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Abstract

This paper presents a novel framework for automatic and

quantitative screening of autism spectrum disorder (ASD).

It is motivated to address two issues in the current clini-

cal settings: 1) short of clinical resources with the preva-

lence of ASD (1.7% in the United States), and 2) subjectiv-

ity of ASD screening. This work differentiates itself with

three unique features: first, it proposes an ASD screen-

ing with privileged modality framework that integrates in-

formation from two behavioral modalities during training

and improves the performance on each single modality at

testing. The proposed framework does not require over-

lap in subjects between the modalities. Second, it devel-

ops the first computational model to classify people with

ASD using a photo-taking task where subjects freely ex-

plore their environment in a more ecological setting. Photo-

taking reveals attentional preference of subjects, differen-

tiating people with ASD from healthy people, and is also

easy to implement in real-world clinical settings without re-

quiring advanced diagnostic instruments. Third, this study

for the first time takes advantage of the temporal informa-

tion in eye movements while viewing images, encoding more

detailed behavioral differences between ASD people and

healthy controls. Experiments show that our ASD screen-

ing models can achieve superior performance, outperform-

ing the previous state-of-the-art methods by a considerable

margin. Moreover, our framework using diverse modal-

ities demonstrates performance improvement on both the

photo-taking and image-viewing tasks, providing a general

paradigm that takes in multiple sources of behavioral data

for a more accurate ASD screening. The framework is also

applicable to various scenarios where one-to-one pairwise

relationship is difficult to obtain across different modalities.

1. Introduction

Autism spectrum disorder (ASD) is a heritable and life-

long neurodevelopmental disorder (NDD) with complicated

aetiology and causes. It is globally prevalent, and affects

one in 59 children in the United States [2]. Though cur-

rently recognized as the most effective clinical route to ASD

treatment [3], early diagnoses and interventions rely on a

team of medical expertise with diagnostic instruments that

are both time-consuming and clinically demanding. Due to

the prevalence of ASD and limited clinical resource, they

are not widely applicable. In addition, human assessment is

subjective and tends to be inconsistent, and is also episodic.

As a result, automatic and objective tools that assist ASD

screening have been of significant clinical and societal need.

The visual attention network is pervasive in the brain that

many NDDs are associated with atypical attention towards

visual stimuli. For example, people with ASD have been

long known to have atypical attention to faces or other so-

cial stimuli [6, 7, 27, 28, 29]. Recent studies with natural

scene stimuli show more complicated or finer differences

between people with ASD and healthy people [36]. This

paper develops novel computer vision techniques to address

existing challenges in ASD screening. It proposes a new

approach that allows to record and model attentional pref-

erence with greater ecologically validity and practical fea-

sibility. In addition, with the complexity of the problem,

e.g. considerable heterogeneity within ASD or across mul-

tiple NDDs [24]), and the scarcity of clinical data, it high-

lights the importance and proposes methods to make use of

multiple behavioral modalities as well as temporal informa-

tion to encode more detailed and comprehensive informa-

tion needed for accurate ASD screening.

Specifically, we propose to incorporate two distinct

modalities related to human visual attention, i.e. attentional

preference recorded from a photo-taking task and an image-

viewing task, for ASD screening. In the photo-taking task,

subjects freely move in the environment and identify their

preferred regions of interest by taking photos, while in the

image-viewing task, subjects view different images with

their eye movements recorded by an eye-tracking device.

Instead of screening ASDs independently on each modality,

we present a novel ASD screening with privileged modality

framework that integrates diverse modalities during training
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and benefits each modality at testing. Our framework con-

