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Abstract

Deep neural networks achieve good performance in many
computer vision problems such as face alignment. However,
when the testing image is challenging due to low resolution,
occlusion or adversarial attacks, the accuracy of a deep
neural network suffers greatly. Therefore, it is important to
quantify the uncertainty in its predictions. A probabilistic
neural network with Gaussian distribution over the target
is typically used to quantify uncertainty for regression prob-
lems. However, in real-world problems especially computer
vision tasks, the Gaussian assumption is too strong. To
model more general distributions, such as multimodal or
asymmetric distributions, we propose to develop a kernel
density deep neural network. Specifically, for face align-
ment, we adapt state-of-the-art hourglass neural network
into a probabilistic neural network framework with land-
mark probability map as its output. The model is trained
by maximizing the conditional log likelihood. To exploit
the output probability map, we extend the model to multi-
stage so that the logits map from the previous stage can feed
into the next stage to progressively improve the landmark
detection accuracy. Extensive experiments on benchmark
datasets against state-of-the-art unconstrained deep learn-
ing method demonstrate that the proposed kernel density
network achieves comparable or superior performance in
terms of prediction accuracy. It further provides aleatoric
uncertainty estimation in predictions.

1. Introduction

Face alignment, or facial landmark localization, is a fun-
damental step for facial behavior analysis such as face recog-
nition, facial expression estimation, and head pose estima-
tion. Classical work on face alignment mainly adopts a
cascade regression framework based on local image fea-
tures [50, 49, 48, 47], which is sensitive to initialization and
achieves limited performance on challenging dataset. With
the introduction of deep learning based methods for regres-
sion and feature representation learning, the state-of-the-art
accuracy in face alignment is achieved [41, 52, 43, 3, 11, 46].

However, the performance of face alignment remains
sensitive to face image quality. Challenges such as large head
pose, object occlusion or low resolution may lead to poor
landmark detection results. Moreover, existing deep learning
based methods are susceptible to small image perturbations
such as an adversarial attack, which may result in a large
difference in the prediction. More importantly, existing deep
learning methods cannot predict their output uncertainty.
Therefore, it is important to develop a probabilistic deep
neural network to quantify the prediction uncertainty and to
avoid making over-confident wrong decisions.

To these goals, we propose a Kernel Density Deep Neural
Network (KDN). Different from the deterministic approach
that gives a point estimation for each input, our model out-
puts target probability distribution for each input. More-
over, rather than assuming the output follows a Gaussian
distribution, the proposed method can capture more general
probability distribution, such as multimodal or asymmetric
distribution. With the target probability distribution, we can
quantify the prediction confidence to distinguish challenging
input image caused by large head pose, object occlusion or
low resolution and to identify landmarks under occlusion.
To further exploit the output probability map, we further
extend our model to multi-stage cascade framework so that
the probability map produced in the last stage can serve as
input to guide the detection in the next stage to progressively
improve the landmark detection accuracy.

The contributions of work are summarized as follows:
1) We introduce the Kernel Density Deep Neural Network
that produces target probability map, without assuming a
specific parametric distribution. The probability map can
be used to quantify the uncertainty of the output and to
identify the challenging landmarks. And we further extend
our model to multiple stages to use the output probability
map to progressively improve the landmark detection.
2) We show that the estimated uncertainty in our method
can be used to detect occluded landmarks without occlusion
supervision.
3) We show the proposed method can be generally extended
to other regression tasks such as action unit intensity
estimation.
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2. Related work
2.1. Probabilistic Neural Network

To quantify uncertainty in neural networks, the probabilis-
tic neural network was proposed to model the conditional
target probability distribution given its input and neural net-
works are used to predict the parameters of the probability
distribution. For regression tasks, it is often assumed that the
target follows Gaussian distribution [29, 21, 19]. And neural
network is used to predict the mean and variance for the
Gaussian distribution. In this way, the prediction is given by
the mean and the uncertainty is quantified by the variance.

