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Abstract

We propose a new 3D holistic++ scene understanding

problem, which jointly tackles two tasks from a single-view

image: (i) holistic scene parsing and reconstruction—3D es-

timations of object bounding boxes, camera pose, and room

layout, and (ii) 3D human pose estimation. The intuition be-

hind is to leverage the coupled nature of these two tasks to

improve the granularity and performance of scene under-

standing. We propose to exploit two critical and essential

connections between these two tasks: (i) human-object in-

teraction (HOI) to model the fine-grained relations between

agents and objects in the scene, and (ii) physical common-

sense to model the physical plausibility of the reconstructed

scene. The optimal configuration of the 3D scene, repre-

sented by a parse graph, is inferred using Markov chain

Monte Carlo (MCMC), which efficiently traverses through

the non-differentiable joint solution space. Experimental re-

sults demonstrate that the proposed algorithm significantly

improves the performance of the two tasks on three datasets,

showing an improved generalization ability.

1. Introduction

Humans, even young infants, are adept at perceiving and

understanding complex indoor scenes. Such an incredible

vision system not only relies on the data-driven pattern

recognition but also roots from the visual reasoning system,

known as the core knowledge [41], that facilitates the 3D

holistic scene understanding tasks. Consider a typical indoor

scene shown in Figure 1 where a person sits in an office. We

can effortlessly extract rich knowledge from the static scene,

including 3D room layout, 3D position of all the objects and

agents, and correct human-object interaction (HOI) relations

in a physically plausible manner. In fact, psychology stud-

ies have established that even infants employ at least two

constraints—HOI and physical commonsense—in perceiv-
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Figure 1. holistic++ scene understanding task requires to jointly

recover a parse graph that represents the scene, including human

poses, objects, camera pose, and room layout, all in 3D. Reasoning

human-object interaction (HOI) helps reconstruct the detailed spa-

tial relations between humans and objects. Physical commonsense

(e.g., physical property, plausibility, and stability) further refines

relations and improves predictions.

ing occlusions [43, 20], tracking small objects even if con-

tained by other objects [10], realizing object permanence [2],

recognizing rational HOI [46, 37], understanding intuitive

physic [11, 29, 1], and using exploratory play to understand

the environment [42]. All the evidence calls for a treatment

to integrate HOI and physical commonsense with a modern

computer vision system for scene understanding.

In contrast, few attempts have been made to achieve this

goal. This challenge is difficult partially due to the fact that

the algorithm has to jointly accomplish both 3D holistic

scene understanding task and the 3D human pose estima-

tion task in a physically plausible fashion. Since this task

is beyond the scope of holistic scene understanding in the

literature, we define this comprehensive task as holistic++

scene understanding—to simultaneously estimate human

pose, objects, room layout, and camera pose, all in 3D.
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Based on one single-view image, existing work either fo-

cuses only on 3D holistic scene understanding [16, 62, 3, 40]

or 3D human pose estimation [53, 32, 9]. Although one can

achieve an impressive performance in a single task by train-

ing with an enormous amount of annotated data, we, how-

ever, argue that these two tasks are intertwined tightly since

the indoor scenes are invented and constructed by human

designs to support the daily activities, generating affordance

for rich tasks and human activities [12].

To solve the proposed holistic++ scene understanding

task, we attempt to address four fundamental challenges:

1. How to utilize the coupled nature of human pose esti-

mation and holistic scene understanding, and make them

benefit each other? How to reconstruct the scene with

complex human activities and interactions?

2. How to constrain the solution space of the 3D estimations

from a single 2D image?

3. How to make a physically plausible and stable estimation

for complex scenes with human agents and objects?

4. How to improve the generalization ability to achieve a

more robust reconstruction across different datasets?

To address the first two challenges, we take a novel step

to incorporate HOI as constraints for joint parsing of both

3D human pose and 3D scene. The integration of HOI is

inspired by crucial observations of human 3D scene per-

ception, which are challenging for existing systems. Take

Figure 1 as an example; humans are able to impose a con-

straint and infer the relative position and orientation between

the girl and chair by recognizing the girl is sitting in the

chair. Similarly, such a constraint can help to recover the

small objects (e.g., recognizing keyboard by detecting the

girl is using a computer in Figure 1). By learning HOI priors

and using the inferred HOI as visual cues to adjust the fine-

grained spatial relations between human and scene (objects

and room layout), the geometric ambiguity (3D estimation

solution space) in the single-view reconstruction would be

largely eased, and the reconstruction performances of both

tasks would be improved.

