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Abstract

Deep neural networks achieve good performance in many

computer vision problems such as face alignment. However,

when the testing image is challenging due to low resolution,

occlusion or adversarial attacks, the accuracy of a deep

neural network suffers greatly. Therefore, it is important to

quantify the uncertainty in its predictions. A probabilistic

neural network with Gaussian distribution over the target

is typically used to quantify uncertainty for regression prob-

lems. However, in real-world problems especially computer

vision tasks, the Gaussian assumption is too strong. To

model more general distributions, such as multimodal or

asymmetric distributions, we propose to develop a kernel

density deep neural network. Specifically, for face align-

ment, we adapt state-of-the-art hourglass neural network

into a probabilistic neural network framework with land-

mark probability map as its output. The model is trained

by maximizing the conditional log likelihood. To exploit

the output probability map, we extend the model to multi-

stage so that the logits map from the previous stage can feed

into the next stage to progressively improve the landmark

detection accuracy. Extensive experiments on benchmark

datasets against state-of-the-art unconstrained deep learn-

ing method demonstrate that the proposed kernel density

network achieves comparable or superior performance in

terms of prediction accuracy. It further provides aleatoric

uncertainty estimation in predictions.

1. Introduction

Face alignment, or facial landmark localization, is a fun-

damental step for facial behavior analysis such as face recog-

nition, facial expression estimation, and head pose estima-

tion. Classical work on face alignment mainly adopts a

cascade regression framework based on local image fea-

tures [50, 49, 48, 47], which is sensitive to initialization and

achieves limited performance on challenging dataset. With

the introduction of deep learning based methods for regres-

sion and feature representation learning, the state-of-the-art

accuracy in face alignment is achieved [41, 52, 43, 3, 11, 46].

However, the performance of face alignment remains

sensitive to face image quality. Challenges such as large head

pose, object occlusion or low resolution may lead to poor

landmark detection results. Moreover, existing deep learning

based methods are susceptible to small image perturbations

such as an adversarial attack, which may result in a large

difference in the prediction. More importantly, existing deep

learning methods cannot predict their output uncertainty.

Therefore, it is important to develop a probabilistic deep

neural network to quantify the prediction uncertainty and to

avoid making over-confident wrong decisions.

To these goals, we propose a Kernel Density Deep Neural

Network (KDN). Different from the deterministic approach

that gives a point estimation for each input, our model out-

puts target probability distribution for each input. More-

over, rather than assuming the output follows a Gaussian

distribution, the proposed method can capture more general

probability distribution, such as multimodal or asymmetric

distribution. With the target probability distribution, we can

quantify the prediction confidence to distinguish challenging

input image caused by large head pose, object occlusion or

low resolution and to identify landmarks under occlusion.

To further exploit the output probability map, we further

extend our model to multi-stage cascade framework so that

the probability map produced in the last stage can serve as

input to guide the detection in the next stage to progressively

improve the landmark detection accuracy.

The contributions of work are summarized as follows:

1) We introduce the Kernel Density Deep Neural Network

that produces target probability map, without assuming a

specific parametric distribution. The probability map can

be used to quantify the uncertainty of the output and to

identify the challenging landmarks. And we further extend

our model to multiple stages to use the output probability

map to progressively improve the landmark detection.

2) We show that the estimated uncertainty in our method

can be used to detect occluded landmarks without occlusion

supervision.

3) We show the proposed method can be generally extended

to other regression tasks such as action unit intensity

estimation.
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2. Related work

2.1. Probabilistic Neural Network

To quantify uncertainty in neural networks, the probabilis-

tic neural network was proposed to model the conditional

target probability distribution given its input and neural net-

works are used to predict the parameters of the probability

distribution. For regression tasks, it is often assumed that the

target follows Gaussian distribution [29, 21, 19]. And neural

network is used to predict the mean and variance for the

Gaussian distribution. In this way, the prediction is given by

the mean and the uncertainty is quantified by the variance.

However, for many real-world problems, the target distri-

bution may be more complicated, e.g. asymmetric or multi-

modal, which the Gaussian distribution cannot adequately

capture. To deal with this issue, one way is to parameter-

ize a different distribution suitable for the specific problem.