However, for many real-world problems, the target distri-
bution may be more complicated, e.g. asymmetric or multi-
modal, which the Gaussian distribution cannot adequately
capture. To deal with this issue, one way is to parameter-
ize a different distribution suitable for the specific problem.
For instance, [28] used a Gamma distribution to model the
distribution of surgery duration. And [34] used a von Mise
distribution to model the distribution of object pose. Another
way is to use a mixture distribution which is more flexible
in approximating distributions with different shapes. For
instance, [1] used a mixture of Gaussian distribution and
[34] extended the von Mises distribution to a mixture of
von Mises distribution to handle multimodal distribution.
These methods typically still have assumptions and are not
generally applicable.

We are interested in modeling the distribution of landmark
location, which has high probability near the boundary of
the facial parts. Therefore the distribution typically does
not follow some standard parametric distribution such as
Gaussian. And different landmarks may have very different
distribution shape.

2.2. Face Alignment

Face alignment is typically treated as a regression prob-
lem where given a face image, it aims to localize certain
facial key points in the image. Classic methods lie in
the categories of Active Shape Model (ASM) [26], Active
Appearance Model (AAM) [10, 18, 25, 37], Constrained
Local Model (CLM) [20, 38] and Cascade Regression
[7, 4, 54, 5, 49]. ASM models the statistical shape of ob-
jects, while AAM models both the shape and the appearance
features. CLM is similar to AAM that models shape prior
using principal component analysis (PCA) that projects both
local appearance features and shape features onto the bases.
Cascade Regression refines landmark localization stage by
stage. These classic methods rely on hand-crafted local im-
age features and are usually sensitive to initializations. They
are outperformed by deep learning based methods which use
deep feature representation.

Deep learning based method for face alignment was first
proposed in [41] and achieved better performance than clas-
sical methods. Later on, more works on face alignment using
deep learning framework has been explored [53, 52, 43, 12]
but they are all based on coordinate regression.

Until recently, fully convolutional neural network
(FCN) [23] based methods established new state-of-the-art
for face alignment and body pose estimation [42, 27, 45].
And most of these face alignment methods [3, 46] follow the
architecture of Stacked Hourglass [27]. The stacked modules
refine the network predictions after each stack, similar to the
idea of Cascade Regression. Instead of directly predicting
the landmark coordinates, it predicts a heatmap with same
size as the input image and the landmark location is predicted
by the coordinate on the heatmap with largest response. The
idea of the heatmap based regression is similar to a fully
convolutional neural network which preserves the spatial
information of the input image and reduce the parameters
brought by fully connected layers.

2.3. Fully Convolutional Network Loss

State-of-the-art face alignment methods adopt FCN struc-
ture with a heatmap regression loss. The loss function is
typically defined as the mean squared error between the pre-
dicted heatmap and the ground truth heatmap. This loss func-
tion is originally introduced and widely used in human pose
estimation [42, 27, 2, 8, 6]. Besides this typical loss function,
there are several other options in literature introduced for
solving other problems such as image segmentation.

One choice is to treat the problem as a multi-class classi-
fication problem where each pixel location in the heatmap
corresponds to one class and use the softmax cross entropy
loss over the 2D heatmap. This was used in Mask-RCNN
[16] for human body joint estimation. One pixel location
with highest probability in the heatmap is selected as the es-
timation. Solving a regression problem using softmax cross
entropy loss also exists in other problems such as face age
estimation [31], where we have discrete age labels. These
age labels, though discrete, are not independent because la-
bels with close values should be more confusing with each
other in classification. Therefore, to some extent, this loss
function abandons part of the information provided by the la-
bel values. To address this issue, the paper [31] further uses
L2 loss of the mean computed from the softmax probability.
This idea has been explored in other tasks such as body pose
estimation [40], headpose estimation [35]. And [13] further
proposes to use L1 loss instead of L2 loss in face age esti-
mation, while [44] proposes to apply wing loss to heatmap
regression that is first proposed in [12] for traditional co-
ordinate regression in face alignment. These works, while
achieving satisfactory performance in terms of low predic-
tion error, cannot accurately quantify prediction uncertainty.
More recently, [15] proposes to estimate covariance matrix
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besides the mean of a multivariate Gaussian distribution,
thus incorporating uncertainty into this framework. All the
aforementioned works that add L1, L2 or Gaussian negative
log likelihood losses besides the heatmap loss assumes the
output distribution as single-modal, implicitly or explicitly.
However, we show in this paper that this is often not the case
in real-world computer vision problems. Therefore using
the mean for inference will lead to erroneous predictions for
multimodal cases.

