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Abstract

We present a unified, efficient and effective framework

for point-cloud based 3D object detection. Our two-stage

approach utilizes both voxel representation and raw point

cloud data to exploit respective advantages. The first stage

network, with voxel representation as input, only consists of

light convolutional operations, producing a small number

of high-quality initial predictions. Coordinate and indexed

convolutional feature of each point in initial prediction are

effectively fused with the attention mechanism, preserving

both accurate localization and context information. The

second stage works on interior points with their fused fea-

ture for further refining the prediction. Our method is eval-

uated on KITTI dataset, in terms of both 3D and Bird’s Eye

View (BEV) detection, and achieves state-of-the-arts with a

15FPS detection rate.

1. Introduction

One challenging task in 3D perception is 3D object de-

tection, which serves as the basic component for perception

in autonomous driving, robotics, etc. Deep convolutional

neural networks (CNN) greatly improve performance of 3D

object detection [5, 43, 25, 15, 40, 23]. Recent approaches

of 3D object detection utilize different types of data, includ-

ing monocular [3] images, stereo images [4] and RGB-D

images [32, 33]. In autonomous driving, point clouds cap-

tured by LiDAR are the more general and informative data

format to help make prediction [5, 25, 15, 23].

Challenges LiDAR point cloud is an essential type of ge-

ometry data for 3D detection. High sparseness and irregu-

larity of point cloud, however, make it not easily tractable

for CNN. One scheme is to transform the sparse point cloud

to the volumetric representation in compact shape by dis-

cretization, which is called voxelization. This representa-

tion enables CNN to perform recognition.

However, volumetric representation is still computation-

ally challenging. One line of solutions is to use a coarse

grid [43, 40, 23, 2, 31, 1]; but coarse quantization pre-

vents following CNN from utilizing fine-grained informa-

tion. Several consecutive convolutional layers and subsam-

pling operations in the CNN worsen the problem.

Another line [26, 28, 19, 36] is to process point cloud

directly for 3D object recognition. Different from the vol-

umetric representation, coordinates of point cloud and their

structure are directly fed into the neural network to exploit

precise localization information. We note applying these

methods to large-scale point clouds for autonomous driving

is still computationally very heavy.

Our Contributions In this paper, we propose a unified,

fast and effective two-stage 3D object detection framework,

making use of both voxel representation and raw point

cloud data. The first stage of our network, named Vox-

elRPN, directly exploits the voxel representation of point

clouds. Computationally economical convolutional layers

are adopted for both high efficiency and surprisingly high-

quality detection.

In the second stage, we apply a light-weight PointNet

to further refine the predictions. With a small number of

initial predictions, the second stage is also in a very fast

speed. We design the module with attention mechanism to

effectively fuse the coordinates of each interior point with

the convolution feature from the first stage. It makes each

point aware of its context information.

One characteristic of our approach is that it benefits from

both representation of point clouds in volumetric represen-

tation and raw dense coordinates. The 3D volumetric rep-

resentation provides a robust way to process point clouds.

The light-weight PointNet in the second stage inspects co-

ordinates of points again to capture more localization in-

formation with enlarged receptive fields, producing decent

results. Since our method utilizes convolutional feature for

each region on point clouds and is with high efficiency, we

name it Fast Point R-CNN.

With this conceptually simple structure, we achieve high

efficiency and meanwhile decent 3D detection accuracy,

achieving state-of-the-art results. It is even more effective

than prior methods that take both RGB and point clouds as

input. The main contribution of this paper is threefold.
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• We propose a quick and practical two-stage 3D object

detection framework based on point clouds (without

RGB images), exploiting both volumetric representa-

tion and raw dense input of point clouds.

• Our system consists of both 2D and 3D convolution to

preserve information. We fuse convolutional features

with point coordinate for box refinement.

• Our system runs at 15FPS and achieves state-of-the-

art performance in terms of BEV and 3D detection,

especially for high quality object detection.

2. Related Work

We briefly review recent work on 3D data representation

of point clouds and 3D object detection.

3D Data Representation Representation of point clouds

from 3D LiDAR scanners is fundamental for different tasks.

