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Abstract

Scene graphs — objects as nodes and visual relation-

ships as edges — describe the whereabouts and interac-

tions of objects in an image for comprehensive scene un-

derstanding. To generate coherent scene graphs, almost

all existing methods exploit the fruitful visual context by

modeling message passing among objects. For example,

“person” on “bike” can help to determine the relationship

“ride”, which in turn contributes to the confidence of the

two objects. However, we argue that the visual context is

not properly learned by using the prevailing cross-entropy

based supervised learning paradigm, which is not sensitive

to graph inconsistency: errors at the hub or non-hub nodes

should not be penalized equally. To this end, we propose

a Counterfactual critic Multi-Agent Training (CMAT) ap-

proach. CMAT is a multi-agent policy gradient method that

frames objects into cooperative agents, and then directly

maximizes a graph-level metric as the reward. In particular,

to assign the reward properly to each agent, CMAT uses a

counterfactual baseline that disentangles the agent-specific

reward by fixing the predictions of other agents. Extensive

validations on the challenging Visual Genome benchmark

show that CMAT achieves a state-of-the-art performance

by significant gains under various settings and metrics.

1. Introduction

Visual scene understanding, e.g., what and where the

things and stuff are, and how they relate with each other,

is one of the core tasks in computer vision. With the matu-

rity of object detection [49, 34] and segmentation [35, 16],

computers can recognize object categories, locations, and

visual attributes well. However, scene understanding goes

beyond the whereabouts of objects. A more crucial step is to

infer their visual relationships — together with the objects,

they offer comprehensive and coherent visually-grounded

knowledge, called scene graphs [23]. As shown in Figure 1

∗Corresponding Author.

jacket

bike

tire basket

baglaptop shoe tree

building

window

woman

on

has on

near

on on

near near

onScene Graph 

Generation

(a)

(b)

(c)

Graph-level metric for graph-coherent objective

man

tire basket

bag

woman
near

on on

near

man

building

near

Counterfactual critic for local-sensitive objective

bike non-bike

(person)

watching

near of

carrying

Ground-Truth Scene Graph

Figure 1: (a) An input image and its ground-truth scene graph. (b)

For graph-coherent objective, a graph-level metric will penalize

the red node more than (>) the blue one, even though both are

misclassified as man. (c) For local-sensitive objective, the individ-

ual reward for predicting the red node as bike can be identified

by excluding (−) the reward from non-bike predictions.

(a), the nodes and edges in scene graphs are objects and vi-

sual relationships, respectively. Moreover, scene graph is

an indispensable knowledge representation for many high-

level vision tasks such as image captioning [69, 66, 68, 24],

visual reasoning [53, 14], and VQA [42, 19].

A straightforward solution for Scene Graph Generation

(SGG) is in an independent fashion: detecting object bound-

ing boxes by an existing object detector, and then predict-

ing the object classes and their pairwise relationships sep-

arately [37, 74, 67, 52]. However, these methods overlook

the fruitful visual context, which offers a powerful induc-

tive bias [9] that helps object and relationship detection. For
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example in Figure 1, window and building usually co-

occur within an image, and near is the most common rela-

tionship between tree and building; it is easy to infer

that ? is building from window-on-? or tree-near-

?. Such intuition has been empirically shown benefits in

boosting SGG [62, 7, 28, 30, 29, 71, 20, 73, 58, 13, 44, 59,

45]. More specifically, these methods use a conditional ran-

dom field [78] to model the joint distribution of nodes and

edges, where the context is incorporated by message pass-

ing among the nodes through edges via a multi-step mean-

field approximation [26]; then, the model is optimized by

the sum of cross-entropy (XE) losses of nodes (e.g., objects)

and edges (e.g., relationships).

Nevertheless, the coherency of the visual context is not

captured effectively by existing SGG methods due to the

main reason: the XE based training objective is not graph-

coherent. By “graph-coherent”, we mean that the quality

of the scene graph should be at the graph-level: the detected

objects and relationships should be contextually consistent;

however, the sum of XE losses of objects and relationships

is essentially independent. To see the negative impact of

this inconsistency, suppose that the red and the blue nodes

are both misclassified in Figure 1 (b). Based on the XE

loss, the errors are penalized equally. However, the error

of misclassifying the red node should be more severe than

the blue one, as the red error will influence more nodes and

edges than the blue one. Therefore, we need to use a graph-

level metric such as Recall@K [37] and SPICE [1] to match

the graph-coherent objective, which penalizes more for mis-

classifying important hub nodes than others. Meanwhile,

the training objective of SGG should be local-sensitive.