To address the third challenge, we incorporate physical

commonsense into the proposed method. Specifically, the

proposed method reasons about the physical relations (e.g.,

support relation) and penalizes the physical violations to pre-

dict a physically plausible and stable 3D scene. The HOI and

physical commonsense serve as general prior knowledge

across different datasets, thus help address the fourth issue.

To jointly parse 3D human pose and 3D scene, we rep-

resent the configuration of an indoor scene by a parse graph

shown in Figure 1, which consists of a parse tree with hi-

erarchical structure and a Markov random field (MRF) over

the terminal nodes, capturing the rich contextual relations

among human, objects, and room layout. The optimal parse

graph to reconstruct both the 3D scene and human poses

is achieved by a maximum a posteriori (MAP) estimation,

where the prior characterizes the prior distribution of the

contextual HOI and physical relations among the nodes. The

likelihood measures the similarity between (i) the detection

results directly from 2D object and pose detector, and (ii) the

2D results projected from the 3D parsing results. The parse

graph can be iteratively optimized by sampling an MCMC

with simulated annealing based on posterior probability. The

joint optimization relies less on a specific training dataset

since it benefits from the prior of HOI and physical com-

monsense which are almost invariant across environments

and datasets, and other knowledge learned from well-defined

vision task (e.g., 3D pose estimation, scene reconstruction),

improving the generalization ability significantly across dif-

ferent datasets compared with purely data-driven methods.

Experimental results on PiGraphs [34], Watch-n-

Patch [47], and SUN RGB-D [38] demonstrate that the pro-

posed method outperforms state-of-the-art methods for both

3D scene reconstruction and 3D pose estimation. Moreover,

the ablative analysis shows that the HOI prior improves

the reconstruction, and the physical common sense helps to

make physically plausible predictions.

This paper makes four major contributions:

1. We propose a new holistic++ scene understanding task

with a computational framework to jointly infer human

poses, objects, room layout, and camera pose, all in 3D.

2. We integrate HOI to bridge the human pose estimation

and the scene reconstruction, reducing geometric ambi-

guities (solution space) of the single-view reconstruction.

3. We incorporate physical commonsense, which helps to

predict physically plausible scenes and improve the 3D

localization of both humans and objects.

4. We demonstrate the joint inference improves the perfor-

mance of each sub-module and achieves better general-

ization ability across various indoor scene datasets com-

pared with purely data-driven methods.

1.1. Related Work

Single-view 3D Human Pose Estimation: Previous

methods on 3D pose estimation can be divided into two

streams: (i) directly learning 3D pose from a 2D image [36,

23], and (ii) cascaded frameworks that first perform 2D pose

estimation and then reconstruct 3D pose from the estimated

2D joints [53, 27, 32, 48, 6, 44]. Although these researches

have produced impressive results in scenarios with relatively

clean background, the problem of estimating the 3D pose in

a typical indoor scene with arbitrary cluttered objects has

rarely been discussed. Recently, Zanfir et al. [51] adopts

constraints of ground plane support and volume occupancy

by multiple people, but the detailed relations between hu-

man and scene (objects and layout) are still missing. In con-

trast, the proposed model not only estimates the 3D poses of

multiple people with an absolute scale but also models the

physical relations between humans and 3D scenes.
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Single-view 3D Scene Reconstruction: Single-view

3D scene reconstruction has three main approaches: (i) Pre-

dict room layouts by extracting geometric features to rank

3D cuboids proposals [62, 40, 17, 61]. (ii) Align object pro-

posals to RGB or depth image by treating objects as ge-

ometric primitives or CAD models [3, 39, 57]. (iii) Joint

estimation of the room layout and 3D objects with con-

texts [40, 54, 7, 52, 62]. A more recent work by Huang

et al. [16] models the hierarchical structure, latent human

context, physical constraints, and jointly optimizes in an

analysis-by-synthesis fashion; although human context and

functionality were taken into account, indoor scene recon-

struction with human poses and HOI remains untouched.