Generally there are two main ways – voxelization [24, 37]

or raw point clouds [26, 28, 19, 36]. For the first type, Mat-

urana et al. [24] first applied 3D convolution for 3D object

recognition. For the point-based approaches, PointNet [26]

is the pioneer to directly learn feature representation based

on raw points. It further aggregates global descriptors for

classification. Recently, Rethage et al. [6] employed Point-

Net as the low-level feature descriptor in each 3D grid and

applied 3D convolution. There are also other methods that

do not process 3D data directly. For example, most view-

based methods [34, 27, 35] care more about 2D color and

gather information from different views of rendered images.

3D Object Detection Over past a few years, a series of

3D detectors [5, 25, 15, 43, 40, 23, 20, 29, 41, 16] achieved

promising results on KITTI benchmark [8].

Joint Image-LiDAR Detection: Several approaches [5, 15,

20, 25] fused information from different sensors, such as

RGB images and LiDAR. For example, MV3D [5] fused

BEV and front view of LiDAR points as well as images,

and designed a deep fusion scheme to combine region-wise

features from multiple views. AVOD [15] fused BEV and

images in full resolutions to improve prediction quality, es-

pecially for small objects. Accurate geometric information

may be lost in the high-level layers with this scheme. Con-

tfuse [20] compensated the geometric information via com-

bining the convolution feature over LiDAR point cloud with

the nearest image features and LiDAR point coordinates in

the multi-scale scheme. In spite of geometric information

encoded in each voxel, deeper layers have access mostly to

coarse geometric feature. Based on a strong 2D detector on

image, F-PointNet [25] and PointFusion [38] incorporated

PointNet structures to estimate the amodal 3D box. But the

2D detector and PointNet are two separate stages and the

final results heavily rely on the 2D detection results.

LiDAR-based Detection: Most LiDAR-based detection ap-

proaches process point clouds as voxel-input and apply ei-

ther 2D convolution or 3D convolution to make prediction.

Due to directly encoding coordinates of point clouds into

voxel grid, deep layers may gradually lose this level of in-

formation. Several encoding techniques [32, 33, 17, 18]

provide other representations to preserve more informa-

tion. Chen et al. [5] encoded hand-crafted features for

respective representation of BEV and front view. Instead

of hand-crafted features, VoxelNet [43] applied VFE lay-

ers via a PointNet-like network to learn low-level geomet-

ric feature, by which it shows good performance. However

the network structure is computationally heavy. Recently,

SECOND [39] applied Sparse Convolution [10] to speed

up VoxelNet and produce better results. PointPillars [16]

applied acceleration techniques, including NVIDIA Ten-

sorRT, to achieve high speed. We note they may also accel-

erate our method. PointRCNN [29] and IPOD [41], concur-

rent with our work, generate point-wise proposals on Point

Clouds, which consumes much computation on point-wise

calculation in the similar region or background region.

3. Our Method

In this paper, we propose a simple and fast two-stage

framework for 3D object detection with point cloud data, as

shown in Figure 1. The first stage takes voxel representa-

tion as input and produces a set of initial predictions. To

compensate the loss of precise localization information in

the voxelization and consecutive convolution process, the

second stage combines raw point cloud with context feature

from the first stage to produce refinement results.

3.1. Motivation

Point cloud, captured by LiDAR, is a set of points with

irregular structure and sparse distribution. It is not straight-

forward to make use of powerful CNN for training and in-

ference on point cloud data. Discretizing points into vox-

elized input [43, 20] or projecting them to BEV with com-

pact shape like RGB images [40, 23] forms a set of solu-

tions, where abstract and rich feature representation can be

produced. However, the discretization process inevitably

introduces quantization artifacts with resolution decreasing

to the number of bins in the voxel map. Moreover, con-

secutive convolution and downsampling operation may also

weaken the precise localization signal that originally exists

in point clouds.