By “local-sensitive”, we mean that the training objective is

sensitive to the change of a single node. However, since

the graph-coherent objective is a global pooling quantity,

the individual contribution of the prediction of a node is

lost. Thus, we need to design a disentangle mechanism to

identify the individual contribution and provide an effective

training signal for each local prediction.

In this paper, we propose a novel training paradigm:

Counterfactual critic Multi-Agent Training (CMAT), to si-

multaneously meet the graph-coherent and local-sensitive

requirements. Specifically, we design a novel communica-

tive multi-agent model, where the objects are viewed as co-

operative agents to maximize the quality of the generated

scene graph. The action of each agent is to predict its ob-

ject class labels, and each agent can communicate with oth-

ers using pairwise visual features. The communication re-

tains the rich visual context in SGG. After several rounds of

agent communication, a visual relationship model triggers

the overall graph-level reward by comparing the generated

scene graph with the ground-truth.

For the graph-coherent objective, we directly define

the objective as a graph-level reward (e.g., Recall@K or

SPICE), and use policy gradient [56] to optimize the non-

differentiable objective. In the view of Multi-Agent Rein-

forcement Learning (MARL) [57, 36], especially the actor-

critic methods [36], the relationship model can be framed as

a critic and the object classification model serves as a pol-

icy network. For the local-sensitive objective, we subtract

a counterfactual baseline [11] from the graph-level reward

by varying the target agent and fixing the others before feed-

ing into the critic. As shown in Figure 1 (c), to approximate

the true influence of the red node acting as bike, we fix

the predictions of the other nodes and replace the bike by

non-bike (e.g., person, boy, and car), and see how

such counterfactual replacement affects the reward (e.g.,

the edges connecting their neighborhood are all wrong).

To better encode the visual context for more effective

CMAT training, we design an efficient agent communica-

tion model, which discards the widely-used relationship

nodes in existing message passing works [62, 30, 20, 28,

71, 29]. Thanks to this design, we disentangle the agent

communication (i.e., message passing) from the visual re-

lationship detection, allowing the former to focus on mod-

eling the visual context, and the latter, which is a commu-

nication consequence, to serve as the critic that guides the

graph-coherent objective.

We demonstrate the effectiveness of CMAT on the chal-

lenging Visual Genome [27] benchmark. We observe con-

sistent improvements across extensive ablations and achieve

state-of-the-art performances on three standard tasks.

In summary, we make three contributions in this paper:
1. We propose a novel training paradigm: Counterfactual

critic Multi-Agent Training (CMAT) for SGG. To the

best of our knowledge, we are the first to formulate SGG

as a cooperative multi-agent problem, which conforms

to the graph-coherent nature of scene graphs.
2. We design a counterfactual critic that is effective for

training because it makes the graph-level reward local-

sensitive by identifying individual agent contributions.
3. We design an efficient agent communication method that

disentangles the relationship prediction from the visual

context modeling, where the former is essentially a con-

sequence of the latter.

2. Related Work

Scene Graph Generation. Detecting visual relationships

regains the community attention after the pioneering work

by Lu et al. [37] and the advent of the first large-scale scene

graph dataset by Krishna et al. [27]. In the early stage, many

SGG works focus on detecting objects and visual relations

independently [37, 74, 80, 79, 75], but these independent

inference models overlook the fruitful visual context. To

benefit both object and relationship detection from visual

context, recent SGG methods resort to the message pass-

ing mechanism [62, 7, 30, 29, 71, 20, 65, 58, 13, 44, 59].
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Figure 2: The pipeline of CMAT framework. Given an image, the model uses RPN to propose object regions (a). Then, each object (agent)

communicates with others to encode visual context (b). After agent communication, the model predicts class confidence for all objects.

Based on the confidence, it selects (random or greedily sampling) object labels (c) and infers visual relationship of object pairs (d). Finally,

it generates the scene graph (e). In the training stage, a counterfactual critic is used to calculate the individual contribution.

However, these methods fail to learn the visual context due

to the conventional XE loss, which is not graph-level con-

textually consistent. Unlike previous methods, in this pa-

per, we propose a CMAT model to simultaneously meet the

graph-coherent and local-sensitive requirements.