Human-Object Interaction: Reasoning fine-grained

human interactions with objects is essential for a more holis-

tic indoor scene understanding as it provides crucial cues

for human activities and physical interactions. In robotics

and computer vision, prior work has exploited human-object

relations in event, object, and scene modeling, but most

work focuses on human-object relation detection in im-

ages [5, 30, 25, 21], probabilistic modeling from multiple

data sources [45, 33, 13], and snapshots generation or scene

synthesis [34, 24, 31, 18]. Different from all previous work,

we use the learned 3D HOI priors to refine the relative spa-

tial relations between human and scene, enabling a top-down

prediction of interacted objects.

Physical Commonsense: The ability to infer hidden

physical properties is a well-established human cognitive

ability [26, 22]. By exploiting the underlying physical prop-

erties of scenes and objects, recent efforts have demonstrated

the capability of estimating both current and future dynam-

ics of static scenes [49, 28] and objects [60], understanding

the support relationships and stability of objects [56], volu-

metric and occlusion reasoning [35, 55], inferring the hid-

den force [59], and reconstructing the 3D scene [15, 8] and

3D pose [51]. In addition to the physical properties and sup-

port relations among objects adopted in previous methods,

we further model the physical relations (i) between human

and objects, and (ii) between human and room layout, re-

sulting in a physically plausible and stable scene.

2. Representation

The configuration of an indoor scene is represented by a

parse graph pg=(pt, E); see Figure 1. It combines a parse

tree pt and contextual relations E among the leaf nodes.

Here, a parse tree pt=(V,R) includes the vertex set with

a three-level hierarchical structure V =Vr∪Vm∪Vt and the

decomposing rules R, where the root node Vr represents

the overall scene, the middle node Vm has three types of

nodes (objects, human, and room layout), and the terminal

nodes Vt contains child nodes of the middle nodes, rep-

resenting the detected instances of the parent node in this

scene. E⊂Vt×Vt is the set of contextual relations among

the terminal nodes, represented by horizontal links.

Terminal Nodes Vt in pg can be further decomposed as

Vt=Vlayout∪Vobject∪Vhuman. Specifically:

• The room layout v∈Vlayout is represented by a 3D bound-

ing box XL∈R3×8 in the world coordinate. The 3D

bounding box is parametrized by the node’s attributes,

including its 3D size SL∈R3, center CL∈R3, and ori-

entation Rot(θL)∈R3×3. See the supplementary for the

parametrization of the 3D bounding box.

• Each 3D object v∈Vobject is represented by a 3D bounding

box with its semantic label. We use the same 3D bounding

box parameterization as the one for the room layout.

• Each human v∈Vhuman is represented by 17 3D joints

XH∈R3×17 with their action labels. These 3D joints

are parametrized by the pose scale SH∈R, pose center

CH∈R3 (i.e., hip), local joint position RelH∈R3×17, and

pose orientation Rot(θH)∈R3×3. Each person is also at-

tributed by a concurrent action label a, which is a multi-

hot vector representing the current actions of this person:

one can “sit” and “drink”, or “walk” and “make phone

call” at the same time.

Contextual Relations E contains three types of relations

in the scene E={Es, Ec, Ehoi}. Specifically:

• Es and Ec denote support relation and physical collision,

respectively. These two relations penalize the physical vi-

olations among objects, between objects and layout, and

between human and layout, resulting in a physically plau-

sible and stable prediction.

• Ehoi models HOI and provides strong and fine-grained

constraints for holistic scene understanding. For instance,

if a person is detected as sitting on a chair, we can con-

strain the relative 3D positions between this person and

chair using a pre-learned spatial relation of “sitting.”

3. Probabilistic Formulation

The parse graph pg is a comprehensive interpretation of

the observed image I [58]. The goal of the holistic++ scene

understanding is to infer the optimal parse graph pg∗ given

I by an MAP estimation:

pg
∗=argmax

pg

p(pg|I)=argmax
pg

p(pg)·p(I|pg)

=argmax
pg

1

Z
exp{−Ephy(pg)−Ehoi(pg)−E(I|pg)}.

(1)

We model the joint distribution by a Gibbs distribution,

where the prior probability of parse graph can be decom-

posed into physical prior Ephy(pg) and HOI prior Ehoi(pg);
balancing factors are neglected for simplicity.