Another choice is to treat the problem as a classification
problem for each pixel [32, 17, 33]. There are two types of
classification, one is binary classification, where each pixel
will be classified as the target or not. And the ground truth
binary label is created by assigning 1 to all the pixels in a
certain neighborhood around the ground truth target pixel
location and O to the rest pixels in the heatmap. The other
choice is multi-class classification [9], where each pixel is
classified as either one of the body or facial part regions or
the background. These loss functions are used very often
for segmentation tasks. And since it usually uses a softmax
or sigmoid cross entropy loss which is also the negative log
likelihood of a Categorical distribution, it is able to quantify
classification uncertainty. However, they do not achieve as
good performance as the previous loss functions as studied
in [40] and it is difficult to define the ground truth body or
facial part regions given only a single pixel location as the
ground truth keypoint location.

Therefore, in this work, we propose a different loss func-
tion and a corresponding inference method that achieves
state-of-the-art performance and provide good aleatoric
uncertainty estimation. Our work differ from previous
works in terms of explicitly quantifying uncertainty in fully-
convolutional based architecture without adding additional
fully connected layers to predicted covariance as [15].

3. The Proposed Method

Our method is built on the probabilistic neural network
framework. We assume target y (landmark coordinates) is
a random vector that follows p(y | x; ®), where x is the
input image and © is the neural network parameter. And
p(y | x; ©®) is parameterized by the neural network output.

3.1. Kernel Density Network

Instead of assuming the target follows Gaussian distribu-
tion as being done by current models, we propose to model
the target probability with multi-variate kernel density func-
tion [39] in order to capture more general probability distri-
butions, including multimodal and non-symmetric distribu-
tions.

Denote m,n as the height and width of the output
7(x; ©) from the Hourglass module, p;; = [i,j]” as the
pixel location in the output map, where 1 < i <m,1 <75 <
n. According to the multivariate kernel density distribution

[39], the target distribution can be expressed as

ply | x;©) = ZZsz pij)mii(x;0) (1)

i=1 j=1

where Ks(y — p;;) is a Gaussian kernel whose value
is the standard 2D Gaussian’s probability density at
27%(y — p;;) normalized by %72, e Ks(y — Kij) =
=2 (E_% (y — 1y;)). 7(x; ©), the output of the neural
network, is a weight map of the dimension m X n, where
each pixel value m;;(x; ©) represents the weight of the
Gaussian kernel Kx(y — p;;), 0 < m;;(x;0) < 1 and
i Z?:l (%, 0) = 1.

Thus we form a continuous probability p(y | x; @) based
on the Gaussian kernels K's:(y — p;;) and their correspond-
ing weights 7;;(x; ©).

It is worth noting that the form of p(y | x; ®) depends
on our choice of the kernel function. If we choose a uni-
form kernel with a range of 1 pixel, it is equivalent to the
likelihood for a categorical distribution where each category
represents the discrete landmark coordinate. Here we choose
a Gaussian kernel to achieve a smoothing effect similar to
kernel density estimation.

In this way, we only change the loss function of the neural
network for face alignment problem without modifying the
heatmap regression based network structure. The goal is to
maximize the conditional likelihood without assuming any
specific distribution of the target, unlike widely practiced
loss function which puts a fixed Gaussian heatmap around
the ground truth label as the ground truth heatmap and mini-
mize the L-2 distance between the groundtruth heatmap and
the predicted one.