Multi-Agent Policy Gradient. Policy gradient is a type

of method which can optimize non-differentiable objec-

tive. It had been well-studied in many scene understand-

ing tasks like image captioning [46, 50, 33, 51, 77, 32],

VQA [18, 22], visual grounding [4, 72], visual dialog [8],

and object detection [3, 38, 21]. Liang et al. [31] used a

DQN to formulate SGG as a single agent decision-making

process. Different from these single agent policy gradient

settings, we formulate SGG as a cooperative multi-agent de-

cision problem, where the training objective is graph-level

contextually consistent and conforms to the graph-coherent

nature of scene graphs. Meanwhile, compared with many

well-studied multi-agent game tasks [10, 43, 12, 57], the

agent number (64 objects) and action sample space (151 ob-

ject categories) in CMAT are much larger.

3. Approach

Given a set of predefined object classes C (including

background) and visual relationship classes R (including

non-relationship), we formally represent a scene graph

G = {V = {(vi, li)}, E = {rij}|i, j = 1...n}, where V and

E denote the set of nodes and edges, respectively. vi ∈ C
is the object class of ith node, li ∈ R

4 is the location of

ith node, and rij ∈ R is the visual relationship between ith

and jth node. Scene Graph Generation (SGG) is to detect

the coherent configuration for nodes and edges.

In this section, we first introduce the components of the

CMAT (Section 3.1). Then, we demonstrate the details

about the training objective of the CMAT (Section 3.2).

3.1. SGG using MultiAgent Communication

We sequentially introduce the components of CMAT fol-

lowing the inference path ( path in Figure 2), including

object proposals detection, agent communication, and vi-

sual relationship detection.

3.1.1 Object Proposals Detection

Input : IMAGE 7−→ Output : {(li,x
0
i , s

0
i )}

We use Faster R-CNN [49] as the object detector to extract

a set of object proposals. Each proposal is associated with

a location li, a feature vector x0

i , and a class confidence

s0i . The superscript 0 denotes the initial input for the fol-

lowing T -round agent communication. We follow previous

works [62, 73] to fix all locations {li} as the final predic-

tions. For simplicity, we will omit li in following sections.

3.1.2 Agent Communication

Input : {(x0
i , s

0
i )} 7−→ Output : {(xT

i , s
T
i ,h

T
i )}

Given the n detected objects from the previous step, we

regard each object as an agent and each agent will com-

municate with the others for T rounds to encode the visual

context. In each round of communication, as illustrated in

Figure 3, there are three modules: extract, message,

and update. These modules share parameters among all

agents and time steps to reduce the model complexity. In the

following, we introduce the details of these three modules.

Extract Module. The incarnation of the extract mod-

ule is an LSTM, which encodes the agent interaction history

and extracts the internal state of each agent. Specifically, for

agent i (ith object) at t-round (0 < t 6 T ) communication:

h
t
i = LSTM(ht−1

i , [xt
i, e

t−1

i ]),

s
t
i = Fs(s

t−1

i ,h
t
i), e

t
i = Fe(s

t
i),

(1)

where ht
i is the hidden state of LSTM (i.e., the internal state

of agent). xt
i is the time-step input feature and sti is the

object class confidence. The initialization of xt
i (i.e. x0

i ) and

sti (i.e. s0i ) come from the proposal detection step. eti is soft-

weighted embedding of class label and [, ] is a concatenate

operation. Fs and Fe are learnable functions1. All internal

1For conciseness, we leave the details in supplementary material.
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Figure 3: The illustration of agent communication (at time step t)

between agent i and agent j (the red and green node).

states {ht
i} are fed into the following message module to

compose communication messages among agents.

Message Module. Considering the communication be-

tween agent i and j, the message module will compose mes-

sage M t
ij and M t

ji for each agent. Specifically, the messages

M t
ij for agent i is a tuple M t

ij = (mt
j ,m

t
ij) including:

m
t
j = Fm1(h

t
j), m

t
ij = Fm2(h

t
ij), (2)

where mt
j is a unary message which captures the identity of

agent j (e.g., the local object content), and mt
ij is a pairwise

message which models the interaction between two agents

(e.g., the relative spatial layout). ht
ij is the pairwise fea-

ture between agent i and j, and its initialization is the union

box feature extracted by the object detector. Fm∗ are mes-

sage composition functions1. All communication message

between agent i and the others (i.e., {M t
i∗}) and its internal

state ht
i are fed into the following update module to update

the time-step feature for next round agent communication2.