Methods like PointNet [26] are specially designed for

directly processing point cloud data. Directly applying

these methods to entire point cloud, which is with a large

scale in scenarios of autonomous driving, may produce

more position-informative results. But they require a huge

amount of GPU memory and computation, almost impossi-

ble to achieve a high detection speed. Other methods [25]
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Figure 1. Overview of our two-stage framework. In the first stage, we voxelize point cloud and feed them to VoxelRPN to produce a

small number of initial predictions. Then we generate the box feature for each prediction by fusing interior points’ coordinates and context

feature from VoxelRPN. Box features are fed to RefinerNet for further refinement.

rely on detection results from 2D detector followed by re-

gression of the 3D amodal box for each object. This kind

of pipeline heavily relies on 2D detection results, inheriting

the weakness when detecting cluttered or distant objects in

images. Clearly, directly working on point cloud data is a

better choice if information can be properly made use of.

To this end, our method is new to exploit the hybrid of

voxel and raw point cloud, without relying on RGB im-

ages. The two effective stages are voxel representation input

to VoxelRPN to acquire a set of initial predictions in high

speed, and RefinerNet to fuse raw point cloud and extracted

context feature for better localization quality. These two

components are elaborated on in the following.

3.2. VoxelRPN

VoxelRPN takes 3D voxel input and produces 3D detec-

tion results. It is a one-stage object detector.

Input Representation Input to VoxelRPN is the vox-

elized point cloud, which is actually a regular grid. Each

voxel in the grid contains information of original points ly-

ing in the local region. Specifically, we divide the 3D space

into spatially arranged voxels. Suppose the region of inter-

est for the point cloud is a cuboid of size (L,W,H) and

each voxel is of size (vl, vw, vh), the 3D space can be di-

vided into 3D voxel grid of size (L/vl,W/vw, V/vh).
There may be more than one points in a voxel. In Vox-

elNet [43], 35 points are kept and fed to the VFE layers to

extract features. Our finding, however, is that simply us-

ing 6 points in each voxel followed a 8-channel MLP layer

is already adequate to achieve reasonable performance em-

pirically. With this representation in a compact shape, we

easily exploit the great power of CNN for informative fea-

ture extraction.

Network Structure Aiming at 3D detection, our network

needs to clearly filter information from (X,Y, Z) dimen-

sions. In [40, 23], the Z dimension is simply transformed

into the channels when generating the voxel representation.

Then several 2D convolutions are applied. In this way, the

information along Z dimension vanishes quickly. As a re-

sult, detection only on BEV becomes achievable. Differ-

ently, VoxelNet [43] keeps three separate dimensions when

producing voxels followed by three 3D convolutions. It is

noticed that the efficiency is decreased.

Along a more appropriate direction, we find that a num-

ber of consecutive 3D convolutions are quite effective on

preserving the 3D structure. Based on this observation, our

backbone network is composed of 2D and 3D convolutions,

achieving high efficiency as PIXOR [40] and even higher

performance than VoxelNet [43].

We show details of our backbone network in Figure 2.

The first part consists of six 3D convolutional layers, which

only possess a small number of filters to keep time budget.

Instead of aggressively downsampling features in the Z di-

mension by filters with stride 2 and kernel size 3, we insert

3D convolution layers with kernel size 2 in the Z dimen-

sion without padding, to better fuse and preserve informa-

tion. What follows are three blocks of 2D convolutions for

further abstraction and enlarging the receptive field.

Objects of the same category in 3D scene are generally

with similar scales. Thus, different from the popular multi-

scale object detector [21] in 2D images, which assigns ob-

ject proposals to different layers according to their respec-

tive scales, we note that the HyperNet [14] structure is more

appropriate.

Specifically, we upsample by deconvolution the feature

maps from the last layers of the block 2, 3 and 4, as illus-

trated in Figure 2. Then we concatenate them to gather rich

location information in lower layers and with stronger se-

mantic information in higher layers. Pre-defined anchors

[22] are used with specific scales and angles on this fused

feature map. Then the classification and regression heads

run on this feature map respectively to classify each anchor

and regress the location of existing objects.
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Figure 2. Network Structure of VoxelRPN. The format of layers

used in the figure follows (kernel size)(channels) / (stride), i.e.,

(kx, ky, kz)(chn)/(sx, sy, sz). The default stride is 1 unless oth-

erwise specified.

3.3. RefinerNet

Although decent performance is achieved by VoxelRPN,

We further improve the prediction quality through directly

processing raw point cloud since the voxelization process

and consecutively strided convolutions in the first block still

lose an amount of localization information, which however

can be supplemented by further feature enhancement in our

RefinerNet.