Loss function. The loss function is defined as the
negative log conditional likelihood. Given training data
D = {xx,yx | Kk = 1,2,...,N}, we minimize the loss
function to get @ as shown in Eq.(2).

N
Ch —&rgmm—Zlogp (Yr | xx;©)
k=1
—argmm—ZIOgZZKz — ¥ij )i (Xk; ©)

i=1 j=1

2
To demonstrate why the proposed loss function based on
kernel density benefits the learning process of face alignment,
we compute the gradient of the loss w.r.t. the layer before
softmax. To simplify the notation, let wy;; = Kx(yr —¥ij)-
Denote the layer before softmax for the sample % as f;;,
and the layer after softmax as pi;, pri; = softmazx(fri;).
The derivative of the loss contributed by a training sample

{Xk,¥r} can be computed as
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Figure 1: The proposed cascade network structure using Hour Glass module as basic structure, same as [3]. The size of the
input image is 256 x 256. The size of the probability map is 64 x 64. The loss function for each stage after the Hour Glass

module is based on minimizing the negative log conditional likelihood.
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where wy;; > 0 measures the similarity between each pixel
location in the heatmap and the ground truth landmark lo-
cation. The closer the pixel location [, j]7 is to the ground
truth y, the higher wy;j. > 1" | > 1| WkabPkab 18 the ex-
pectation of the similarity over discrete probability distribu-
tion 7 (xx; ©).

During training, if wg;; > Yooy Y opi WkabPkabs I-€-
the similarity at location [i, 5]7 is larger than the average sim-
ilarity, fy;; will increase. Therefore in the beginning, all the
pixel locations near the ground truth (similarity greater than
the average similarity threshold) will have their probability
psj increased, and pixels far away (similarity smaller than the
average similarity threshold) will have their probability de-
creased. Then the average similarity Y " | >} WkabPrab
will also increase. With the increasing average similarity,
fewer pixels will have their associated probability increased.
Then the heatmap will become more concentrated near the
ground truth as the training process goes on.

Compared to the softmax cross entropy loss for classi-
fication, this loss takes into account the spatial location of
each pixel, unlike the softmax loss that treats all the negative
classes equally when performing the gradient update. More
importantly, in the beginning of the training process, pixels
near the ground truth will have their associated probability
increased which allows for exploration around the ground
truth and prevents overfitting to the ground truth.

Inference. During testing, given a new image x* the pre-
diction of landmark locations is obtained by finding the mode
of the probability y* = argmax, p(y | x*; ©*). Specifi-
cally, the mode of the continuous probability distribution is
obtained by first convolving the softmax map with a Gaus-
sian kernel with the bandwidth used for training to get the
discrete probability map and use its local mean around the
mode as initialization for gradient ascent. The gradient can

be computed by Eq. (4)

Oy | x5 ©7)
dy
_327;1 Z?:l Ks(y — “ij)ﬂ'ij
- By @)
- ZZ Ks(y - “ij)ﬂ'ijzil(y = Pij)
i=1j=1

Covariance of prediction. The proposed target distribu-
tion in Eq.(1) is composed of a mixture of Gaussian distribu-
tions, thus its covariance matrix can be computed as

Covly | x; ©]

=X+ Z Z(ym - yij)(}’m - yz'j)Tﬂ'ij (x;0)

i=1 j=1

where y,, = Y70 >0 yimi(x; ©).

The uncertainty of the prediction is quantified by the
square root of the determinant of the covariance matrix
| Covly | x; ©]|2.

®)

3.2. Cascade Probability Propagation

To take advantage of the probability map, we extend the
single stage model to multi-stage so that the probability map
from the previous stage can be fed into the next stage to
progressively improve the landmark estimation accuracy.