sists of three principal components: to leverage the perva-

siveness of visual attention network and the learning poten-

tial of deep neural networks (DNNs), we develop two DNN

models each encoding the characteristics of photos taken by

subjects (photo-taking) or the temporal information of eye

movements (image-viewing) to classify ASD based on at-

tentional preference. To make use of the abundant and com-

plementary information from the two modalities, we pro-

pose a multi-modal distillation method that learns a shared

embedding space for multiple modalities (i.e. main modal-

ity available all the time and privileged modality applicable

only during training) and distills multi-modal knowledge

from the shared space to each modality. Compared to exist-

ing methods, our framework is advantageous in: 1) unlike

previous methods [17, 22] that pay less attention to the tem-

poral information and independently train the feature en-

coder and the ASD classifier, our image-viewing model is

developed in an end-to-end manner and takes in the tem-

poral information of eye movements; 2) different from the

multi-modal methods [21, 34] that require the availability

of all modalities during testing, which is difficult to be ful-

filled in clinical scenarios, our framework can be deployed

on each independent modality; 3) instead of relying on the

one-to-one pairwise relationship between modalities sim-

ilar to the other learning with privileged modality meth-

ods [10, 16, 20, 23], the proposed multi-modal distillation

method can transfer abundant information across different

modalities without overlap in subjects.

In summary, this paper carries three major contributions:

• We go beyond one modality and present an ASD

screening with privileged modality framework that uti-

lizes multiple source of behavioral data. In our context,

there is no subject overlap between modalities.

• We develop the first computational model to screen

ASD based on a photo-taking task. Despite the chal-

lenging nature of the task, our model outperforms hu-

man experts and achieves reasonable performance.

• By incorporating temporal information of eye move-

ments, our model on image-viewing task is able to

achieve the new state-of-the-art performance.

2. Related Works

Automatic ASD screening. There are several computa-

tional models that automatically identify people with ASD.

Anzulewicz et al. [1] use smart tablet devices to record the

motor patterns of children, and propose three decision-tree

based models for identifying ASD based on these patterns.

Inspired by the findings that individuals with ASD have dif-

ficulty recognizing faces and interpreting facial emotions

[29], Liu et al. [22] evaluate the face scanning patterns

of children and detect those with ASD. To capture differ-

ences of gaze patterns between ASD and control group dur-

ing image-viewing, Wang et al. [36] propose to train a

support vector machine (SVM) model with pre-defined fea-

tures to classify individuals with ASD based on their gaze

patterns. Jiang and Zhao [17] later on extend the ideas of

[36] by introducing a new deep neural network approach

that highlights the differences of gaze patterns, resulting in

more discriminative features for accurate ASD screening.

People have also explored different types of neuroimaging

techniques for classifying ASD [21, 34]. While these meth-

ods achieve reasonable results, they either consider only a

single modality and pay less attention on utilizing temporal

information [1, 17, 22, 36], or rely on multi-modal data ac-

quired by resource-demanding instruments that are difficult

to deploy in clinical scenarios [21, 34].

Learning Under Privileged Information. Learning un-

der privileged information (LUPI) is a paradigm proposed

in [31, 32], specifying the scenarios where certain privi-

leged information is available during training but inappli-

cable at testing. In this paper, we focus on the case that the

privileged information corresponds to a modality different

from the one available all the time, i.e. learning with privi-

leged modality. Hoffman et al. [16] propose a multi-stream

hallucination architecture that learns the mappings between

different modalities and emulates the multi-modal scenario

at testing with a single modality. In [20], Lambert et al.

make use of features from a privileged modality to learn the

hyper-parameters for dropout units. Garcia et al. [10] pro-

pose to incorporate modality hallucination [16] with knowl-

edge distillation [14] for action recognition with privileged

modality. In [23], Luo et al. distill multi-modal knowledge

to a single-modal network by constructing a graph structure

between various modalities during training. These methods

rely on one-to-one pairwise relationship between different

modalities, which is typically difficult to fulfill in the clin-

ical settings with patient data, e.g. in our ASD screening

experiments the data for two modalities are collected sepa-

rately from two groups of subjects without overlap.

In this work, we propose an ASD screening with privi-

leged modality framework that incorporates multiple behav-

ioral modalities for ASD screening. Our framework does

not rely on subject overlap across different modalities or

advanced diagnostic instruments for data collection, thus is

suitable for ASD screening in regular clinical settings. By

incorporating temporal information of eye movements and

abundant knowledge from the two modalities, the proposed

models are able to achieve superior performance and out-

perform the previous state-of-the-art methods.