RefinerNet makes use of the coordinates of point clouds.

F-PointNet [25] is the pioneer work to utilize PointNet to

regress 3D amodal bounding boxes from 2D detection re-

sults. Only interior points are used for inference without

aware of context information. Our method, contrarily, also

benefits from important context information.

Box Feature We use points in each bounding box predic-

tion of VoxelRPN to generate box feature. Different from

the two independent networks used in [25], we take not only

coordinates but also features extracted from VoxelRPN as

input. Convolutional feature maps from VoxelRPN capture

local geometric structure of objects and gradually gather

them in a hierarchical way, leading to a much larger recep-

tive field to profit prediction. Then PointNet is applied to

map each point to high-dimensional space and fuse point

representation through max-pooling operation to gather in-

formation among all points with its context.

For each predicted bounding box from VoxelRPN, we

first project it to BEV. Then all points around the region

of BEV box are used as input, as illustrated in Figure 1.

8x3512512
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Figure 3. Network Structure of RefinerNet.
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Figure 4. Canonization of a box. The number denotes the order of

corner prediction in RefinerNet.

For each point p with coordinate (xp, yp) and feature map

F with size (LF ,WF , CF ), we define the corresponding

feature as the feature vector with CF channels at location

(⌊xpLF

L
⌋, ⌊ypWF

W
⌋). We grasp the final concatenation fea-

ture map from VoxelRPN with more comprehensive infor-

mation.

Before feeding the coordinates of each point to the fol-

lowing network, we first canonize them for the purpose of

guaranteeing the translation and rotation invariance. The

coordinates of points within 0.3 meters around the proposal

box are cropped and canonized by rotation and translation

given the proposal box. As shown in Figure 3, we define

the coordinate feature as the high-dimensional (128D) rep-

resentation acquired via a MLP layer.

Network Structure With these two sources of features,

we find a way to effectively fuse them. Instead of trivial

concatenation, we design a new module with the attention

mechanism for comprehensive feature generation. As illus-

trated in Figure 3, we first concatenate the high-dimensional

coordinate feature with the convolutional feature. Then it

is multiplied with the attention, generated by the convo-

lutional features. What follows is a light-weight PointNet

consisting of two MLP layers with max-pooling to aggre-

gate all information in one box.

The final box refinement is achieved by two MLP layers

to predict refined location of all box corner points based on

proposals. As shown in Figure 4, when computing the re-

gression target, the ground-truth box as well as point cloud

are canonized by rotation and translation given the proposal

box. This operation organizes ground-truth box corners in

a specific order, which can reduce the uncertainty of the

corner order caused by rotation. Our experiments manifest

superiority of the canonized corner loss.
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Without bells and whistles, this light-weight RefinerNet

can already effectively improve the accuracy in box predic-

tion, especially considering the Z dimension and bounding

boxes with higher IoUs in both 3D and BEV.

3.4. Network Training

Training our Fast Point R-CNN includes two steps. We

first train VoxelRPN until convergence. Then the Refiner-

Net is trained based on the extracted features and inferred

bounding boxes.

VoxelRPN In VoxelRPN, the anchors spread on each lo-

cation of the global feature map. One anchor is considered

as a positive sample if its IoU with ground-truth is higher

than 0.6 in BEV. The regression target is the ground-truth

bounding box with the highest IoU value. One anchor is

considered as negative if its IoU value with all ground-truth

boxes is lower than 0.45. We train VoxelRPN with a multi-

task loss as

Loss = Lcls + Lreg, (1)

where Lcls is the classification binary cross entropy loss as

Lcls =
1

Npos

∑

i

Lcls(p
pos
i , 1) +

γ

Nneg

∑

i

Lcls(p
neg
i , 0),

(2)

Lcls(p, t) = −(t log(p) + (1− t)log(1− p)). (3)

In our experiments, we use γ = 10. Due to the imbalanced

distributions of positive and negative samples, we normalize

their loss separately. OHEM [30] is applied to the negative

term of the classification loss. Each anchor is parameter-

ized as (xa, ya, za, ha, wa, la, θa) and the ground truth box

is parameterized as (xg, yg, zg, hg, wg, lg, θg). For regres-

sion, we adopt parameterization following [43, 9] as

∆1x =
xg − xa

da
,∆1y =

yg − ya
da

,∆1z =
zg − za

ha

,

∆1h = log(
hg

ha

),∆1w = log(
wg

wa

),∆1l = log(
lg
la
),

∆1θ = θg − θa.

