accumulated measurements of CamVid test-set
(233 pics) with a single-image batch size, running on pytorch-1.0.1 framework with a single NVIDIA TitanV GPU.

each block and roughly the same model size and MACs,
named FC-HarDNet-ref100 and FC-DenseNet-ref100, re-
spectively. We trained and tested both networks on the
CamVid dataset with 800 epochs and 0.998 learning rate
decay on exactly the same environments, and followed the
batch sizes of the two passes used in the original work
[21]. Table 2 shows the experiment results in mean IoU
of both overall and per-classes. Comparing these two net-
works, FC-HarDNet-ref100 achieved a higher mean IoU
and 38% less CIO. When running inference testing on a
single NVIDIA TitanV GPU, we observed 24% and 36%
inference time savings using tensorflow and Pytorch frame-
works, respectively. Since FC-HarDNet-ref100 consumes
slightly more MACs than FC-DenseNet-ref100 does, the in-
ference time saving should come from the memory traffic
reduction.

Compared with other sparsified versions of DenseNet,
Table 2 shows that FC-LogDenseNet103 gets a worse
CIO number than the FC-DenseNet103 due to the long

fst BLK depth Growth Rate m

Conv
FC-D 103 48 | 4,5,7,10,12,15 16 -
FC-D refl00 | 48 8,8,88,8,8 10 -
FC-S ref100 48 8,888,838 26 -
FC-Hrefl00 | 48 8,8,88,8,8 10 1.54
FC-H 68 8 4,4,4,4,8,8 4,6,8,8, 10, 10 1.7
FC-H 76 24 4,4,4,8,8,8 8,10,12,12,12,14 1.7
FC-H 84 32 4,4,8,8,8,8 10,12,14,16,20,22 | 1.7

Table 3: Parameters of FC-HarDNet and other reference
networks, where FC-D, FC-S, and FC-H stand for FC-
DenseNet, FC-SparseNet, and FC-HarDNet, respectively.

lifetime of the first half of layers caused by its global
transition. On the other hand, SparseNets uses a localized
transition layer such that it can reduce the tensor lifetime
better than LogDenseNet. Therefore, we implemented
a FC-SparseNet-ref100 for comparison and trained it in
the same environment for five runs, and then we picked
the best result. The result shows that FC-SparseNet can
also reduce GPU inference time, but not as much as
FC-HarDNet-ref100 does.

We propose FC-HarDNet84 as specified in Table 3
for comparing with FC-DenseNet103. The new network
achieves CIO reduction by 41% and GPU inference time
reduction by 35%. A smaller version, FC-HarDNet68,
also outperforms FC-DenseNet56 by a 65% less CIO
and 52% less GPU inference time. We investigated the
correlations among accuracy, DRAM traffic, and GPU
inference time. Fig. 4a shows that HarDNet achieves the
best accuracy-over-DRAM-traffic than other networks. Fig.
4b shows that GPU inference time is indeed correlated with
DRAM traffic much more than MACs. It also shows that
CIO is a good approximation to the real DRAM traffic,
except that FCNS8s is an outlier due to its use of large
convolutional kernels.

To verify the correlation between inference time and
memory traffic on hardware platforms differ from GPU,
we employ ARM Scale Sim for the investigation. It is a
cycle-accurate simulation tool for ARM’s systolic array or
Eyeriss. Note that this tool does not support deconvolution
and regards these deconv layers as ordinary convolutional
layers. Fig. 4c shows that the correlation between DRAM
traffic and inference time on the Scale Sim is still high,
and FC-HarDNet-84 still reduces inference time by 35%
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Figure 4: Correlation among accuracy, DRAM traffic, and GPU inference time for CamVid test set @ 360x480 running on a
Nvidia Titan V with Cuda 9.0. (a) Mean IoU vs. DRAM traffic measured by Nvidia Profiler, where the concat-free sets stand
for the case if the explicit memory copy for tensor concatenation can be completely removed. The two reference networks
are not compared. (b) GPU inference time vs. DRAM traffic and CIO on Pytorch 1.0.1 framework. (c) Inference time vs.

DRAM traffic measured by the simulation of Scale Sim.

compared to FC-DenseNet-103. However, it also shows
that the relative inference time of SegNet is much worse
than on GPU. Thus, it confirmed that the relative DRAM
traffic can be very different among platforms.