3. ASD Screening with Privileged Modality

Neurodevelopmental disorders, such as ASD, are typi-

cally characterized by multiple symptoms, where a single
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Figure 1: High-level architectures for attention based ASD screening models on photo-taking (top) and image-viewing

(bottom) modalities. GAP denotes the global average pooling layer. x̂t in photo-taking is the features for image t, while

in image-viewing xt is the features extracted at the proximity of fixation t. N and M represent the number of images and

fixations in photo-taking and image-viewing data.

modality may not carry sufficient information for diagnos-

tic purposes. In this work, we propose to screen ASD with

more behavioral modalities that will provide complemen-

tary and abundant information. Multi-modality data is es-

pecially important with the heterogeneity of the conditions

and the scarcity of data from clinical populations.

Specifically, we present an ASD screening with privi-

leged modality framework that utilizes two distinct behav-

ioral modalities, i.e. photo-taking and image-viewing. It in-

corporates information from both modalities during training

and only requires one modality at testing, i.e. we treat one

modality as the privileged modality that benefits the learn-

ing of another main modality. Unlike existing multi-modal

[21, 34] or learning with privileged modality [10, 16, 20, 23]

methods, our framework does not rely on the availability of

all modalities during deployment or one-to-one pairwise re-

lationship (e.g. subject overlap) across modalities, making

it more practical for real-world clinical scenarios.

In this section, we illustrate the three major components

of the proposed framework, including two DNN models for

ASD screening on photo-taking and image-viewing task re-

spectively, and a multi-modal distillation method that dis-

tills multi-modal knowledge from a shared space to each

independent modality.

3.1. ASD Screening on PhotoTaking

Different from previous visual attention based ASD

screening methods [17, 22, 36] that follow a passive image-

viewing procedure, our photo-taking task allows subjects to

freely interact with various scenarios and identify regions

or objects of interest in the first-person settings, providing

a more ecological paradigm in revealing one’s attentional

preference. Moreover, photos taken by people offer addi-

tional information that displays their behaviors on social in-

teractions. For example, due to reduced social interactions,

individuals with ASD may not ask people for pose adjust-

ment, resulting in poor-quality photos with people not pos-

ing or looking at the camera. Inspired by the findings that

photo taken by people with ASD tend to have different char-

acteristics from those taken by healthy people [35], e.g. dif-

ference in attentional preference and in quality of photos, in

this paper we aim at screening ASD via characterizing these

differences with a pool of photos taken by the subjects.

To accomplish the aforementioned objective, we propose

to leverage a CNN for learning meaningful features and a

Recurrent Neural Network (RNN) for capturing the char-

acteristics of a sequence of photos. As shown in Figure

1 (top), the proposed model consists of two major compo-

nents: 1) an encoder module that first projects raw image

data to high-level visual features using the state-of-the-art

ResNet-50 [13], and then sequentially traverses the features

for different images within a photo sequence using a Long

Short Term Memory (LSTM) [15] network, and 2) a clas-

sifier module that takes in the final hidden state of LSTM

and makes the prediction (i.e. ASD or Control). Given the

photo sequence taken by a specific subject, we first com-

pute the visual features for different images within the se-

quence via ResNet-50, and then apply global average pool-

ing (GAP) to convert the spatial features to vectors that de-

scribe the abstract information about the corresponding im-

ages. These vectors are then sequentially forwarded to the

LSTM, capturing the characteristics of photos by repeatedly

updating the hidden state. After obtaining the final hidden

state which encodes information of the whole sequence, we

directly feed it to our classifier (i.e. a single fully-connected

layer) for identifying people with ASD.
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Figure 2: Comparison of the gaze patterns between ASDs

and Controls. From left to right are fixation maps for four

continuous time steps, and the aggregated fixation maps.