For instance, [28] used a Gamma distribution to model the

distribution of surgery duration. And [34] used a von Mise

distribution to model the distribution of object pose. Another

way is to use a mixture distribution which is more flexible

in approximating distributions with different shapes. For

instance, [1] used a mixture of Gaussian distribution and

[34] extended the von Mises distribution to a mixture of

von Mises distribution to handle multimodal distribution.

These methods typically still have assumptions and are not

generally applicable.

We are interested in modeling the distribution of landmark

location, which has high probability near the boundary of

the facial parts. Therefore the distribution typically does

not follow some standard parametric distribution such as

Gaussian. And different landmarks may have very different

distribution shape.

2.2. Face Alignment

Face alignment is typically treated as a regression prob-

lem where given a face image, it aims to localize certain

facial key points in the image. Classic methods lie in

the categories of Active Shape Model (ASM) [26], Active

Appearance Model (AAM) [10, 18, 25, 37], Constrained

Local Model (CLM) [20, 38] and Cascade Regression

[7, 4, 54, 5, 49]. ASM models the statistical shape of ob-

jects, while AAM models both the shape and the appearance

features. CLM is similar to AAM that models shape prior

using principal component analysis (PCA) that projects both

local appearance features and shape features onto the bases.

Cascade Regression refines landmark localization stage by

stage. These classic methods rely on hand-crafted local im-

age features and are usually sensitive to initializations. They

are outperformed by deep learning based methods which use

deep feature representation.

Deep learning based method for face alignment was first

proposed in [41] and achieved better performance than clas-

sical methods. Later on, more works on face alignment using

deep learning framework has been explored [53, 52, 43, 12]

but they are all based on coordinate regression.

Until recently, fully convolutional neural network

(FCN) [23] based methods established new state-of-the-art

for face alignment and body pose estimation [42, 27, 45].

And most of these face alignment methods [3, 46] follow the

architecture of Stacked Hourglass [27]. The stacked modules

refine the network predictions after each stack, similar to the

idea of Cascade Regression. Instead of directly predicting

the landmark coordinates, it predicts a heatmap with same

size as the input image and the landmark location is predicted

by the coordinate on the heatmap with largest response. The

idea of the heatmap based regression is similar to a fully

convolutional neural network which preserves the spatial

information of the input image and reduce the parameters

brought by fully connected layers.

2.3. Fully Convolutional Network Loss

State-of-the-art face alignment methods adopt FCN struc-

ture with a heatmap regression loss. The loss function is

typically defined as the mean squared error between the pre-

dicted heatmap and the ground truth heatmap. This loss func-

tion is originally introduced and widely used in human pose

estimation [42, 27, 2, 8, 6]. Besides this typical loss function,

there are several other options in literature introduced for

solving other problems such as image segmentation.

One choice is to treat the problem as a multi-class classi-

fication problem where each pixel location in the heatmap

corresponds to one class and use the softmax cross entropy

loss over the 2D heatmap. This was used in Mask-RCNN

[16] for human body joint estimation. One pixel location

with highest probability in the heatmap is selected as the es-

timation. Solving a regression problem using softmax cross

entropy loss also exists in other problems such as face age

estimation [31], where we have discrete age labels. These

age labels, though discrete, are not independent because la-

bels with close values should be more confusing with each

other in classification. Therefore, to some extent, this loss

function abandons part of the information provided by the la-

bel values. To address this issue, the paper [31] further uses

L2 loss of the mean computed from the softmax probability.

This idea has been explored in other tasks such as body pose

estimation [40], headpose estimation [35]. And [13] further

proposes to use L1 loss instead of L2 loss in face age esti-

mation, while [44] proposes to apply wing loss to heatmap

regression that is first proposed in [12] for traditional co-

ordinate regression in face alignment. These works, while

achieving satisfactory performance in terms of low predic-

tion error, cannot accurately quantify prediction uncertainty.