(4)

The regression loss is defined as a smooth L1 loss of

Lreg(x) =

{

0.5(σx)2, if |x| < 1/σ2

|x| − 0.5/σ2, otherwise
(5)

where σ is set to 3 in our experiments.

RefinerNet It is noticed that the recall of our VoxelRPN

on 0.5 IoU thresh, in top 30 predicted boxes in Bird’s Eve

View (BEV), is over 95% for car. Our RefinerNet is for

improving the quality of prediction boxes. We only train it

on positive proposal boxes whose IoU with ground-truth is

higher than 0.5 in BEV.

The regression target is defined as the offset from

proposal center (xp, yp, zp) to 8 canonized corners

(xi,g, yi,g, zi,g for i = 1, ..., 8) of the target box as shown in

Figure 4:

∆2xi = xi,g − xp,∆2yi = yi,g − yp,∆2zi = zi,g − zp
(6)

This parameterization is a general and natural design for

RefinerNet that processes directly on coordinates of points.

4. Experiments

We conduct experiments on the challenging KITTI [8]

dataset in terms of 3D detection and BEV detection. Exten-

sive ablation studies on our approach are conducted.

4.1. Experiment Setup

Dataset and Evaluation Metric The KITTI dataset pro-

vides 7,481 images and point clouds for training and 7,518

for testing. Note for evaluation on the test subset and com-

parison with other methods, we can only submit our result

to the evaluation server. Following the protocol in [5, 43],

we divide the training data into a training set (3,712 images

and point clouds) with around 14,000 Car annotations and

a validation set (3,769 images and point clouds). Ablation

studies are conducted on this split. While for evaluation on

test set, we train our model on the entire train set with 7k

point clouds.

According to the occlusion/truncation level and the

height of 2D boxes in images, evaluation on the KITTI

dataset is split into three difficulty levels as “easy”, “moder-

ate” and “hard”. The KITTI leaderboard ranks all methods

according to AP0.7 in “moderate” difficulty and takes it as

the primary metric.

Implementation Details The point cloud is cropped to

the range of [0., 70.4]× [−40., 40.]× [−3., 1.] meters along

(X,Y, Z) axes respectively, following [5, 43]. The input to

VoxelRPN is generated by voxelizing the point cloud into

a 3D cuboid of size 800 × 704 × 20, where each voxel is

with size 0.1 × 0.1 × 0.2 meter. As a result, the output

convolutional feature map is with size 200 × 176 × 1. 4

anchors are defined in each output location with different

angles (0◦, 45◦, 90◦, 135◦).

For the category of “car”, we use the anchor size of

ha = 1.73, wa = 0.6, la = 0.8 meters. NMS with IoU

threshold 0.1 is applied to prediction from VoxelRPN to fil-

ter out duplicated predictions and help keep high efficiency

of the RefinerNet. For the categories of Pedestrian and Cy-

clist, the network removes the downsampling in the fourth

Conv3D layer since these two categories are much smaller

than car category.

We use anchors of size ha = 1.73, wa = 0.6, la = 0.8
and ha = 1.73, wa = 0.6, la = 1.76 for Pedestrian and
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Cyclist respectively. Like F-PointNet[25], multi-class pre-

diction for RefinerNet is to concatenate predicted class label

of VoxelRPN (one-hot encoding vector) with the feature af-

ter max-pooling operation and then refine box corners for

all classes. We note that training on Pedestrian and Cyclist

can improve their performance.

Training Details By default, models are trained on 8

NVIDIA P40 GPUs with batch-size 16 – that is, each GPU

holds 2 point clouds. We apply ADAM [12] optimizer with

an initial learning rate 0.01 for training of VoxelRPN and

RefinerNet. We train VoxelRPN for 70 epochs and the

learning rate is decreased by 10 times at 50th and 65th

epochs. Training of RefinerNet lasts for 70 epochs and the

learning rate is decreased by 10 times at 40th, 55th and 65th

epochs.