3.2. ASD Screening on Imageviewing

Recent advances in ASD research using naturalistic

scenes have led to several new insights in how people with

ASD look differently with healthy subjects. For example,

with complex stimuli containing rich social and semantic

content, Wang et al. [36] observe that the order of fixations

and latency to semantic objects differ significantly between

subject groups, suggesting the role of temporal information

in the screening task. While previous works [17, 22] have

investigated the feasibility of classifying ASD with visual

attention, limited effort is placed on exploring the effective-

ness of temporal information encoded within the eye move-

ments. Figure 2 highlights the importance of using tempo-

ral information which reveals significant difference of gaze

patterns between ASDs and controls, even though the ag-

gregated fixation maps are similar. Moreover, due to the

scarcity of clinical data which prevents over-complicated

model designs, these methods typically train a feature en-

coder and an ASD classifier separately without explicitly

correlating the learned visual features with ASD screen-

ing, making it difficult for them to achieve satisfying per-

formance. We in this section introduce a DNN model to

address these issues for more accurate ASD screening with

image-viewing. Our model is optimized in an end-to-end

fashion, which automatically connects visual features with

ASD screening, and takes in temporal information of eye

movements to decipher more discriminative features of vi-

sual attention recorded during image-viewing.

As depicted in Figure 1 (bottom), the proposed image-

viewing model shares a similar design as our model for

the photo-taking modality. However, unlike photo-taking

where the goal is to classify ASD based on a sequence of

photos, for image-viewing we aim at differentiating people

with ASD based on their attention pattern (i.e. eye move-

ments) captured on each specific image. As a result, given

an image and its corresponding visual scanpath for a spe-

cific subject, instead of utilizing a CNN together with GAP

for feature extraction, we first obtain useful visual features

from the CNN and then extract features at the proximity

of each eye fixation (i.e. 2048-dimensional feature vector

at the closest location to each fixation). The extracted fea-

tures are then sequentially fed to our LSTM (note that for

image-viewing we use a variant of LSTM similar as [11] for

better performance, denoted as LSTM∗) based on the order

of fixations within the scanpath, capturing the temporal in-

formation of the eye movements. At each eye fixation, the

process can be represented as follows:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi) (1)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (2)

ot = σ(Woxxt +Wohht−1 +Wocct−1 + bo) (3)

mt = tanh(Wmxxt +Wmhht−1 + bm) (4)

ct = it ⊙mt + ft ⊙ ct−1 (5)

ht = ot ⊙ ct (6)

where xt is the visual features extracted at the proximity

of the tth eye fixation, W and b the trainable parameters in

LSTM, σ the sigmoid function, and ht−1 and ct−1 represent

the hidden state and memory vector that contains temporal

information of previous eye movements. i, f and o are input

gate, forget gate and output gate for LSTM, and m further

encodes features based on xt and ht−1. The hidden state h

computed at the end of the visual scanpath is fed into the

classifier for predicting people with ASD.

3.3. MultiModal Distillation through Shared Space

With the aforementioned models for ASD screening on

each modality, a key here is to effectively integrate the infor-

mation from the two distinct modalities to further improve

the performance of ASD screening on each of them. For

that, we propose a multi-modal distillation method that en-

ables models to learn from diverse types of behavioral data

through a shared space. Our method is inspired by the cross-

modal retrieval and matching methods [5, 12, 25], however,

it significantly differs from them in both goal and method-

ology: 1) different from [5, 12, 25] whose goal is to re-

trieve samples in the target modality with data in the source

modality, our aim is to create a shared space for transfer-

ring knowledge across different modalities for performance

improvement on each modality, and 2) in the cross-modal

matching, e.g. [5], modules of different modalities are op-

timized under a multi-task learning framework [4] (joint

training on different modalities), where achieving satisfy-

ing performance on both modalities is difficult. Instead, we

propose a novel method that distills multi-modal knowledge

through jointly training the shared space, but overcomes the

mentioned difficulty by disentangling models of different

modalities after learning the shared space, so each model

could focus on its own modality to best optimize it. Figure

3 shows the procedure of the proposed method.
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Phase I: Independent Training Phase II: Shared Space Learning Phase III: Distillation from Shared Space

Input-IV Input-PT Input-Mixed

Output-IV Output-PT Output-Mixed
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Figure 3: Process for the proposed ASD screening with privileged modality framework. Different training phases are high-

lighted with bold text at the top. Encoder-IV, Encoder-PT, Classifier-IV and Classifier-PT are the same as those presented in

Figure 1. Modules with blue color are fixed during a training phase while those colored in green are being optimized.