Update Module. At each round communication, we

use a soft-attention [5] to fuse message from other agents:

α
t
j = Fatt1(h

t
i,h

t
j), α

t
ij = Fatt2(h

t
i,h

t
ij),

x
t+1

i = Fu1(h
t
i, {α

t
jm

t
j}, {α

t
ijm

t
ij}),

h
t+1

ij = Fu2(h
t
ij ,h

t
i,h

t
j),

(3)

where αt
j and αt

ij are attention weights to fuse different

message, Fatt∗ and Fu∗ are attention and update functions1.

3.1.3 Visual Relationship Detection

Input : {(sT
i ,h

T
i )} 7−→ Output : {rij}

After T -round agent communication, all agents finish their

states update. In inference stage, we greedily select the ob-

ject labels vTi based on confidence sTi . Then the relation

model predict the relationship class for any object pairs:

rij = Fr(h
T
i ,h

T
j , v

T
i , v

T
j ), (4)

where Fr is the relationship function1. After predicting re-

lationship for all object pairs, we finally obtain the gener-

ated scene graph: ({vTi }, {rij}).

2 We dubbed the communication step as agent communication instead

of message passing [62, 30] for two reasons: 1) To be consistent with the

concept of the multi-agent framework, where agent communication repre-

sents passing message among agents. 2) To highlight the difference with

existing message passing methods that our communication model disen-

tangles the relationship prediction from the visual context modeling.

3.2. Counterfactual Critic MultiAgent Training

We demonstrate the details of the training objective of

CMAT, including: 1) multi-agent policy gradient for the

graph-coherent objective, and 2) counterfactual critic for

the local-sensitive objective. The dataflow of our CMAT

in training stage is shown in Figure 2 ( path).

3.2.1 Graph-Coherent Training Objective

Almost all prior SGG works minimize the XE loss as the

training objective. Given a generated scene graph (V̂, Ê)
and its ground-truth (Vgt, Egt), the objective is:

L(θ) =
∑

ij

(
XE(v̂i, v

gt
i ) + XE(r̂ij , r

gt
ij )

)
. (5)

As can be seen in Eq. (5), the XE based objective is essen-

tially independent and penalizes errors at all nodes equally.

To address this problem, we propose to replace XE with

the following two graph-level metrics for graph-coherent

training objective of SGG: 1) Recall@K [37]: It computes

the fraction of the correct predicted triplets in the top K

confident predictions. 2) SPICE [1]: It is the F-score of

predicted triplets precision and triplets recall. Being dif-

ferent from the XE loss, both Recall@K and SPICE are

non-differentiable. Thus, our CMAT resorts to using the

multi-agent policy gradient to optimize these objectives.

3.2.2 Multi-Agent Policy Gradient

We first describe formally the action, policy and state in

CMAT, then derive the expression of parameter gradients.

Action. The action space for each agent is the set of all

possible object classes, i.e., vti is the action of agent i. We

denote V t = {vti} as the set of actions of all agents.

State. We follow previous work [15] to use an LSTM

(extract module) to encode the history of each agent.

The hidden state ht
i can be regarded as an approximation of

the partially-observable environment state for agent i. We

denote Ht = {ht
i} as the set of states of all agents.

Policy. The stochastic policy for each agent is the object

classifier. In the training stage, the action is sampled based

on the object class distribution, i.e., pT
i = softmax(sTi ).

Because our CMAT only samples actions for each agents

after T -round agent communication, based on the policy

gradient theorem [56], the (stochastic) gradient for the co-

operative multi-agent in CMAT is:

∇θJ ≈

n∑

i=1

∇θ log p
T
i (v

T
i |h

T
i ; θ)Q(HT , V T ), (6)

where Q(HT , V T ) is the state-action value function. In-

stead of learning an independent network to fit the function

Q and approximate reward like actor-critic works [2, 36,

25]; in our CMAT, we follow [47] to directly use the real
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global reward to replace Q. The reasons are as follows: 1)

The number of agents and possible actions for each agent

in SGG are much larger than the previous multi-agent pol-

icy gradient settings, thus the number of training samples

is insufficient to train an accurate value function. 2) This

can reduce the model complexity and speed up the training

procedures. Thus, the gradient for our CMAT becomes:

∇θJ ≈

n∑

i=1

∇θ log p
t
i(v

T
i |h

T
i ; θ)R(HT , V T ), (7)

where R(HT , V T ) is the real graph-level reward (i.e., Re-

call@K or SPICE). It is worth noting that the reward

R(HT , V T ) is a learnable reward function which includes

a relation detection model.