More recently, [15] proposes to estimate covariance matrix
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besides the mean of a multivariate Gaussian distribution,

thus incorporating uncertainty into this framework. All the

aforementioned works that add L1, L2 or Gaussian negative

log likelihood losses besides the heatmap loss assumes the

output distribution as single-modal, implicitly or explicitly.

However, we show in this paper that this is often not the case

in real-world computer vision problems. Therefore using

the mean for inference will lead to erroneous predictions for

multimodal cases.

Another choice is to treat the problem as a classification

problem for each pixel [32, 17, 33]. There are two types of

classification, one is binary classification, where each pixel

will be classified as the target or not. And the ground truth

binary label is created by assigning 1 to all the pixels in a

certain neighborhood around the ground truth target pixel

location and 0 to the rest pixels in the heatmap. The other

choice is multi-class classification [9], where each pixel is

classified as either one of the body or facial part regions or

the background. These loss functions are used very often

for segmentation tasks. And since it usually uses a softmax

or sigmoid cross entropy loss which is also the negative log

likelihood of a Categorical distribution, it is able to quantify

classification uncertainty. However, they do not achieve as

good performance as the previous loss functions as studied

in [40] and it is difficult to define the ground truth body or

facial part regions given only a single pixel location as the

ground truth keypoint location.

Therefore, in this work, we propose a different loss func-

tion and a corresponding inference method that achieves

state-of-the-art performance and provide good aleatoric

uncertainty estimation. Our work differ from previous

works in terms of explicitly quantifying uncertainty in fully-

convolutional based architecture without adding additional

fully connected layers to predicted covariance as [15].

3. The Proposed Method

Our method is built on the probabilistic neural network

framework. We assume target y (landmark coordinates) is

a random vector that follows p(y | x;Θ), where x is the

input image and Θ is the neural network parameter. And

p(y | x;Θ) is parameterized by the neural network output.

3.1. Kernel Density Network

Instead of assuming the target follows Gaussian distribu-

tion as being done by current models, we propose to model

the target probability with multi-variate kernel density func-

tion [39] in order to capture more general probability distri-

butions, including multimodal and non-symmetric distribu-

tions.

Denote m,n as the height and width of the output

π(x;Θ) from the Hourglass module, µij = [i, j]T as the

pixel location in the output map, where 1 ≤ i ≤ m, 1 ≤ j ≤
n. According to the multivariate kernel density distribution

[39], the target distribution can be expressed as

p(y | x;Θ) =
m
∑

i=1

n
∑

j=1

KΣ(y − µij)πij(x;Θ) (1)

where KΣ(y − µij) is a Gaussian kernel whose value

is the standard 2D Gaussian’s probability density at

Σ− 1
2 (y − µij) normalized by |Σ|− 1

2 , i.e. KΣ(y − µij) =

|Σ|− 1
2Φ

(

Σ− 1
2 (y−µij)

)

. π(x;Θ), the output of the neural

network, is a weight map of the dimension m × n, where

each pixel value πij(x;Θ) represents the weight of the

Gaussian kernel KΣ(y − µij), 0 ≤ πij(x;Θ) ≤ 1 and
∑m

i=1

∑n

j=1
πij(x;Θ) = 1.

Thus we form a continuous probability p(y | x;Θ) based

on the Gaussian kernels KΣ(y − µij) and their correspond-

ing weights πij(x;Θ).

It is worth noting that the form of p(y | x;Θ) depends

on our choice of the kernel function. If we choose a uni-

form kernel with a range of 1 pixel, it is equivalent to the

likelihood for a categorical distribution where each category

represents the discrete landmark coordinate. Here we choose

a Gaussian kernel to achieve a smoothing effect similar to

kernel density estimation.

In this way, we only change the loss function of the neural

network for face alignment problem without modifying the

heatmap regression based network structure. The goal is to

maximize the conditional likelihood without assuming any

specific distribution of the target, unlike widely practiced

loss function which puts a fixed Gaussian heatmap around

the ground truth label as the ground truth heatmap and mini-

mize the L-2 distance between the groundtruth heatmap and

the predicted one.