Our method follows the intuition of first constructing a

shared space that encodes multi-modal knowledge and then

encouraging modules of each modality to learn from such

space. Specifically, to develop a shared embedding space

with sufficient understanding on each of the modalities, our

method first independently optimizes the models on their

corresponding modalities (Independent Training). With the

learned modal-specific knowledge, we then integrate mod-

els of each modality (Shared Space Learning) and construct

the shared space by jointly training on the two modalities

with the following loss function L:

L = BCE(YI , ŶI) +BCE(YP , ŶP ) (7)

[ŶI , ŶP ] = Wcls[WIXI ,WPXP ] (8)

where YI and YP are ground truth annotations of the image-

viewing and photo-taking modalities, ŶI and ŶP are the

respective model predictions, and BCE represents binary

cross-entropy loss. XI and XP are features extracted by the

encoders of two modalities (i.e. Encoder-IV and Encoder-

PT in Figure 3), WI and WP denote the embedding lay-

ers for the two modalities (i.e. Embedding-IV, Embedding-

PT), and Wcls corresponds to the shared classifier (i.e.

Classifier-Shared). By fixing the modal-specific modules

(i.e. Encoder-IV and Encoder-PT) and only optimizing

the embedding layers as well as the shared classifier (i.e.

Embedding-IV, Embedding-PT and Classifier-Shared) us-

ing the above equations, we construct the shared space by

learning essential knowledge from both modalities.

In order to distill multi-modal knowledge from the

shared space to each modality while alleviating the training

difficulties in multi-task learning, instead of continuing the

joint training [4, 5], we propose to disentangle the models of

different modalities and optimize them separately on their

own modalities. Specifically, during the Distillation from

Shared Space phase, the embedding layers as well as the

shared classifier (i.e. Embedding-IV, Embedding-PT and

Classifier-Shared) are fixed and only modules of each in-

dependent modality (i.e. Encoder-IV and Encoder-PT) are

optimized, encouraging the modules of each modalities to

adapt to the shared space with multi-modal knowledge and

learn aligned feature representation on the two modalities.

The aforementioned procedure connects different

modalities via learning a shared space, and encourages

models to distill multi-modal knowledge from it to improve

the performance of each modality. In our context, with

the same classifier shared among both modalities, our

method learns aligned feature representation across the two

behavioral modalities for ASD screening, allowing them

to complement each other and mutually boost their feature

representations with the multi-modal knowledge encoded

in the shared space. We note that the proposed method is

applicable to scenarios where only partial modalities (in

our case only one modality) are available at testing and

one-to-one pairwise relationship across modalities does

not exist, common in the clinical settings. Section 4.2

demonstrates that the proposed method with privileged

modality can improve the performance of ASD screening

models on two distinct modalities, while Section 4.3

analyzes the knowledge learned in the shared space.

4. Experiments

In this section, we report implementation details and a

comprehensive evaluation of the proposed methods.

4.1. Implementation

Datasets and Evaluation. We first introduce data used

in this work. For photo-taking, 22 individuals with ASD

and 23 controls (i.e., healthy people with matched age, gen-

der and IQ) participated in our experiments. They were in-

structed to take photos in both indoor and outdoor scenarios,

and each took 40 photos on average. For image-viewing,

we use eye-tracking data from 20 ASDs and 19 controls.

Binocular eye movements were recorded while viewing 700

images from the OSIE [37] eye-tracking dataset, and we
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treat different eyes of a patient as two subjects in the eval-

uation similar as [17]. Eye fixations were extracted us-

ing Cluster Fix method [19]. Note that there is no subject

overlap between two modalities. To show the generality of

our methods, we also conducted experiments on the recent

Saliency4ASD [9] dataset.

For evaluation, we adopt the widely used leave-one-

subject-out cross-validation as in [17, 22], which is capable

of returning an almost unbiased estimate of the probability

of error [33]. Note that since Saliency4ASD [9] does not

provide subject IDs, we use the ith fixation sequences from

the same group (i.e. ASD or control) in the training data to

construct the validation data for the ith round of cross val-

idation. Similar as [17, 22], we evaluate our models with

accuracy, sensitivity (i.e. true positive rate), specificity (i.e.,

true negative rate) and Area Under the ROC Curve (AUC).