Batch Normalization is used following each parameter

layer. A weight decay of 0.0001 is used in both networks.

Since the training of RefinerNet requires the convolutional

feature from VoxelRPN, we train it for each frame instead

of on objects, saving a large amount of computation.

Data Augmentation Multiple data augmentation strate-

gies are applied during training in order to alleviate the

overfitting problem considering the limited amount of train-

ing data. For each frame of the point cloud, we conduct

left-right random flipping, random scaling with a uniformly

sampled scale from 0.95 ∼ 1.05 and random rotation with

a degree sampled from −45◦ ∼ 45◦ around the origin for

entire scene of point clouds.

We also disturb each ground-truth bounding box and

its corresponding interior points by random translation.

Specifically, the shift is sampled from N (0, 1) for both X
and Y axes and N (0, 0.3) for Z axis. Random rotation

around Z axis is uniformly sampled from −18◦ ∼ 18◦.

Note that there is a collision detection to prevent collision

of different objects.

MIXUP Augmentation Similar to the spirit of [7, 42] in

2D object detection, we also augment input point clouds

with cropped ground-truth from other point sets to greatly

improve the convergence speed and quality. Instead of crop-

ping solely interior points of each ground-truth box, we

crop a larger region with extra 0.3 meters to better preserve

the context information. With this regularization, cropped

points and surrounding points are distributed more coher-

ently with each other, making the network better capture

the property of each object. In our setting, 20 objects are

added in each frame of point clouds.

4.2. Main Results

As shown in Table 1, we compare Fast Point R-CNN

with state-of-the-art approaches in 3D object detection and

BEV object detection on KITTI test dataset. The official

KITTI benchmark ranks different methods according to the

performance on the moderate subset. Our model achieves

state-of-the-art performance while accomplishing high effi-

ciency (15FPS on NVIDIA Tesla P40 GPU). Note that SEC-

OND [39] applies SparseConv [10] and PointPillars [16]

used engineering techniques of NVIDIA TensorRT. These

solutions are complementary to ours.

For better comparison, we reproduce VoxelNet [43] as a

strong baseline network. It is noteworthy that our reproduc-

tion even yields much better results than those reported in

[43]. As shown in Table 2, our proposed VoxelRPN outper-

forms VoxelNet in 3D object detection. Accompanied by

RefinerNet, nearly twice as fast as VoxelNet, Fast Point R-

CNN outperforms VoxelNet in both 3D object detection and

BEV object detection. We show qualitative results in Fig-

ure 5. We can make good prediction at several challenging

scenes.

5. Ablation Studies

We conduct extensive ablation study for each component

based on the train/val. split.

5.1. VoxelRPN

To illustrate the effectiveness of VoxelRPN, we start with

a fast and yet simple baseline and gradually add our pro-

posed components. The baseline consists of only 2D con-

volutions and directly processes input voxel by encoding

information along Z axis into the channel dimension. The

difference with VoxelRPN is that the first 6 Conv3D layers

in the first block are replaced with 6 Conv2D layers. We

keep the same kernel size in X and Y axes; the channels

are 128 except the first layer with 64 channels. Two anchors

with angles 0◦ and 90◦ are used. As shown in Table 3, the

baseline achieves reasonable performance.

More 3D Convolutions (Conv3D) By replacing lower

layers to 3D convolutions as illustrated in Figure 2 and pro-

cessing the 3D voxels, we improve the baseline by nearly 1
point, manifesting the effectiveness of 3D convolutions on

preserving the information, especially along Z dimension.

With this modification, the time cost only increases 5ms.

Higher Resolution Input (HRI) We also introduce the

finer voxel, producing higher resolution grid input with size

800× 704× 20, as described in Figure 2. Accordingly, we

modify the stride of the first layer to 2 to effectively reduce

the computation overhead. This technique can significantly

improve the results without adding much computation.