Loss function. The loss function is defined as the

negative log conditional likelihood. Given training data

D = {xk,yk | k = 1, 2, . . . , N}, we minimize the loss

function to get Θ∗ as shown in Eq.(2).

Θ∗ = argmin
Θ

−
N
∑

k=1

log p(yk | xk;Θ)

= argmin
Θ

−
N
∑

k=1

log
m
∑

i=1

n
∑

j=1

KΣ(yk − yij)πij(xk;Θ)

(2)

To demonstrate why the proposed loss function based on

kernel density benefits the learning process of face alignment,

we compute the gradient of the loss w.r.t. the layer before

softmax. To simplify the notation, let wkij = KΣ(yk−yij).
Denote the layer before softmax for the sample k as fkij ,

and the layer after softmax as pkij , pkij = softmax(fkij).
The derivative of the loss contributed by a training sample

{xk,yk} can be computed as
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Figure 1: The proposed cascade network structure using Hour Glass module as basic structure, same as [3]. The size of the

input image is 256× 256. The size of the probability map is 64× 64. The loss function for each stage after the Hour Glass

module is based on minimizing the negative log conditional likelihood.

∂Lossk

∂fkij
=

pkij
(

wkij −
∑m

a=1

∑n

b=1
wkabpkab

)

∑m

a=1

∑n

b=1
wkabpkab

(3)

where wkij > 0 measures the similarity between each pixel

location in the heatmap and the ground truth landmark lo-

cation. The closer the pixel location [i, j]T is to the ground

truth yk, the higher wkij .
∑m

a=1

∑n

b=1
wkabpkab is the ex-

pectation of the similarity over discrete probability distribu-

tion π(xk;Θ).

During training, if wkij >
∑m

a=1

∑n

b=1
wkabpkab, i.e.

the similarity at location [i, j]T is larger than the average sim-

ilarity, fkij will increase. Therefore in the beginning, all the

pixel locations near the ground truth (similarity greater than

the average similarity threshold) will have their probability

pij increased, and pixels far away (similarity smaller than the

average similarity threshold) will have their probability de-

creased. Then the average similarity
∑m

a=1

∑n

b=1
wkabpkab

will also increase. With the increasing average similarity,

fewer pixels will have their associated probability increased.

Then the heatmap will become more concentrated near the

ground truth as the training process goes on.

Compared to the softmax cross entropy loss for classi-

fication, this loss takes into account the spatial location of

each pixel, unlike the softmax loss that treats all the negative

classes equally when performing the gradient update. More

importantly, in the beginning of the training process, pixels

near the ground truth will have their associated probability

increased which allows for exploration around the ground

truth and prevents overfitting to the ground truth.

Inference. During testing, given a new image x∗ the pre-

diction of landmark locations is obtained by finding the mode

of the probability y∗ = argmaxy p(y | x∗;Θ∗). Specifi-

cally, the mode of the continuous probability distribution is

obtained by first convolving the softmax map with a Gaus-

sian kernel with the bandwidth used for training to get the

discrete probability map and use its local mean around the

mode as initialization for gradient ascent. The gradient can

be computed by Eq. (4)

∂p(y | x∗;Θ∗)

∂y

=
∂
∑m

i=1

∑n

j=1
KΣ(y − µij)πij

∂y

=−
m
∑

i=1

n
∑

j=1

KΣ(y − µij)πijΣ
−1(y − µij)

(4)

Covariance of prediction. The proposed target distribu-

tion in Eq.(1) is composed of a mixture of Gaussian distribu-

tions, thus its covariance matrix can be computed as

Cov[y | x;Θ]

=Σ +
m
∑

i=1

n
∑

j=1

(ym − yij)(ym − yij)
T
πij(x;Θ)

(5)

where ym =
∑m

i=1

∑n

j=1
yijπij(x;Θ).

The uncertainty of the prediction is quantified by the

square root of the determinant of the covariance matrix

|Cov[y | x;Θ]| 12 .

3.2. Cascade Probability Propagation

To take advantage of the probability map, we extend the

single stage model to multi-stage so that the probability map

from the previous stage can be fed into the next stage to

progressively improve the landmark estimation accuracy.