Model Specification. ResNet-50 [13] used in our mod-

els are first pre-trained on ImageNet dataset [8] and then

jointly optimized with other modules in both models. The

embedding size for LSTMs (LSTM* and LSTM) is 512,

while for Embedding-IV and Embedding-PT (see Figure 3)

in the multi-modal distillation we set their size to 1024. For

image-viewing, we use the original image together with all

of its corresponding eye fixations as input, while for photo-

taking we randomly sample 12 photos (number of photos

set based on empirical results) from the photo pool of a spe-

cific subject as a single input sequence.

Training. In order to train our attention based ASD

screening models, for photo-taking we traverse samples for

all subjects (excluding the one for validation) and each sub-

ject is associated with a photo sequence randomly sampled

from his photo pool. While for image-viewing, we use the

same image selection technique from [17] to select the top-

100 discriminative images that best differentiate gaze pat-

terns between ASDs and Controls with training subjects for

each round of validation. We utilize Adam [18] optimizer

with binary cross-entropy loss to train all of our models us-

ing weight decay 10−5 and gradient clipping 10. The batch

sizes for both tasks are set to 12. During independent train-

ing, the models are trained for 10 and 180 epochs for image-

viewing and photo-taking, with learning rate initialized as

10−4 and divided by 2 every 2 and 30 epochs. To learn

the shared space, we jointly optimize the models on both

modalities with learning rate 5 × 10−6 and a single epoch

(since the datasets for two modalities have different sizes,

we continuously train the models until data for both modal-

ities are processed). After successfully learning the shared

space, we separately train the models on image-viewing and

photo-taking (the Distillation from Shared Space phase in

Figure 3) for 3 and 60 epochs respectively.

Subject-wise Classification. Since the evaluations of

ASD screening are performed on a subject basis, to convert

our sample-wise predictions (prediction on different images

Acc. Sen. Spe. AUC

Liu et al. [22] 0.89 0.93 0.86 0.89

Jiang et al. [17] 0.92 0.93 0.92 0.92

IV-Independent 0.97 1.00 0.95 1.00

IV-Full 0.99 1.00 0.98 1.00

IV-Independent (Saliency4ASD) 0.89 0.86 0.93 0.92

IV-Full (Saliency4ASD) 0.93 0.93 0.93 0.98

Human Expert [35] 0.65 - - -

PT-Independent 0.76 0.77 0.74 0.82

PT-Full 0.84 0.77 0.91 0.84

Table 1: Inter-model comparison on ASD screening. Re-

sults on our image-viewing dataset, Saliency4ASD [9]

and our photo-taking dataset are divided by the horizon-

tal lines and listed from top to bottom. IV-Independent

and PT-Independent are our single-modal models on image-

viewing and photo-taking. Our full models with multi-

modal distillation are denoted as IV-Full and PT-Full for

both modalities. Four evaluation metrics are used, includ-

ing Accuracy (ACC.), Sensitivity (Sen.), Specificity (Spe.)

and AUC. Best results are highlighted in bold text.

or photo sequences) to subject-wise predictions, we average

the confidences of all samples for a subject (top-100 dis-

criminative images for image-viewing and 5 randomly sam-

pled sequences for photo-taking) and utilize a pre-defined

threshold, i.e. 0.5, to identify ASD.

4.2. Results

In this section, we report the experimental results to

demonstrate the effectiveness of our ASD screening with

privileged modality framework. We first perform inter-

model comparison between the proposed models and the

related state-of-the-art. Specifically, for image-viewing we

compare our model with [17, 22] which also screen ASD

based on eye fixations, while for photo-taking we use hu-

man expert performance [35] (percentage of three human

experts agreeing on the same labels, i.e. ASD or control)

as a reference as this is the first computational model on

this task. We then conduct intra-model comparison on our

models at different phases of the proposed multi-modal dis-

tillation method. Table 1 and Table 2 show the quantitative

results on inter-model and intra-model comparisons.