Pleiss et al. have mentioned that there is a concatena-
tion overhead with the DenseNet implementation, which is
caused by the explicit tensor copy from existing tensors to a
new memory allocation. Therefore, it causes an additional
DRAM traffic. To show that HarDNet still outperforms
DenseNet when the overhead is discounted, we subtract the
measured DRAM traffic volume by the traffic for tensor
concatenation as the concat-free cases shown in Fig. 4a,
where the DRAM traffic of concatenation is measured by
Nvidia Profiler and broken down to the CatArrayBatched-
Copy function. Fig. 4a shows that FC-DenseNet can reduce
more DRAM traffic by discounting the concatenation than
that for FC-HarDNet, but the latter still outperforms the for-
mer.

4.2. ImageNet Datasets

To train the six models of HarDNet for the ImageNet
classification task, we reuse the torch7 training environment
from [16, 18] and align all hyperparameters with them. To
compare with other advanced CNN architectures such as
ResNeXt and MobileNetV2 [31], we adopt more advanced
hyperparameters such as the cosine learning rate decay and
a fine-tuned weight decay. The HarDNet-68/39DS models
are trained with a batch size of 256, an initial learning rate
of 0.05 with cosine learning rate decay, and a weight decay
of 6e-5.

Investigating the accuracy over CIO, it shows that
HarDNet can outperform both ResNet and DenseNet while
accuracy over model size is in between them as shown
in Fig. 5(a)(b). Fig. 5c shows the GPU inference time
results on Nvidia Titan V with torch7, which is quite
similar to the trend of Fig. 5a and once again showing the
high correlation between CIO and GPU inference time.
However, the result also shows that for small models, there
is no improvement of GPU inference time for HarDNet
compared with ResNet, which we supposed to be due to the
number of layers and the concatenation cost. We also argue
that, once a discontinuous input tensor can be supported by
a convolution operation, the inference time of DenseNet
and HarDNet and be further reduced.

In Fig. 5d, we compare the state-of-the-art CNN model
ResNeXt with our models trained with cosine learning rate
decay. Although ResNeXt achieves a significant accuracy
improvement with the same model size, there is still an
inference time overhead with these models. Since there is
no increase of MACs with the ResNeXt, the overhead can
be explained by its increase of CIO.

In Table 4, we show the result comparison sorted by
CIO for ImageNet, in which HarDNet68/39DS are also
included. With the reduced number of layers, the can-
cel of global dense connections, and the BN-reordering,
HarDNet-68 achieves a significant inference time reduction
from the ResNet-50. For further comparing CIO between a
model using standard convolutions and a model mealy using
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Figure 5: (a) ImageNet error rate vs. CIO. (b) Error rate vs. model size. (c) Error rate vs. GPU inference time on a single
TitanV with torch7. For GPU time of HarDNet-68, please refer to Table 4. (d) Further comparison among HarDNet-cosine

that is trained with cosine learning rate decay and ResNeXt.

depth-wise-separable convolutions, we can apply a weight-
ing such as 0.6 on the CIO of the latter. After the weighting,
CIO can still be a rough prediction of inference time when
comparing among the two very different kinds of model.

4.3. Object Detection

We evaluate HarDNet-68 as a backbone model for a Sin-
gle Shot Detector (SSD) and train it with PASCAL VOC
2007 and MS COCO datasets. Aligned with the SSD-VGG,
we attach an ImageNet-pretrained HarDNet-68 to SSD at
the last layers in stride 8 and 16, respectively, and the HDB
in stride 32 is discarded. We insert a bridge module af-
ter the HDB on stride 16. The bridge module comprises a
3x3 max pooling with stride 1, a 3x3 convolution dilated
by 4, and a point-wise convolution, in which both convolu-
tional layers have 640 output channels. We train the model
with 300 and 150 epochs for VOC and COCO datasets, re-
spectively. The initial learning rate is 0.004 and decayed
by 10 times at epochs 60%, 80%, 90% of the maximum
epoch. The results in Table 5 show that our model achieve a
similar accuracy with SSD-ResNet101 despite its lower ac-
curacy in ImageNet, which shows the effectiveness of our

enhancement on stride 8 with 32 layers that improve the
local feature learning for the small-scale objects. Further-
more, HarDNet-68 is much faster than both VGG-16 and
ResNet-101, which make it very competitive in real time
applications.

5. Discussion

There is an assumption with the CIO, which is a CNN
model that is processed layer by layer without a fusion.
In contrast, fused-layer computation for multiple convolu-
tional layers has been proposed [1], in which intermediate
layers in a fused-layer group will not produce any memory
traffic for feature maps. In this case, the inverted residual
module in MobileNetV2 might be a better design to achieve
low memory traffic. Furthermore, the depth-wise convolu-
tion might be implemented as an element-wise operation
right before or after a neighboring layer. In such case, the
CIO for depth-wise convolution should be discounted.