Similar to [30], we want to propagate the estimated prob-
ability map to the next stage. For each stage, we will have an
estimated probability map p(y | x; ©), the raw logits map
(before softmax) is concatenated with the down-sampled
input image and the feature map with the same size as input
to the next stage, as shown in Fig. 1.

The idea is that by propagating the probability map to
the next stage, it will guide the network in the next stage
implicitly to focus more on the regions in the image with
high probability. For example, if the prediction for a certain
landmark has high uncertainty, the probability map will has
a flat shape, thus encouraging the network at next stage to
search in a wider region according to the probability map; if
otherwise, the probability map will have a sharp shape and
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the network at next stage will try to refine the prediction in
the nearby neighborhood.

According to our experiments, the probability map in
the first stage is more spread-out, i.e. the prediction is more
uncertain, compared to the predictions in later stages. And
the prediction error is larger in the first stage than in later
stages. This proves the effectiveness of the Kernel Density
Network to model output probability distribution as well
as the effectiveness of the cascade framework in improving
detection accuracy.

Recently, [22] proposed to use the softlabel loss in multi-
ple stages and reducing the fixed variance of the ground truth
heatmap stage by stage for a more fine-grained supervision
in later stages. One defect of this method is that since it is
sensitive to the fixed variance of the ground truth heatmap, it
requires careful tuning of this hyperparameter which can be
time-consuming for deep neural networks while our method
does not require such tuning but automatically learns a more
concentrated probability map stage by stage.

4. Experiments

Datasets. We evaluate our methods on 300W [36],
Menpo [51], COFW [4], AFLW [24].
300W has 68 landmark annotation. We first train the method
on 300W-LP [55] dataset (61225 faces) which is augmented
from original 300W dataset for large yaw pose. And then
we fine tune on the original trainset (3837 faces). Testing is
performed on 300W testset which contains 600 images.
Menpo contains images from AFLW and FDDB with land-
mark re-annotation following the 68 landmark annotation
scheme. It has two subsets, frontal which has 68 landmark
annotation for near frontal faces (6679 samples) and profile
which has 39 landmark annotation for profile faces (2300
samples). We use the frontal set for cross dataset evaluation.
COFW has 1345 training samples and 507 testing samples,
whose facial images are all partially occluded. The
original dataset is annotated with 29 landmarks. We also
use the COFW-68 test set [14] which has 68 landmarks
re-annotation for cross dataset evaluation.
AFLW contains 24386 faces with large head pose up to
120° for yaw and 90° for pitch and roll. We follow [53]
to conduct our experiments on AFLW-full dataset with 19
landmarks annotation where 20000 and 4386 samples are
used for training and testing respectively.

Evaluation metrics. We evaluate our algorithm using
standard normalised mean error (NME) and Cumulative
Errors Distribution (CED) curve. In addition, the area-under-
the-curve (AUC), the failure rate (FR) for a maximum error
of 0.07 and the negative log likelihood (NLL) at the ground
truth location are reported.

Normalized Mean Error (NME) Same as in [3], the NME
is defined as the average point-to-point Euclidean distance

between the ground truth (y4) and predicted (y,,eq) land-
mark locations normalized by the ground truth facial bound-