Physical Prior Ephy(pg) represents physical common-

sense in a 3D scene. We consider two types of physical re-

lations among the terminal nodes: support relation Es and

collision relation Ec. Therefore, the energy of physical prior

is defined as Ephy(pg)=Es(pg)+Ec(pg). Specifically:

• Support Relation Es(pg) defines the energy between the

supported object/human and the supporting object/layout:

Es(pg)=
∑

(vi,vj)∈Es

Eo(vi, vj)+Eheight(vi, vj), (2)
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where Eo(vi, vj)=1−area(vi∩vj)/area(vi) is the overlap-

ping ratio in the xy-plane, and Eheight(vi, vj) is the absolute

height difference between the lower surface of the supported

object vi and the upper surface of the supporting object vj ;

Eo(vi, vj)=0 when the supporting object is the floor and

Eheight(vi, vj)=0 when the supporting object is the wall.

• Physical Collision Ec(pg) denotes the physical violations.

We penalize the intersection among human, objects, and

room layout except the objects in HOI and objects that could

be a container. The potential function is defined as:

Ec(pg)=
∑

C(v, Vlayout)
v∈(Vobject∪Vhuman)

+
∑

C(vi, vj)
vi∈Vobject

vj∈Vhuman

(vi,vj)/∈Ehoi

+
∑

C(vi, vj)
vi,vj∈Vobject

vi,vj /∈Vcontainer

, (3)

where C() denotes the volume of intersection between en-

tities. Vcontainer denotes the objects that can be a container,

such as a cabinet, desk, and drawer.

Human-object Interaction Prior Ehoi(pg) is defined by

the interactions between human and objects:

Ehoi(pg)=
∑

(vi,vj)∈Ehoi

K(vi, vj , avj ), (4)

where vi∈Vobject, vj∈Vhuman, and K is an HOI function that

evaluates the interaction between an object and a human

given the action label a:

K(vi, vj , avj )=− log l(vi, vj |avj ), (5)

where l(vi, vj |avj ) is the likelihood of the relative position

between node vi and vj given an action label a. We formu-

late the action detection as a multi-label classification; see

Section 5.3 for details. The likelihood l(·) models the dis-

tance between key joints and the center of the object; e.g., for

“sitting,” it models the relative spatial relation between the

hip and the center of a chair. The likelihood can be learned

from 3D HOI datasets with a multivariate Gaussian distribu-

tion (∆x,∆y,∆z)∼N3(µ,Σ), where ∆x,∆y, and ∆z are

the relative distances in the directions of three axes.

Likelihood E(I|pg) characterizes the consistency be-

tween the observed 2D image and the inferred 3D result. The

projected 2D object bounding boxes and human poses can be

computed by projecting the inferred 3D objects and human

poses onto a 2D image plane. The likelihood is obtained by

comparing the directly detected 2D bounding boxes and hu-

man poses with projected ones from inferred 3D results:

E(I|pg)=
∑

v∈Vobject

·Do(B(v), B′(v))+
∑

v∈Vhuman

·Dh(Po(v), Po′(v)), (6)

where B() and B′() are the bounding boxes of detected and

projected 2D objects, Po() and Po′() the poses of detected

and projected 2D humans, Do(·) the intersection-over-union

(IoU) between the detected 2D bounding box and the convex

hull of the projected 3D bounding box, and Dh(·) the aver-

age pixel-wise Euclidean distance between two 2D poses.

Figure 2. Examples of typical HOIs and examples from the SHADE

dataset. The heatmap indicates the probable locations of HOI.

4. SHADE Dataset

We collect SHADE (Synthetic Human Activities with

Dynamic Environment), a self-annotated dataset that con-

sists of dynamic 3D human skeletons and objects, to learn

the prior model for each HOI. It is collected from a video

game Grand Theft Auto V with various daily activities and

HOIs. Currently, there are over 29 million frames of 3D hu-

man poses, where 772,229 frames are annotated. On aver-

age, each annotated frame is associated with 2.03 action la-

bels and 0.89 HOIs. The SHADE dataset contains 19 fine-

grained HOIs for both indoor and outdoor activities. By se-

lecting most frequent HOIs and merging similar HOIs, we

choose 6 final HOIs: read [phone, notebook, tablet], sit-at

[human-table relation], sit [human-chair relation], make-

phone-call, hold, use-laptop. Figure 2 shows some typical

examples and relations in the dataset.