Similar to [30], we want to propagate the estimated prob-

ability map to the next stage. For each stage, we will have an

estimated probability map p(y | x;Θ), the raw logits map

(before softmax) is concatenated with the down-sampled

input image and the feature map with the same size as input

to the next stage, as shown in Fig. 1.

The idea is that by propagating the probability map to

the next stage, it will guide the network in the next stage

implicitly to focus more on the regions in the image with

high probability. For example, if the prediction for a certain

landmark has high uncertainty, the probability map will has

a flat shape, thus encouraging the network at next stage to

search in a wider region according to the probability map; if

otherwise, the probability map will have a sharp shape and
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the network at next stage will try to refine the prediction in

the nearby neighborhood.

According to our experiments, the probability map in

the first stage is more spread-out, i.e. the prediction is more

uncertain, compared to the predictions in later stages. And

the prediction error is larger in the first stage than in later

stages. This proves the effectiveness of the Kernel Density

Network to model output probability distribution as well

as the effectiveness of the cascade framework in improving

detection accuracy.

Recently, [22] proposed to use the softlabel loss in multi-

ple stages and reducing the fixed variance of the ground truth

heatmap stage by stage for a more fine-grained supervision

in later stages. One defect of this method is that since it is

sensitive to the fixed variance of the ground truth heatmap, it

requires careful tuning of this hyperparameter which can be

time-consuming for deep neural networks while our method

does not require such tuning but automatically learns a more

concentrated probability map stage by stage.

4. Experiments

Datasets. We evaluate our methods on 300W [36],

Menpo [51], COFW [4], AFLW [24].

300W has 68 landmark annotation. We first train the method

on 300W-LP [55] dataset (61225 faces) which is augmented

from original 300W dataset for large yaw pose. And then

we fine tune on the original trainset (3837 faces). Testing is

performed on 300W testset which contains 600 images.

Menpo contains images from AFLW and FDDB with land-

mark re-annotation following the 68 landmark annotation

scheme. It has two subsets, frontal which has 68 landmark

annotation for near frontal faces (6679 samples) and profile

which has 39 landmark annotation for profile faces (2300

samples). We use the frontal set for cross dataset evaluation.

COFW has 1345 training samples and 507 testing samples,

whose facial images are all partially occluded. The

original dataset is annotated with 29 landmarks. We also

use the COFW-68 test set [14] which has 68 landmarks

re-annotation for cross dataset evaluation.

AFLW contains 24386 faces with large head pose up to

120◦ for yaw and 90◦ for pitch and roll. We follow [53]

to conduct our experiments on AFLW-full dataset with 19

landmarks annotation where 20000 and 4386 samples are

used for training and testing respectively.

Evaluation metrics. We evaluate our algorithm using

standard normalised mean error (NME) and Cumulative

Errors Distribution (CED) curve. In addition, the area-under-

the-curve (AUC), the failure rate (FR) for a maximum error

of 0.07 and the negative log likelihood (NLL) at the ground

truth location are reported.

Normalized Mean Error (NME) Same as in [3], the NME

is defined as the average point-to-point Euclidean distance

between the ground truth (ygt) and predicted (ypred) land-

mark locations normalized by the ground truth facial bound-

ing box size d =
√
wbbox ∗ hbbox where wbbox and hbbox

are the width and height of the bounding box. NME =

1

N

∑N

k=1

||y
(k)
pred

−y
(k)
gt ||2

d
.

Area under the Curve (AUC) Based on the NME in the test

dataset, we can draw a Cumulative Error Distribution (CED)

Curve with NME as the horizontal axis and percentage of

test images as the vertical axis. Then the AUC is computed

as the area under that curve for each test dataset.

Implementation details. To make a fair comparison

with the SoA method using softlabel loss [3], we use the

same training and testing procedure.

Training procedure: The initial learning rate is 10−4 for

15 epochs using a minibatch of 10, then dropped to 10−5

and 10−6 after every 15 epochs and keep training until con-

vergence. Adam optimizer is used. We apply random aug-

mentations such as random cropping, rotation, flipping, scale

noise, color jittering, occlusion, etc.