ing box size d = /Wppoz * Rbbor Where Wypor and Appos
are the width and height of the bounding box. NME =
1y Iy =y 11
N 2uk=1 d :
Area under the Curve (AUC) Based on the NME in the test
dataset, we can draw a Cumulative Error Distribution (CED)
Curve with NME as the horizontal axis and percentage of
test images as the vertical axis. Then the AUC is computed
as the area under that curve for each test dataset.
Implementation details. To make a fair comparison
with the SoA method using softlabel loss [3], we use the
same training and testing procedure.
Training procedure: The initial learning rate is 10~* for
15 epochs using a minibatch of 10, then dropped to 10~°
and 1076 after every 15 epochs and keep training until con-
vergence. Adam optimizer is used. We apply random aug-
mentations such as random cropping, rotation, flipping, scale
noise, color jittering, occlusion, efc.
Testing procedure: We follow the standard testing proce-
dure. The face is cropped using the ground truth bounding
box defined in 300W by the extreme locations of the 68
ground truth landmark points. The cropped face is rescaled
to 256 x 256 before passed to the network. We did not use
any other transformation/normalization of the face for fair
comparisons.
Overall complexity: The total number of parameters is
23,820,176 ~ 24 M in the network with 4 HourGlass mod-
ules. With 1 Nvidia RTX 2080 Ti GPU, 1 Xeon CPU, Ten-
sorFlow 1.14.0, it takes about 26min to train 1 epoch on
300W-LP dataset and 1.5min on 300W-train dataset. The
inference speed is around 10 fps. Our inference is based on
the mode of the predicted continuous distribution, obtained
by gradient ascent (details in Section 3.1).

4.1. Comparison with existing approaches

We perform test on 300W test dataset. The result of soft-
label, KDN-Uniform and KDN-Gaussian are implemented
by ourselves using the same structure but different loss func-
tions. To make a fair comparison, they are trained using
the same random seed. Result of the softlabel based on our
implementation is slightly worse than [3]. The results are
shown in Table 1. The CED curves for the 300W test dataset
and Menpo Challenge dataset are shown in Fig. 2a and 2b
respectively.

We could see from Table 1 that compared to the softlabel
loss, our loss function achieves comparable or better perfor-
mance in terms of NME, AUC and FR and compared to the
pseudo NLL computed from softlabel method by normal-
izing the final heatmap as the probability map, our method
gives significantly better NLL. We also compare the results
of using a uniform kernel instead of a Gaussian. Using a
uniform kernel is equivalent to treating the problem as classi-
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Table 1: Prediction results on 300W-test, Menpo-frontal and COFW-68 test (%)

Dataset 300W-test Menpo-frontal COFW-68 test
Method Metric NME AUC FR NLL | NME AUC FR NLL | NME AUC FR NLL
TCDCN [52] 715 421 483 - 704 462 584 - 771 358 868 -
CFSS [53] 309 567 183 - 391 574 975 - 379 490 434 -
FAN [3] 232 665 000 - 216  69.0 021 - 295 575 000 -
SAN [11] 286 597 100 - 295 619 3.1 - 350 519 394 -
softlabel 732 666 033 467 | 227 674 024 453 | 292 579 000 527
KDN-Uniform 238 659 050 278 | 219 687 019 292 | 292 580 020 413
KDN-Gaussian (proposed) | 2.21 683 050 203 | 2.0 711 0.9 2387 | 273 60.1 0.00 321

%)

N ®
S S

=3
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Figure 2: CED curves of different methods on 300W-test, Menpo-frontal, COFW-68 test

fication and the target distribution as categorical with the cat-
egories representing the different pixel locations. This will
result in a very sharp probability map, i.e. an over-confident
prediction. And the loss function does not take into account
the spatial relationship between different categories.

Fig. 2a shows that our method performs better in some
challenging images than the softlabel method. And using
a uniform kernel generates slightly larger error compared
to using a Gaussian kernel. This is partly because using
a uniform kernel introduces quantization error during both
training and testing. The quantization error also exists in
most recent work adopting the heatmap regression frame-
work, which obtains the landmark coordinate prediction by
taking the coordinates of the max value from the output
heatmap. But since the heatmap is 4 times smaller than
both the width and height of the original input image. This
will lead to the downsampling error which makes it difficult
to distinguish between the locations of two very close but
different landmarks. This can be a big problem for dense
landmark schemes. Previous works usually either do not
address this issue or address this issue by a heuristic post-
processing method such as the implementation provided
in [3]. Different from these works, our method constructs
a continous mixture of 2D Gaussian distribution from the
predicted heatmap. Therefore during testing, we are able
to find the mode of the continous distribution even if it lies
between two pixels.