MIXUP Augmentation (MIXUP) With MIXUP aug-

mentation, we improve the performance with around 0.5

point. With MIXUP augmentation, we achieve comparable

performance with only half of the original training epochs.
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Method Input Time (s)
3D BEV

GPU
APeasy APmoderate APhard APeasy APmoderate APhard

MV3D [5] L+I 0.24 66.77 52.73 51.31 85.82 77.00 68.94 TITAN X

AVOD-FPN [15] L+I 0.1 81.94 71.88 66.38 88.53 83.79 77.90 TITAN XP

AVOD [15] L+I 0.1 73.59 65.78 58.38 86.80 85.44 77.73 TITAN XP

F-PointNet [25] L+I 0.17 81.20 70.39 62.19 88.70 84.00 75.33 GTX 1080

ContFuse [20] L+I 0.06 82.54 66.22 64.04 88.81 85.83 77.33 –

RoarNet [13] L+I 0.1 83.71 73.04 59.16 88.20 79.41 70.02 TITAN X

IPOD [41] L+I 0.2 79.75 72.57 66.33 86.93 83.98 77.85 Tesla P40

VoxelNet [43] L 0.22 77.49 65.11 57.73 89.35 79.26 77.39 TITAN X

PIXOR [40] L 0.1 - - - 84.44 80.04 74.31 TITAN XP

SECOND [39] L 0.05 83.13 73.66 66.20 88.07 79.37 77.95 GTX 1080Ti

PointPillars [16] L 0.016 79.05 74.99 68.30 88.35 86.10 79.83 GTX 1080Ti

PointRCNN-deprecate [29] L 0.1 84.32 75.42 67.86 89.28 86.04 79.02 TITAN XP

PointRCNN [29] L 0.1 85.94 75.76 68.32 89.47 85.68 79.10 TITAN XP

Fast Point R-CNN L 0.065 84.28 75.73 67.39 88.03 86.10 78.17 Tesla P40

Table 1. Comparison of main results on KITTI test set. Here ‘L’ denotes LiDAR input and ‘I’ denotes RGB image input.

Method Time (s)
3D BEV

APeasy APmoderate APhard APeasy APmoderate APhard

VoxelNet (Paper) 0.225 81.97 65.46 62.85 89.60 84.81 78.57

VoxelNet (Reproduced) 0.117 86.48 75.26 73.25 90.13 87.61 86.4

VoxelRPN 0.058 87.51 76.64 74.4 89.8 87.58 86.38

Fast Point R-CNN 0.065 89.12 79.00 77.48 90.12 88.10 86.24

Table 2. Comparison of main results on KITTI validation set.

Conv3D HRI MIXUP MA 3D AP0.7 (moderate)

- - - - 73.8

X 74.7

X X 75.34

X X X 75.82

X X X X 76.64

Table 3. Effectiveness of different techniques applied to VoxelRPN

on KITTI val subset. The baseline network consists of only 2D

convolutions. Conv3D denotes we replace the lower layers with

3D convolutions. HRI denotes high resolution input. MIXUP de-

notes the use of MIXUP augmentation. MA means anchors with 4

different angles are used instead of 2 of them.

More Anchors (MA) With 4 anchors in angles 0◦, 45◦,

90◦ and 135◦ respectively, instead of using only 2 anchors,

we further gain another 0.8 point bonus. We find that the

matching probability gain with ground-truth is significant

with more anchors involved.

5.2. RefinerNet

Input Features We first investigate the importance of

both coordinate and convolution features. As shown in Ta-

ble 4, with only coordinate feature or convolution feature,

the RefinerNet improves results over VoxelRPN. It is no-

ticeable that the performance with coordinate feature as in-

put is better than the one with convolution feature as input.

This manifests that the accurate location information is lost

in the quantization representation of point cloud and con-

Fuse methods 3D AP0.7 (moderate)

Coordinate Feature 77.82

Convolution Feature 76.90

Concatenation 78.38

+ Attention Module 79.00

Table 4. Comparison of different fusion methods in RefinerNet.

secutive convolutional-and-downsampling operations.

Feature Fusion With the compensation of coordinate in-

formation, the performance boosts greatly. Much better per-

formance is achieved with both coordinate and convolution

features, since they provide semantically complementary

information. We also compare our strategy of fusing these

two sources of features with simple concatenation. Our fu-

sion method with attention mechanism outperforms the al-

ternative by 0.62 point, as shown in Table 4.