3.2.3 Local-Sensitive Training Objective

As can been seen in Eq. (7), the graph-level reward can be

considered as a global pooling contribution from all the lo-

cal predictions, i.e., the reward for all the n agents are iden-

tical. We demonstrate the negative impact of this situation

with a toy example as shown in Figure 4.

(2)(1)

a a

b b

c c

d d

Figure 4: (1)(2) are two generated scene

graph results. The color green and red

represents right and wrong prediction,

respectively. The graph-level reward for

this toy example is the number of right

predicted triplets minus the number of

wrong predicted triplets.

Suppose all predictions of two generated scene graph are

identical, except that the prediction of node “a” is different.

Based on Eq. (7), all nodes in the first graph and second

graph get a positive reward (i.e., 3 (right) -1(wrong) = +2)

and a negative reward (i.e., 1 (right)-3 (wrong) = -2), re-

spectively. The predictions for the nodes “b”,“c”, and “d”

are identical in the two graphs, but their gradient directions

for optimization are totally different, which results in many

inefficient optimization iteration steps. Thus, the training

objective of SGG should be local-sensitive, i.e., it can iden-

tify the contribution of each local prediction to provide an

efficient training signal for each agent.

3.2.4 Counterfactual Critic

An intuitive solution, for identifying the contribution of a

specific agent’s action, is to replace the default action of the

target agent with other actions. Formally, R(HT , V T ) −
R(HT , (V T

−i, ṽ
T
i )) can reflect the true influence of action

vTi , where V T
−i represents all agents except agent i (i.e., the

others n − 1 agents) using the default action, and agent i

takes a new action ṽTi .

Since the new action ṽTi for agent i has |C| choices, and

we can obtain totally different results for R(HT , (V T
−i, ṽ

T
i ))

with different action choices. To more precisely ap-

proximate the individual reward of the default action

of agent i (i.e., vTi ), we marginalize the rewards when

agent i traverse all possible actions: CBi(HT , V T ) =∑
pT
i (ṽ

T
i )R(HT , (V T

−i, ṽ
T
i )), where CBi(HT , V T ) is the

counterfactual baseline for the action of agent i. The coun-

terfactual baseline represents the average global-level re-

ward that the model should receive when all other agents

take default actions and regardless of the action of agent i.

The illustration of counterfactual baseline model (Figure 2)

in CMAT is shown in Figure 5.

Given the global reward R(HT , V T ) and counterfactual

baseline CBi(HT , V T ) for action vT
i of agent i, the disen-

tangled contribution of the action of agent i is:

Ai(HT , V T ) = R(HT , V T )− CB
i(HT , V T ). (8)

Note that Ai(HT , V T ) can be considered as the advan-

tage in actor-critic methods [55, 39], CBi(HT , V T ) can be

regarded as a baseline in policy gradient methods, which

reduces the variance of gradient estimation. The whole net-

work to calculate Ai(HT , V T ) is dubbed as the counter-

factual critic3 (Figure 2). Then the gradient becomes:

∇θJ ≈
n∑

i=1

∇θ log p
T
i (v

T
i |h

T
i ; θ)A

i(HT , V T ). (9)

Finally, we incorporate the auxiliary XE supervised loss

(weighted by a trade-off α) for an end-to-end training, and

the overall gradient is:

∇θJ ≈

CMAT
︷ ︸︸ ︷
n∑

i=1

∇θ log p
T
i (v

T
i |h

T
i ; θ)A

i(HT
, V

T )+

α

n∑

i=1

n∑

j=1

∇θ log pij(rij)

︸ ︷︷ ︸
XE for relationships

+α

n∑

i=1

∇θ log p
T
i (v

T
i )

︸ ︷︷ ︸
XE for objects

,

(10)

where CMAT encourages visual context exploration and XE

stabilizes the training [47]. We also follow [63, 18] to add

an entropy term to regularize {pT
i }i.