4.1.1 Cross-dataset Evaluation

Besides 300W testset, we evaluate the proposed method on
Menpo dataset, COFW-68 testset for cross dataset evaluation.

The results are shown in Table 1. The method is trained on
300W-LP and fine-tuned on 300W Challenge train set for
68 landmarks. Though the proposed method has similar or
marginal improvement on 300W testset and Menpo-frontal
dataset, we can see that for cross dataset evaluation on more
challenging dataset such as COFW with heavy occlusion,
the proposed method shows better performance, especially
in terms of NLL.

4.1.2 Probability map visualization

Fig. 3 demonstrates that the proposed method can distinguish
between occluded uncertain landmarks and non-occluded
landmarks based on predicted heatmap. For occluded land-
marks, the predicted heatmap usually has a flatter shape
than the non-occluded ones. While the traditional softlabel
regression methods can hardly demonstrate the predictive
uncertainty in occluded landmarks. Kernel Density Network
with a uniform kernel is also able to distinguish occluded
landmarks, but it has a sharper shape compared to Gaussian
kernel. Similar as in Kernel Density Estimation, Gaussian
kernel to some extent smooths the estimated distribution
compared to a uniform kernel.

Therefore, our predicted heatmap may be used to detect
occlusion without occlusion annotation as supervision, un-
like work in [48, 47].

Fig. 4 demonstrates that the proposed method can capture
distribution with a more flexible shape. For landmarks lie
on the facial contour, the predicted heatmap usually has a
shape along the local edge of the face. While the traditional
softlabel regression method still predicts a circular shape
that represents a standard 2D Gaussian.
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Figure 3: Sample heatmaps generated from two methods for
occluded landmarks (best viewed in color and magnified).
The 1st row is the proposed kernel density method, the 2nd
row is the softlabel method. The displayed landmarks are
subsets of the 68 points, i.e. the first 3 columns show point
1,5,9,13,17; the last column show point 31,46,37,49,55.

Figure 4: Sample heatmaps generated from two methods
with flexible distribution shape (best viewed in color and
magnified). The 1st row is the proposed kernel density
method, the 2nd row is the softlabel method. The displayed
landmarks are subsets of the 68 points, i.e. point 1,5,9,13,17.

4.1.3 Occlusion Dataset

We evaluate the occlusion detection quantitatively on COFW
and AFLW-full. For COFW, we report the results on original
testset with 29 points annotation and on COFW-68 testset
[14] with model trained on 300W train set. Note that for
occlusion detection, we are only using the square root of the
determinant of covariance computed from the probability
map but not any occlusion annotation from dataset or from
manual augmentation during training. To compute pseudo
variance for softlabel method, we first normalize the heatmap
to make the non-negative values sum to one, then treat the
normalized heatmap as a probability map to compute vari-
ance. KDN-Uniform and KDN-Gaussian generally achieve
better precision/recall than softlabel. Since there are other
causes of uncertainty besides occlusion, occluded landmarks
should have higher uncertainty but not vice versa.

Table 2: Occlusion dataset prediction result (%)

Dataset COFW-20 AFLW-Tull
Meric | \ME  AuC FR NLL | NME  AUC FR NLL

Method

SAN 117 B B B B 704 540 1788

Wing [12] - - - - 3.56 535 752 -

Softlabel 23T 63 097 613 287 503 799 575

KDN-Uniform 252 644 079 432 291 58.1 524 421

KDN-Gaussian 2.8 78 079 3.9 250 60.3 167 356

Table 3: Occlusion detection result (precision/recall %)

Method COFW-68  COFW-29  AFLW-full
softlabel 56/40 61/40 61/40
KDN-Uniform 70/40 76/40 72/40
KDN-Gaussian 70/40 75/40 73/40

Table 4: Occluded vs. non-occluded points performance

Dataset COFW-68 testset

Occlusion state non-occluded occluded
Method NME (%) uncertainty NME (%) uncertainty
softlabel 2.30 5.99 5.01 7.32
KDN-Uniform 2.46 1.25 445 7.89
KDN-Gaussian 2.34 1.63 4.03 11.62

4.1.4 Challenging conditions

We evaluate different methods on challenging conditions
caused by either low resolution or high noise. We manually
add different scales of noise to clean 300W testset and plot
the prediction error in NME in Fig. 5a, where we can see
that for each method, the prediction error generally increases
with noise scale but the proposed method performs best
under noisy conditions. In Fig. 5b we show the NME versus
the resolution of the input image in pixels.