Effect of Canonized Corner Loss We compare parame-

terization of box prediction. The naive parameterization of

7 parameters as regression loss only achieves 78.45 in 3D

AP0.7. With canonized corner loss, it can further improve

to 79.

Comparison with RoI Align One straightforward

method for box refinement is to use RoI Align[11]. For

comparison, we implement rotated RoI align that crops

convolutional features from VoxelRPN given proposals.

For the car class, we pool with size 8 × 4 along the
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Figure 5. Visualization of our results.

Method Range (meters)
3D (Moderate) BEV (Moderate)

AP0.7 AP0.8 AP0.7 AP0.8

VoxelRPN 0-30 88.39 58.81 90.22 83.32

Fast Point R-CNN 0-30 89.26 62.73 90.25 85.61

VoxelRPN 30-50 51.99 13.31 73.51 49.63

Fast Point R-CNN 30-50 58.41 15.39 73.9 50.05

Table 5. Comparison of nearby- and distant-object detection accu-

racy.

direction of car inside the rotated box region. Then two

4096D MLP layers are applied to perform classification

and regression. Only the above operations are different – it

achieves 77.39 with AP0.7. Our RefinerNet performs better

clearly. We conjecture that rotated RoI align still lacks

precise localization information.

Result Analysis In the scenario of autonomous driving,

faraway objects are with much less points due to the lim-

ited resolution of LiDAR and occlusion by nearby objects,

making it more challenging to detect distant objects. As

shown in Table 5, there is a large discrepancy between ac-

curacy of nearby and faraway objects. It is noteworthy that

RefinerNet significantly improves the performance of 3D

detection accuracy of distant objects ranging from 30 to 50
meters, i.e., from 51.99 to 58.41 with AP0.7 metric. It is be-

cause distant objects generally possess only a small number

of points. With only voxel representation, it is hard for Vox-

elRPN to fully capture the structure of objects. But with the

profitable access to coordinate feature, RefinerNet can still

infer the complete structure of objects and achieve better

inference.

As shown in Tables 5 and 6, RefinerNet can further im-

prove detection with higher quality, evaluated with AP0.8,

which demonstrates that RefinerNet better utilizes fine-

grained localization information than VoxelRPN.

5.3. Experiments on Other Categories

KITTI benchmark provides limited annotations for

Pedestrian and Cyclist categories. For reference, we pro-

Method
3D (Moderate) BEV (Moderate)

AP0.6 AP0.7 AP0.8 AP0.6 AP0.7 AP0.8

VoxelRPN 88.94 76.64 42.6 89.77 87.58 71.39

Fast Point R-CNN 89.14 79.0 52.95 89.86 88.10 74.58

Table 6. Detection results with different IoU thresholds.

Method
AP0.5 on Pedestrian AP0.5 on Cyclist

3D BEV 3D BEV

PointPillars [16] 43.53 50.23 59.07 62.25

F-PointNet [25] 44.89 50.22 56.77 61.96

PointRCNN [29] 41.78 – 59.60 –

Fast Point R-CNN 42.90 45.43 59.36 62.59

Table 7. Performance on Pedestrian and Cyclist on test set.

vide results on these two classes. Following [43, 39], we

train the network for these two categories. Our final re-

sults on Pedestrian and Cyclist are 63.05 and 64.32 respec-

tively, with VoxelRPN results 60.78 and 62.41 on KITTI val

dataset. We achieve comparable results on KITTI test data

as listed in Table 7. We believe when more data is used,

superiority of our two-stage network can be better demon-

strated.

6. Conclusion

In this paper, we have proposed a generic, effective and

fast two-stage framework for 3D object detection. Our

method makes use of both voxel representation and raw

point cloud to benefit from both of them. The first stage

takes voxel representation as input and applies convolu-

tional operations to acquire a set of initial predictions. Then

the second stage further refines them based on raw point

clouds and extracted convolution features.

With this conceptually simple but practically powerful

design, our method is on par with existing solutions while

maintaining higher detection speed. We believe our re-

search shows a new way to properly utilize different dimen-

sions of information for this challenging and yet practically

fundamental task.
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