Results show that CIO still failed to predict the actual
inference time in some cases such as comparing two
network models with significantly different architectures.
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Param | MACs | CIO ”l(il:n[i Ng);lljle Topl
M) B | M Acc
(ms) (ms)

HarDNet 39DS 35 0.44 8.2 17.8 325 72.1
MobileNetV2 ‘ 35 032 | 134 | 237 37.9 72.0
HarDNet 68DS 4.2 0.79 | 153 | 31.7 52.6 74.3
MNetV2 1.4x 6.1 059 | 185 | 33.0 57.8 74.7
ResNet 18 11.7 1.8 4.7 13.0 - 69.6
SqueezeNet 1.0 1.2 0.83 7.9 19.6 - 60.4
HarDNet 68 17.6 43 11.5 | 326 - 76.2
HarDNet 96s 9.3 2.5 11.7 | 364 - 74.7
HarDNet 117s 20.9 49 16.7 | 57.6 - 77.0
HarDNet 138s 35.5 6.7 19.6 | 70.5 - 77.8
ResNet 50 25 4.1 20.7 | 46.5 - 76.0
DenseNet 121 7.9 2.9 219 | 515 - 75.0
VGG-16 138 155 | 226 | 793 - 73.4
ResNet 101 44.5 7.6 309 | 76.9 - 71.6
DenseNet 201 20 44 31.8 | 839 - 774
ResNet 152 60.2 11.3 | 43.6 | 109.7 - 77.8

Table 4: Test results for ImageNet models, in which GPU
time is measured on Nvidia GTX1080 with Pytorch 1.1.0
at 1024x1024 and mobile GPU time is measured on Nvidia
Jetson Nano with TensorRT-onnx at 320x320.

Backbone VOC 2007 | COCO
Model mAP mAP
SSD512 VGG-16 79.8 28.8
SSD513 | ResNet-101 80.6 31.2
SSD512 | HarDNet-68 81.5 30.2

Table 5: Results in object detection. The comparison data
is from [35]

As we mentioned before, CIO dominates inference time
only when the MoC is below a certain ratio, which is
a density of computation within a space of data traffic.
In a network model, each of the layers has a different
MoC. In some of the layers CIO may dominate, but for
the other layers, MACs can still be the key factor if its
computational density is relatively higher. To precisely
predict the inference latency of a network, we need to
breakdown to each of the layers and investigate its MoC to
predict the inference latency of the layer.

We would like to emphasize the importance of DRAM
traffic furthermore. Since the quantization has been widely
used for CNN models, both the hardware cost of multiplier
and data traffic can be reduced. However, the hardware
cost reduction of a multiplier from float32 to int8 is much
greater than the reduction of data traffic from the same
thing. When developing hardware platform mainly using
int8 multipliers, computing power can grow more quickly
than the data bandwidth, so data traffic will be even more

important in this case. We argue that the best way to
achieve the traffic reduction is to increase MoC reasonably
for a network model, which might be counter-intuitive
to the widely-accepted knowledge of that using more
Convlxl achieves a higher efficiency. In many cases, we
have shown that it is indeed helpful, however.

6. Conclusion

We have presented a new metric for evaluating a
convolutional neural network by estimating its DRAM
traffic for feature maps, which is a crucial factor affecting
the power consumption of a system. When the density of
computation is low, the traffic can dominate inference time
more significantly than the model size and operation count.
We employ Convolutional Input/Output (CIO) as an ap-
proximation of the DRAM traffic, and propose a Harmonic
Densely Connected Networks (HarDNet) that achieve a
high accuracy-over-CIO and also a high computational
efficiency by increasing the density of computation (MACs
over CIO).

Experiments showed that the proposed connection pat-
tern and channel balancing have made FC-HarDNet to
achieve DRAM traffic reduction by 40% and GPU infer-
ence time reduction by 35% compared with FC-DenseNet.
Comparing with DenseNet-264 and ResNet-152, HarDNet-
138s achieves the same accuracy with a GPU inference time
reduction by 35%. Comparing with ResNet-50, HarDNet-
68 achieves an inference time reduction by 30%, which
is also a desirable backbone model for object detections
that enhances the accuracy of a SSD to be higher than
using ResNet-101 in PASCAL VOC dataset while the
inference time is also significantly reduced from SSD-
VGG. In summary, in addition to accuracy-over-model-size
and accuracy-over-MACs tradeoffs, we demonstrated that
accuracy-over-DRAM-traffic-for-feature-maps is indeed an
important consideration when designing neural network ar-
chitectures.
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