Testing procedure: We follow the standard testing proce-

dure. The face is cropped using the ground truth bounding

box defined in 300W by the extreme locations of the 68

ground truth landmark points. The cropped face is rescaled

to 256× 256 before passed to the network. We did not use

any other transformation/normalization of the face for fair

comparisons.

Overall complexity: The total number of parameters is

23, 820, 176 ≈ 24M in the network with 4 HourGlass mod-

ules. With 1 Nvidia RTX 2080 Ti GPU, 1 Xeon CPU, Ten-

sorFlow 1.14.0, it takes about 26min to train 1 epoch on

300W-LP dataset and 1.5min on 300W-train dataset. The

inference speed is around 10 fps. Our inference is based on

the mode of the predicted continuous distribution, obtained

by gradient ascent (details in Section 3.1).

4.1. Comparison with existing approaches

We perform test on 300W test dataset. The result of soft-

label, KDN-Uniform and KDN-Gaussian are implemented

by ourselves using the same structure but different loss func-

tions. To make a fair comparison, they are trained using

the same random seed. Result of the softlabel based on our

implementation is slightly worse than [3]. The results are

shown in Table 1. The CED curves for the 300W test dataset

and Menpo Challenge dataset are shown in Fig. 2a and 2b

respectively.

We could see from Table 1 that compared to the softlabel

loss, our loss function achieves comparable or better perfor-

mance in terms of NME, AUC and FR and compared to the

pseudo NLL computed from softlabel method by normal-

izing the final heatmap as the probability map, our method

gives significantly better NLL. We also compare the results

of using a uniform kernel instead of a Gaussian. Using a

uniform kernel is equivalent to treating the problem as classi-
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Table 1: Prediction results on 300W-test, Menpo-frontal and COFW-68 test (%)
Dataset 300W-test Menpo-frontal COFW-68 test

Method
Metric

NME AUC FR NLL NME AUC FR NLL NME AUC FR NLL

TCDCN [52] 4.15 42.1 4.83 - 4.04 46.2 5.84 - 4.71 35.8 8.68 -
CFSS [53] 3.09 56.7 1.83 - 3.91 57.4 9.75 - 3.79 49.0 4.34 -
FAN [3] 2.32 66.5 0.00 - 2.16 69.0 0.21 - 2.95 57.5 0.00 -
SAN [11] 2.86 59.7 1.00 - 2.95 61.9 3.11 - 3.50 51.9 3.94 -
softlabel 2.32 66.6 0.33 4.67 2.27 67.4 0.24 4.53 2.92 57.9 0.00 5.27
KDN-Uniform 2.38 65.9 0.50 2.78 2.19 68.7 0.19 2.92 2.92 58.0 0.20 4.13
KDN-Gaussian (proposed) 2.21 68.3 0.50 2.93 2.01 71.1 0.19 2.87 2.73 60.1 0.00 3.21

(a) 300W testset (b) Menpo-frontal (c) COFW-68 testset

Figure 2: CED curves of different methods on 300W-test, Menpo-frontal, COFW-68 test

fication and the target distribution as categorical with the cat-

egories representing the different pixel locations. This will

result in a very sharp probability map, i.e. an over-confident

prediction. And the loss function does not take into account

the spatial relationship between different categories.

Fig. 2a shows that our method performs better in some

challenging images than the softlabel method. And using

a uniform kernel generates slightly larger error compared

to using a Gaussian kernel. This is partly because using

a uniform kernel introduces quantization error during both

training and testing. The quantization error also exists in

most recent work adopting the heatmap regression frame-

work, which obtains the landmark coordinate prediction by

taking the coordinates of the max value from the output

heatmap. But since the heatmap is 4 times smaller than

both the width and height of the original input image. This

will lead to the downsampling error which makes it difficult

to distinguish between the locations of two very close but

different landmarks. This can be a big problem for dense

landmark schemes. Previous works usually either do not

address this issue or address this issue by a heuristic post-

processing method such as the implementation provided

in [3]. Different from these works, our method constructs

a continous mixture of 2D Gaussian distribution from the

predicted heatmap. Therefore during testing, we are able

to find the mode of the continous distribution even if it lies

between two pixels.