4. Experiments

Dataset. We evaluated our method for SGG on the chal-

lenging benchmark: Visual Genome (VG) [27]. For fair

comparisons, we used the released data preprocessing and

splits which had been widely-used in [62, 73, 40, 65, 17].

The release selects the most frequent 150 object categories

3 Although the critic in CMAT is not a value function to estimate the

reward as in actor-critic, we dubbed it as critic for two reasons: 1) The

essence of a critic is calculating advantages for the actions of policy net-

work. As in previous policy gradient work [51], the critic can be an infer-

ence algorithm without a value function. 2) The critic in CMAT includes a

learnable relation model, which will also update its parameters at training.
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Figure 5: The illustration of the counterfactual baseline (CB)

model in Figure 2. For this given image, the model calculates CB

for all agents (e.g., boy, face, hand, pants, and kite). As

shown in the bottom, for the CB for boy, we traverse to replace

class label boy to all possible classes (e.g., background , ...,

hand et al.) and marginalize these rewards.

and 50 predicate classes. After preprocessing, each image

has 11.5 objects and 6.2 relationships on average. The re-

leased split uses 70% of images for training (including 5K

images as validation set) and 30% of images for test.

Settings. As the conventions in [62, 73, 20], we evaluate

SGG on three tasks: Predicate Classification (PredCls):

Given the ground-truth object bounding boxes and class

labels, we need to predict the visual relationship classes

among all the object pairs. Scene Graph Classification

(SGCls): Given the ground-truth object bounding boxes,

we need to predict both the object and pairwise relation-

ship classes. Scene Graph Detection (SGDet): Given an

image, we need to detect the objects and predict their pair-

wise relationship classes. In particular, the object detection

needs to localize both the subject and object with at least 0.5

IoU with the ground-truth. As the conventions in [73, 20],

we used Recall@20 (R@20), Recall@50 (R@50), and Re-

call@100 (R@100) as the evaluation metrics.

4.1. Implementation Details

Object Detector. For fair comparisons with previous

works, we adopted the same object detector as [73]. Specif-

ically, the object detector is a Faster-RCNN [49] with VGG

backbone [54]. Moreover, the anchor box size and as-

pect ratio are adjusted similar to YOLO-9000 [48], and the

RoIPooling layer is replaced with the RoIAlign layer [16].

Training Details. Following the previous policy gradient

works that use a supervised pre-training step as model ini-

tialization (aka, teacher forcing), our CMAT also utilized

this two-stage training strategy. In the supervised training

stage, we froze the layers before the ROIAlign layer and op-

timized the whole framework with the sum of objects and

relationships XE losses. The batch size and initial learn-

ing rate were set to 6 and 10−3, respectively. In the pol-

icy gradient training stage, the initial learning rate is set to

3 × 10−5. For SGDet, since the number of all possible re-

lationship pairs are huge (e.g., 64 objects leads to ≈ 4,000

pairs), we followed [73] that only considers the relation-

ships between two objects with overlapped bounding boxes,

which reduced the number of object pairs to around 1,000.

Speed vs. Accuracy Trade-off. In the policy gradient

training stage, the complete counterfactual critic calcula-

tion needs to sum over all possible object classes, which

is significantly time-consuming (over 9,600 (≈ 151 × 64)

times graph-level evaluation at each iteration). Fortunately,

we noticed that only a few classes for each agent have large

prediction confidence. To make a trade-off between train-

ing speed and accuracy, we only sum over the two highest

positive classes and the background class probabilities to es-

timate the counterfactual baseline. In our experiments, this

approximation only results in a slight performance drop but

70x faster training time.

Post-processing for SGDet. For SGDet, we followed the

post-processing step in [73, 76] for a fair comparison. Af-

ter predicting the object class probabilities for each RoI, we

used a per-class NMS to select the RoI class and its corre-

sponding class-specific offsets from Faster-RCNN. The IoU

threshold in NMS was set to 0.5 in our experiments.

4.2. Ablative Studies

We run a number of ablations to analyze CMAT, includ-

ing the graph-level reward choice (for graph-coherent char-

acteristic), the effectiveness of counterfactual baseline (for

local-sensitive characteristic), and the early saturation prob-

lem in agent communication model. Results are shown in

Table 2 and discussed in detail next.