As shown in Table 1, the proposed model on the image-

viewing modality with temporal information is able to

significantly outperform the current state-of-the-art ASD

screening models by all evaluation metrics. By using a re-

current module to scan through visual features at different

eye fixations in their temporal order, our model achieves

100% accuracy in recognizing individuals with ASD (sen-

sitivity) and 95% accuracy on discriminating healthy people

(specificity). Identifying people with ASD on photo-taking

is more challenging and the performance of human experts

is 65%. Our model shows reasonable performance when

training with only its own modality (76% overall accuracy).
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Acc. Sen. Spe. AUC

IV-Independent 0.97 1.00 0.95 1.00

IV-Shared 0.97 1.00 0.95 1.00

IV-Full 0.99 1.00 0.98 1.00

IV-Extra 0.97 1.00 0.95 1.00

PT-Independent 0.76 0.77 0.74 0.82

PT-Shared 0.78 0.77 0.78 0.82

PT-Full 0.84 0.77 0.91 0.84

PT-Extra 0.73 0.73 0.74 0.82

Table 2: Intra-model comparison of the proposed multi-

modal distillation. Within each section of a specific modal-

ity, the first three results correspond to models after differ-

ent training phases (see Figure 3, results are arranged in

the same order as training phases), while the last row, i.e. -

Extra, shows single-modal performance with additional lay-

ers (Embedding-IV or Embedding-PT in Figure 3) and the

same amount of training epochs as -Full.

(a) (b) (c)

Figure 4: t-SNE visualization of features extracted at the

three different training phases of the proposed multi-modal

distillation method on the photo-taking modality. From (a)

to (c) is the result on Independent Training, Shared Space

Learning and Distillation from Shared Space phase. Red

dots represent samples for ASD, while blue dots correspond

to samples for Control.

Moreover, by incorporating the two modalities with

the proposed multi-modal distillation method, we are able

to achieve considerable improvements on both modali-

ties. Specifically, we further boost the overall accuracy

from 97% (single-modal performance) to 99% for image-

viewing, and significantly increase the overall accuracy

from 76% to 84% for photo-taking.

According to the intra-model comparisons reported in

Table 2, the performance of ASD screening is increased

monotonically across the three phases. Particularly, with

the shared space constructed in the Shared Space Learn-

ing phase, our multi-modal distillation method significantly

improves the performance by distilling multi-modal knowl-

edge to modules of each independent modality in the Dis-

tillation from Shared Space phase. We further look into the

aligned features learned from the multi-modal knowledge,

and compare the features learned at the three phases (photo-

taking modality) using t-SNE [30] visualization. As shown

in Figure 4, features learned solely from a single modality

are not sufficiently discriminative, thus data points with dif-

ferent labels (ASD or Control) are mixed together. After the

Shared Space Learning, samples for different labels begin to

move towards separate directions. Finally, by transferring

multi-modal knowledge from the shared space to modules

of independent modality, the aligned features become more

discriminative and are well separated into two clusters.

To validate the contributions of the proposed multi-

modal distillation method, we train our models on each

single modality but with additional layers (Embedding-IV

or Embedding-PT in Figure 3) and the same amount of

training epochs as multi-modal distillation. We denote this

method as -Extra in Table 2. Results show that additional

layers and training on a single modality has non-significant

(image-viewing) or even negative (photo-taking) effects.

The results confirm that distilling knowledge across differ-

ent modalities using the proposed method plays an essential

role in boosting the performance of attention based ASD

screening, and our improvements are not merely due to the

advantages of model modifications or extra training epochs.

4.3. What Did the Shared Space Learn?

So far we have demonstrated that, by learning a space

shared across the two modalities and distilling multi-modal

knowledge from the space to modules of each modality, we

are able to improve the accuracy of ASD screening by a

considerable margin. To shed more light on the effective-

ness of our multi-modal distillation method, in this section

we focus on analyzing the knowledge learned in the shared

space through both qualitative and quantitative evaluations.

More specifically, we study what the shared space learn on

correlating the two modalities and why it is able to benefit

ASD screening on each independent modality.