4.1.1 Cross-dataset Evaluation

Besides 300W testset, we evaluate the proposed method on

Menpo dataset, COFW-68 testset for cross dataset evaluation.

The results are shown in Table 1. The method is trained on

300W-LP and fine-tuned on 300W Challenge train set for

68 landmarks. Though the proposed method has similar or

marginal improvement on 300W testset and Menpo-frontal

dataset, we can see that for cross dataset evaluation on more

challenging dataset such as COFW with heavy occlusion,

the proposed method shows better performance, especially

in terms of NLL.

4.1.2 Probability map visualization

Fig. 3 demonstrates that the proposed method can distinguish

between occluded uncertain landmarks and non-occluded

landmarks based on predicted heatmap. For occluded land-

marks, the predicted heatmap usually has a flatter shape

than the non-occluded ones. While the traditional softlabel

regression methods can hardly demonstrate the predictive

uncertainty in occluded landmarks. Kernel Density Network

with a uniform kernel is also able to distinguish occluded

landmarks, but it has a sharper shape compared to Gaussian

kernel. Similar as in Kernel Density Estimation, Gaussian

kernel to some extent smooths the estimated distribution

compared to a uniform kernel.

Therefore, our predicted heatmap may be used to detect

occlusion without occlusion annotation as supervision, un-

like work in [48, 47].

Fig. 4 demonstrates that the proposed method can capture

distribution with a more flexible shape. For landmarks lie

on the facial contour, the predicted heatmap usually has a

shape along the local edge of the face. While the traditional

softlabel regression method still predicts a circular shape

that represents a standard 2D Gaussian.
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Figure 3: Sample heatmaps generated from two methods for

occluded landmarks (best viewed in color and magnified).

The 1st row is the proposed kernel density method, the 2nd

row is the softlabel method. The displayed landmarks are

subsets of the 68 points, i.e. the first 3 columns show point

1,5,9,13,17; the last column show point 31,46,37,49,55.

Figure 4: Sample heatmaps generated from two methods

with flexible distribution shape (best viewed in color and

magnified). The 1st row is the proposed kernel density

method, the 2nd row is the softlabel method. The displayed

landmarks are subsets of the 68 points, i.e. point 1,5,9,13,17.

4.1.3 Occlusion Dataset

We evaluate the occlusion detection quantitatively on COFW

and AFLW-full. For COFW, we report the results on original

testset with 29 points annotation and on COFW-68 testset

[14] with model trained on 300W train set. Note that for

occlusion detection, we are only using the square root of the

determinant of covariance computed from the probability

map but not any occlusion annotation from dataset or from

manual augmentation during training. To compute pseudo

variance for softlabel method, we first normalize the heatmap

to make the non-negative values sum to one, then treat the

normalized heatmap as a probability map to compute vari-

ance. KDN-Uniform and KDN-Gaussian generally achieve

better precision/recall than softlabel. Since there are other

causes of uncertainty besides occlusion, occluded landmarks

should have higher uncertainty but not vice versa.

Table 2: Occlusion dataset prediction result (%)
Dataset COFW-29 AFLW-full

Method
Metric

NME AUC FR NLL NME AUC FR NLL

SAN [11] - - - - 4.04 54.0 11.88 -
Wing [12] - - - - 3.56 53.5 7.52 -

Softlabel 2.51 64.3 0.97 6.13 2.87 59.3 4.99 5.75
KDN-Uniform 2.52 64.4 0.79 4.32 2.91 58.1 5.24 4.21

KDN-Gaussian 2.28 67.8 0.79 3.19 2.80 60.3 4.67 3.56

Table 3: Occlusion detection result (precision/recall %)
Method COFW-68 COFW-29 AFLW-full

softlabel 56/40 61/40 61/40
KDN-Uniform 70/40 76/40 72/40
KDN-Gaussian 70/40 75/40 73/40