Graph-level Reward Choices. To investigate the influence

of choosing different graph-level metrics as the training re-

ward, we compared two metrics: Recall@K and SPICE.

In particular, we used the top-20 confident triplets as the

predictions to calculate Recall and SPICE. The results are

shown in Table 2 (a). We can observe that using both Re-

call and SPICE as the training reward can consistently im-

prove the XE pre-trained model, because the graph-level

metrics is a graph-coherent objective. Meanwhile, using

Recall@K as training reward can always get slightly better

performance than SPICE, because SPICE is not a suitable

evaluation metric for the incomplete annotation nature of

VG. Therefore, we used Recall@K as our training reward

in the rest of the experiments.

Policy Gradient Baselines. To evaluate the effectiveness
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SGDet SGCls PredCls

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100 Mean

Constraint

VRD [37] - 0.3 0.5 - 11.8 14.1 - 27.9 35.0 14.9

IMP [62] - 3.4 4.2 - 21.7 24.4 - 44.8 53.0 25.3

MSDN [30, 65] - 7.0 9.1 - 27.6 29.9 - 53.2 57.9 30.8

AsscEmbed [40] 6.5 8.1 8.2 18.2 21.8 22.6 47.9 54.1 55.4 28.3

FREQ+⋄ [73] 20.1 26.2 30.1 29.3 32.3 32.9 53.6 60.6 62.2 40.7

IMP+⋄ [62, 73] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3 39.3

TFR [20] 3.4 4.8 6.0 19.6 24.3 26.6 40.1 51.9 58.3 28.7

MOTIFS⋄ [73] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1 43.7

Graph-RCNN [65] - 11.4 13.7 - 29.6 31.6 - 54.2 59.1 33.2

GPI⋄ [17] - - - - 36.5 38.8 - 65.1 66.9 -

KER⋄ [6] - 27.1 29.8 - 36.7 37.4 - 65.8 67.6 44.1

CMAT 22.1 27.9 31.2 35.9 39.0 39.8 60.2 66.4 68.1 45.4

No constraint

AsscEmbed [40] - 9.7 11.3 - 26.5 30.0 - 68.0 75.2 36.8

IMP+⋄ [62, 73] - 22.0 27.4 - 43.4 47.2 - 75.2 83.6 49.8

FREQ+⋄ [73] - 28.6 34.4 - 39.0 43.4 - 75.7 82.9 50.6

MOTIFS⋄ [73] 22.8 30.5 35.8 37.6 44.5 47.7 66.6 81.1 88.3 54.7

KER⋄ [6] - 30.9 35.8 - 45.9 49.0 - 81.9 88.9 55.4

CMAT 23.7 31.6 36.8 41.0 48.6 52.0 68.9 83.2 90.1 57.0

Table 1: Performance (%) compared with the state-of-the-art methods w/o graph constraint on VG [27]. Since some works doesn’t evaluate

on R@20, we compute the mean on all tasks over R@50 and R@100. ⋄ denotes the methods using the same object detector as ours.

XE R@20 SPICE

SGCls
R@20 34.08 35.93 35.27

SPICE 15.39 16.01 15.90

SGDet
R@20 16.23 16.53 16.51

SPICE 7.48 7.66 7.64

(a) Results (%) of different reward choices.

XE MA SC CF

SGCls

R@20 34.08 34.76 34.68 35.93

R@50 36.90 37.58 37.54 39.00

R@100 37.61 38.29 38.25 39.75

SGDet

R@20 16.23 16.07 16.37 16.53

R@50 20.62 20.41 20.82 20.95

R@100 23.24 23.02 23.41 23.62

(b) Results (%) of different baseline types.

2-step 3-step 4-step 5-step

SGCls

R@20 35.09 35.25 35.40 35.93

R@50 37.95 38.19 38.37 39.00

R@100 38.67 38.91 39.09 39.75

SGDet

R@20 16.35 16.43 16.47 16.53

R@50 20.89 20.88 20.92 20.95

R@100 23.49 23.50 23.54 23.62

(c) Results (%) of different #communication steps.

Table 2: Ablations. All results are with graph constraints. XE: The initialization performance after supervised XE pre-training. For clarity,

the results of SGDet without post-processing are shown.

of our counterfactual baseline (CF), we compared it with

other two widely-used baselines in policy gradient: Moving

Average (MA) [60] and Self-Critical (SC) [51]. MA is a

moving average constant over the recent rewards [63, 18].