5. Joint Inference

Given a single RGB image as the input, the goal of joint

inference is to find the optimal parse graph that maximizes

the posterior probability p(pg|I). The joint parsing is a four-

step process: (i) 3D scene initialization of the camera pose,

room layout, and 3D object bounding boxes, (ii) 3D human

pose initialization that estimates rough 3D human poses in

a 3D scene, (iii) concurrent action detection, and (iv) joint

inference to optimize the objects, layout, and human poses

in 3D scenes by maximizing the posterior probability.

5.1. 3D Scene Initialization

Following [15], we initialize the 3D objects, room lay-

out, and camera pose cooperatively, where the room layout

and objects are parametrized by 3D bounding boxes. For

each object vi∈Vobject, we find its supporting object/layout

by minimizing the supporting energy:

v∗j =argmin
vj

Eo(vi, vj)+Eheight(vi, vj)−λs log pspt(vi, vj), (7)

where vj∈(Vobject, Vlayout) and pspt(vi, vj) are the prior prob-

abilities of the supporting relation modeled by multinoulli

distributions, and λs a balancing constant.
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5.2. 3D Human Pose Initialization

We take 2D poses as the input and predict 3D poses in

a local 3D coordinate following [44], where the 2D poses

are detected and estimated by [4]. The local 3D coordinate

is centered at the human hip joint, and the z-axis is aligned

with the up direction of the world coordinate.

To transform this local 3D pose into the world coordinate,

we find the 3D world coordinate v3D∈R3 of one visible 2D

joint v2D∈R2 (e.g., head) by solving a linear equation with

the camera intrinsic parameter K and estimated camera pose

R. Per the pinhole camera projection model, we have

α

[

v2D

1

]

=K ·R·v3D, (8)

where α is a scaling factor in the homogeneous coordinate.

To make the function solvable, we assume a pre-defined

height h0 for the joint position v3D in the world coordinate.

Lastly, the 3D pose initialization is obtained by aligning the

local 3D pose and the corresponding joint position with v3D.

5.3. Concurrent Action Detection

We formulate the concurrent action detection as a multi-

label classification problem to ease the ambiguity in describ-

ing the action. We define a portion of the action labels (e.g.,

“eating”, “making phone call”) as the HOI labels, and the

remaining action labels (e.g., “standing”, “bending”) as gen-

eral human poses without HOI. The mixture of HOI actions

and non-HOI actions covers most of the daily human actions

in indoor scenes. We manually map each of the HOI action

labels to a 3D HOI relation learned from the SHADE dataset,

and use the HOI actions as cues to improve the accuracy of

3D reconstruction by integrating it as prior knowledge in our

model. The concurrent action detector takes 2D skeletons as

the input and predicts multiple action labels with a three-

layer multi-layer perceptron (MLP).

The dataset for training the concurrent action detectors

consists of both synthetic data and real-world data. It is col-

lected from: (i) The synthetic dataset described in Section 4.

We project the 3D human poses of different HOIs into 2D

poses with random camera poses. (ii) The dataset proposed

and collected by [19], which also contains 3D poses of mul-

tiple persons in social interactions. We project 3D poses into

2D following the same method as in (i). (iii) The 2D poses in

an action recognition dataset [50]. Our results show that the

synthetic data can significantly expand the training set and

help to avoid overfitting in concurrent action detection.

5.4. Inference

Given an initialized parse graph, we use MCMC with

simulated annealing to jointly optimize the room layout, 3D

objects, and 3D human poses through the non-differentiable

energy space; see Algorithm 1 as a summary. To improve the

efficiency of the optimization process, we adopt a schedul-

ing strategy that divides the optimization process into fol-

Algorithm 1 Joint Inference Algorithm

Given: Image I , initialized parse graph pginit
procedure PHASE 1

for Different temperatures do

Inference with physical commonsense Ephy but

without HOI Ehoi: randomly select from room lay-

out, objects, and human poses to optimize pg

procedure PHASE 2

Match each agent with their interacting objects

procedure PHASE 3

for Different temperatures do

Inference with total energy E , including physical

commonsense and HOI: randomly select from lay-

out, objects, and human poses to optimize pg

procedure PHASE 4

Top-down sampling by HOIs

lowing four phases with different focuses: (i) Optimize ob-

jects, room layout, and human poses without HOIs. (ii) As-

sign HOI labels to each agent in the scene, and search the in-

teracting objects of each agent. (iii) Optimize objects, room

layout, and human poses jointly with HOIs. (iv) Generate

possible miss-detected objects by top-down sampling.