4.2. Ablation Study

If not specified, ablation study is performed on 300W
test set with models trained on 300W-LP and fine-tuned on
300W trainset.

4.2.1 Kernel Density Network

To analyze the effect of the proposed Kernel Density Net-
work, we evaluate the performance of a single stage network
in terms of prediction accuracy and uncertainty quantifica-
tion. Table 5 shows the comparison of results generated from
different loss function with a single stage. The proposed loss
function is better than the result from softlabel loss.

Table 5: Single stage’s prediction accuracy on 300W testset
Method NME AUC FR NLL
Softlabel 2.58 62.5 1.00 4.79
KDN-Uniform 257 631 1.00 295
KDN-Gaussian | 2.52 639 0.50 3.01

4.2.2 Multi-stage Cascade

The multi-stage cascade network is trained end-to-end. To
analyze the effect of multiple stages, we evaluate the perfor-
mance of each stage. The NME and average uncertainty at
each stage is shown in Fig. 6. From the table we can see
that the next stage refines the previous stage’s prediction
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Figure 5: Sensitivity (NME) under different challenging conditions.

progressively. After each stage, the prediction error reduces
and the predicted uncertainty also reduces.

Prediction error (NME) and predictive uncertainty at each stage
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Figure 6: Uncertainty and prediction error at each stage.

4.3. Extension to Other Tasks

Theoretically the proposed method can be widely applied
to any regression tasks whose target values are bounded. To
demonstrate the generalizability to other tasks, we evaluate
the methods on facial action unit intensity estimation.

4.3.1 Facial action unit intensity estimation

We use BP4D dataset and use the metric mean absolute er-
ror (MAE) and intra-class correlation (ICC). We divide the
dataset into training and testing by different subjects, i.e.
training set consists of subjects with odd index and testing
set consists of subjects with even index. Results are shown
in Table 6. The performance of KDN-Gaussian is not al-
ways the best in terms of accuracy, but it gives consistent
improvement over KDN-Uniform.

Table 6: Action unit intensity estimation on BP4D dataset

Method MAE ICC
Deterministic 0.847 0.628
Gaussian 0.748 0.664

KDN-Uniform | 0.795 0.559
KDN-Gaussian | 0.757 0.588

5. Conclusion

This paper introduced a Kernel Density Deep Neural Net-
work to quantify aleatoric uncertainty in face alignment, and
for a more general distribution thus our method is applicable
to other regression tasks. Since previous works using fixed
variance Gaussian blob heatmap for supervision (softlabel)
such as [3] do not quantify different uncertainties of different
landmarks, which makes it difficult to apply to real-world
problems and tasks that depend on face alignment. To our
best knowledge, this is the first work to explicitly address
the uncertainty quantification in fully-convolutional neural
network based regression problems with a more flexible dis-
tribution than Gaussian. We show that uncertainty can be
used to detect occlusion without occlusion supervision. Be-
sides, our model provides a principled way of inference using
the mode of the predicted continuous distribution to reduce
quantization error compared to previous post-processing
method such as interpolation [11] or heuristic method [3].
Moreover, in a multi-stage framework, the average predicted
uncertainty is reduced stage by stage automatically without
manually tuning the variance of the Gaussian blob heatmap
in each stage.

We hope this work can benefit the landmark localization
community as well as other deep ordinary regression tasks
and provide a different perspective in designing the loss func-
tion to consider label distribution and aleatoric uncertainty.
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