SC is the received reward when model directly takes greedy

actions as in the test. From Table 2 (b), we can observe that

our CF baseline consistently improves the supervised ini-

tialization and outperforms others. Meanwhile, MA and SC

can only improve the performance slightly or even worsen

it. Because the CF baseline is a local-sensitive objective

and provides a more effective training signal for each agent,

while MA and SC baselines are only globally pooling re-

wards which are still not local-sensitive.

# of Communication Steps. To investigate the early satura-

tion issue in message passing models [62, 30], we compared

the performance of CMAT with different numbers of com-

munication steps from 2 to 5. From Table 2 (c), we can ob-

serve the trend seems contiguously better with the increase

of communication step. Due to the GPU memory limit, we

conducted experiments up to 5 steps. Compared to existing

message passing methods, the reason why CMAT can avoid

the early saturation issue is that our agent communication

model discards the widely-used relationship nodes.

4.3. Comparisons with StateoftheArts

Settings. We compared CMAT with the state-of-the-art

models. According to whether the model encodes con-

text, we group these methods into: 1) VRD [37], AsscEm-

bed [40], FREQ [73] are independent inference models,

which predict object and relation classes independently. 2)

MSDN [30], IMP [62], TFR [20], MOTIFS [73], Graph-

RCNN [65], GPI [17], KER [6] are joint inference models,

which adopt message passing to encode the context. All

these models are optimized by XE based training objective.

Quantitative Results. The quantitative results are reported

in Table 1. From Table 1, we can observe that our CMAT

model achieves the state-of-the-art performance under all

evaluation metrics. It is worth noting that CMAT can es-

pecially improve the performance of SGCls significantly

(i.e., 3.4% and 4.3% absolute improvement in with and

without graph constraint setting respectively), which means

our CMAT model can substantially improve the object la-
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Figure 6: Qualitative results showing comparisons between higher R@20 (green tick) and lower R@20 (red cross) by CMAT and MOTIFS

in SGDet. Green boxes are detected boxes with IoU large 0.5 with the ground-truth, blue boxes are detected but not labeled, red boxes are

ground-truth with no match. Green edges are true positive predicted by each model at the R@20 setting, red edges are false negatives, and

blue edges are false positives. Only detected boxes overlapped with ground-truth are shown.

bel predictions compared to others. The improvements in

object label predictions meet our CMAT design, where the

action of each agent is to predict an object label. Mean-

while, it also demonstrates the effectiveness of counterfac-

tual critic multi-agent training for message passing models

(agent communication) compared with XE based training.

For PredCls task, even we use the easiest visual relationship

model and it achieves the best performance, which means

the input for relationship model (i.e., the state of agent) can

better capture the internal state of each agent. Meanwhile,

it is worth noting that any stronger relationship model can

seamlessly be incorporated into our CMAT. For SGDet task,

the improvements are not as significant as the SGCls, the

reason may come from the imperfect and noisy detected

bounding boxes.

Qualitative Results. Figure 6 shows the qualitative results

compared with MOTIFS. From the results in the top two

rows, we can observe that CMAT rarely mistakes at the im-

portant hub nodes such as the man or girl, because CMAT

directly optimizes the graph-coherent objective. From the

results in the bottom two rows, the mistakes of CMAT al-

ways come from the incomplete annotation of VG: CMAT

can detect more false positive (the blue color) objects and

relationship than MOTIFS. Since the evaluation metric (i.e.,

Recall@K) is based on the ranking of labeled triplet confi-

dence, thus, detecting more reasonable false positive results

with high confidence will worsen the results.

5. Conclusions

We proposed a novel method CMAT to address the in-

herent problem with XE based objective in SGG: it is not

a graph-coherent objective. CMAT solves the problems by

1) formulating SGG as a multi-agent cooperative task, and

using graph-level metrics as the training reward. 2) disen-

tangling the individual contribution of each object to allow

a more focused training signal. We validated the effec-

tiveness of CMAT through extensive comparative and ab-

lative experiments. Moving forward, we are going to 1) de-

sign a more effective graph-level metric to guide the CMAT

training and 2) apply CMAT in downstream tasks such as

VQA [61, 70], dialog [41], and captioning [64].
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