Table 4: Occluded vs. non-occluded points performance
Dataset COFW-68 testset

Occlusion state non-occluded occluded
Method NME (%) uncertainty NME (%) uncertainty

softlabel 2.30 5.99 5.01 7.32
KDN-Uniform 2.46 1.25 4.45 7.89
KDN-Gaussian 2.34 1.63 4.03 11.62

4.1.4 Challenging conditions

We evaluate different methods on challenging conditions

caused by either low resolution or high noise. We manually

add different scales of noise to clean 300W testset and plot

the prediction error in NME in Fig. 5a, where we can see

that for each method, the prediction error generally increases

with noise scale but the proposed method performs best

under noisy conditions. In Fig. 5b we show the NME versus

the resolution of the input image in pixels.

4.2. Ablation Study

If not specified, ablation study is performed on 300W

test set with models trained on 300W-LP and fine-tuned on

300W trainset.

4.2.1 Kernel Density Network

To analyze the effect of the proposed Kernel Density Net-

work, we evaluate the performance of a single stage network

in terms of prediction accuracy and uncertainty quantifica-

tion. Table 5 shows the comparison of results generated from

different loss function with a single stage. The proposed loss

function is better than the result from softlabel loss.

Table 5: Single stage’s prediction accuracy on 300W testset

Method NME AUC FR NLL

Softlabel 2.58 62.5 1.00 4.79

KDN-Uniform 2.57 63.1 1.00 2.95

KDN-Gaussian 2.52 63.9 0.50 3.01

4.2.2 Multi-stage Cascade

The multi-stage cascade network is trained end-to-end. To

analyze the effect of multiple stages, we evaluate the perfor-

mance of each stage. The NME and average uncertainty at

each stage is shown in Fig. 6. From the table we can see

that the next stage refines the previous stage’s prediction
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(a) NME under different scales of noise. (b) NME under different resolutions.

Figure 5: Sensitivity (NME) under different challenging conditions.

progressively. After each stage, the prediction error reduces

and the predicted uncertainty also reduces.

Figure 6: Uncertainty and prediction error at each stage.

4.3. Extension to Other Tasks

Theoretically the proposed method can be widely applied

to any regression tasks whose target values are bounded. To

demonstrate the generalizability to other tasks, we evaluate

the methods on facial action unit intensity estimation.

4.3.1 Facial action unit intensity estimation

We use BP4D dataset and use the metric mean absolute er-

ror (MAE) and intra-class correlation (ICC). We divide the

dataset into training and testing by different subjects, i.e.

training set consists of subjects with odd index and testing

set consists of subjects with even index. Results are shown

in Table 6. The performance of KDN-Gaussian is not al-

ways the best in terms of accuracy, but it gives consistent

improvement over KDN-Uniform.

Table 6: Action unit intensity estimation on BP4D dataset

Method MAE ICC

Deterministic 0.847 0.628

Gaussian 0.748 0.664

KDN-Uniform 0.795 0.559

KDN-Gaussian 0.757 0.588

5. Conclusion

This paper introduced a Kernel Density Deep Neural Net-

work to quantify aleatoric uncertainty in face alignment, and

for a more general distribution thus our method is applicable

to other regression tasks. Since previous works using fixed

variance Gaussian blob heatmap for supervision (softlabel)

such as [3] do not quantify different uncertainties of different

landmarks, which makes it difficult to apply to real-world

problems and tasks that depend on face alignment. To our

best knowledge, this is the first work to explicitly address

the uncertainty quantification in fully-convolutional neural

network based regression problems with a more flexible dis-

tribution than Gaussian. We show that uncertainty can be

used to detect occlusion without occlusion supervision. Be-

sides, our model provides a principled way of inference using

the mode of the predicted continuous distribution to reduce

quantization error compared to previous post-processing

method such as interpolation [11] or heuristic method [3].

Moreover, in a multi-stage framework, the average predicted

uncertainty is reduced stage by stage automatically without

manually tuning the variance of the Gaussian blob heatmap

in each stage.

We hope this work can benefit the landmark localization

community as well as other deep ordinary regression tasks

and provide a different perspective in designing the loss func-

tion to consider label distribution and aleatoric uncertainty.
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