Qualitative Evaluation. To understand how the shared

space correlates the two modalities, we first extract the fea-

tures computed by modules of different modalities in the in-

dependent space (features computed in the Encoder-IV and

Encoder-PT after the Independent Training phase) and that

in the shared space (features computed at Embedding-IV

and Embedding-PT after the Shared Space Learning phase),

and then match the nearest inputs between the two modal-

ities based on their corresponding features. We use cosine

similarity as the distance metric for matching the nearest in-

puts, which is widely used in Natural Language Processing

for matching different meaningful words [26]. By compar-

ing the nearest inputs between the independent and shared

space, we are able to reveal the alignments of modalities

in the shared space. Figure 5 shows qualitative results of

the matched examples, i.e. nearest inputs between photo-

taking (entire photo sequences, each has 12 photos taken

by one subject) and image-viewing (images with fixated re-

gions being highlighted). Each row represents one pair of

match. Note that in image-viewing, only the fixated regions

are compared. We make three key observations as follows:
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Figure 5: Nearest inputs between photo-taking (photo sequences, left) and image-viewing (images with fixated regions,

right), best viewed in digital form with zooming. For each row, from left to right are entire photo sequences (each has 12

images in total, displayed on 1st-12th columns), matched counterparts from the image-viewing modality in the independent

(13th column) and the shared space (14th column). Eye fixations in the image-viewing modality are visualized as Gaussian

blurred saliency maps with jet colormap. The labels for photo-taking are shown on the left, while those for image-viewing

are visualized as color frames (red for ASD and blue for Control).

• Observation I: Matched examples in the independent

space usually have inconsistent semantic meanings.

For example, in rows 1-2 photo sequences with many

non-human objects in photo-taking are matched with

fixations on human faces in image-viewing.

• Observation II: By learning on multi-modality,

matched examples in the shared space show consis-

tency in high-level semantic meanings. In rows 1-2

photo sequences with non-human objects are matched

with fixations on non-human objects including laptop

and coins, while in rows 3-4 photo sequences with

many human faces in photo-taking are matched with

fixations highly focused on faces in image-viewing.

• Observation III: Nearest examples matched in the

shared space not only share similar semantic meanings

but also have consistent labels for ASD screening. In

the independent space, three out of the four rows of ex-

amples have inconsistent labels between photo-taking

and image-viewing, while in the shared space the la-

bels for the two modalities are the same.

These observations show that, unlike the independent

space, the shared space learned by our method is able to

bridge the two modalities with high-level semantic con-

cepts. Moreover, the capability of accurately matching sam-

ples with consistent labels, i.e. Observation III, indicates

that our method can correlate two modalities not only with

their visual appearance, e.g. semantic concepts, but also

their predictive labels. As a result, we are able to align fea-

tures with similar semantic meanings and the same labels

(i.e. ASD or Control in our context) in the two modali-

ties, allowing different modalities to complement each other

by transferring their modal-specific knowledge and thus im-

proving the respective model performance.

Quantitative Evaluation. To further support our find-

ings in the qualitative evaluation, especially Observation

III, we conduct a cross-modal matching and retrieval ex-

periment to quantitatively evaluate the effectiveness of the

shared space on correlating examples of consistent labels.

Specifically, given the source input from one modality

(photo-taking, totally 45 samples are utilized) with a spe-

cific predictive label, we compute the accuracy of matching

them with input in another modality (image-viewing) that

has the same label. Results show that, with our multi-modal

distillation method, the Recall@5 (percentage of source in-

put having consistent label with at least 1 out of 5 matched

inputs in another modality) is improved from 62.2% (in-

dependent space) to 95.6% (shared space), confirming our

observation in the qualitative experiments.

5. Conclusion

In this paper, we propose an ASD screening with priv-

ileged modality framework, which integrates abundant in-

formation from two distinct modalities, i.e. photo-taking

and image-viewing, and mutually boosts the performance

on each of them. Our framework carries three major novel-

ties, including two DNN models for ASD screening on the

two modalities and a multi-modal distillation method that

distills multi-modal knowledge from a shared space to each

modality. It does not require one-to-one pairwise relation-

ship between modalities or the availability of all modali-

ties at testing, providing a general paradigm to take advan-

tage of multiple sources of data in real-world clinical set-

tings. Experimental results show that the proposed models

can achieve the new state-of-the-art results, and distilling

knowledge across the two modalities further improves their

performance by a considerable margin.
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