Dynamics: In Phase (i) and (iii), we use distinct

MCMC processes. To traverse non-differentiable energy

spaces, we design Markov chain dynamics qo1, q
o
2, q

o
3 for ob-

jects, ql1, q
l
2 for room layout, and qh1 , q

h
2 , q

h
3 for human poses.

• Object Dynamics: Dynamics qo1 adjusts the position of

an object, which translates the object center in one of the

three Cartesian coordinate axes or along the depth direction;

the depth direction starts from the camera position and points

to the object center. Translation along depth is effective with

proper camera pose initialization. Dynamics qo2 proposes ro-

tation of the object with a specified angle. Dynamics qo3
changes the scale of the object by expanding or shrinking

corner positions of the cuboid with respect to the object cen-

ter. Each dynamic can diffuse in two directions: translate in

the direction of ‘+x’ and ‘−x,’ or rotate in the direction of

clockwise and counterclockwise. To better traverse in energy

space, the dynamics may propose to move along the gradient

descent direction with a probability of 0.95 or the gradient

ascent direction with a probability of 0.05.

• Human Dynamics: Dynamics qh1 proposes to translate

3D human joints along x, y, z, or depth direction. Dynamics

qh2 rotates the human pose with a certain angle. Dynamics qh3
adjusts the scale of human poses by a scaling factor on the

3D joints with respect to the pose center.

• Layout Dynamics: Dynamics ql1 translates the wall to-

wards or away from the layout center. Dynamics ql2 adjusts

the floor height, equivalent to changing the camera height.

In each sampling iteration, the algorithm proposes a new

pg′ from current pg under the proposal probability of q(pg→
pg′|I) by applying one of the above dynamics. The gener-

ated proposal is accepted with respect to an acceptance rate
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Figure 3. The optimization process of the scene configuration by simulated annealing MCMC. Each step is the number of accepted proposal.

Figure 4. Illustration of the top-down sampling process. The ob-

ject detection module misses the detection of the bottle held by the

person, but our model can still recover the bottle by reasoning HOI.

α(·) as in the Metropolis-Hastings algorithm [14]:

α(pg→pg′)=min(1,
q(pg′→pg)·p(pg′|I)

q(pg→pg′)·p(pg|I)
), (9)

A simulated annealing scheme is adopted to obtain pg with

a high probability.

Top-down sampling: By top-down sampling objects

from HOIs relations, the proposed method can recover the

interacting 3D objects that are too small or novel to be de-

tected by the state-of-the-art 2D object detector. In Phase

(iv), we propose to sample an interacting object from the

person if the confidence of HOI is higher than a threshold;

we minimize the HOI energy in Equation 4 to determine the

category and location of the object; see examples in Figure 4.

Implementation Details: In Phase (ii), we search the in-

teracting objects for each agent involved in HOI by mini-

mizing the energy in Equation 4. In Phase (iii), after match-

ing each agent with their interacting objects, we can jointly

optimize objects, room layout, and human poses with the

constraint imposed by HOI. Figure 3 shows examples of the

simulated annealing optimization process.

6. Experiments

Since the proposed task is new and challenging, limited

data and state-of-the-art methods are available for the pro-

posed problem. For fair evaluations and comparisons, we

evaluate the proposed algorithm on three types of datasets:

(i) Real data with full annotation on PiGraphs dataset [34]

with limited 3D scenes. (ii) Real data with partial annota-

tion on daily activity dataset Watch-n-Patch [47], which only

contains ground-truth depth information and annotations of

3D human poses. (iii) Synthetic data with generated anno-

tations to serve as the ground truth: we sample 3D human

poses of various activities in SUN RGB-D dataset [38] and

project the sampled skeletons back onto the 2D image plane.

6.1. Comparative methods

To the best of our knowledge, no previous algorithm

jointly optimizes the 3D scene and 3D human pose from

a single image. Therefore, we compare our model against

state-of-the-art methods for each task. Particularly, we com-

pare with [15] for single-image 3D scene reconstruction and

VNect [27] for 3D pose estimation in the world coordinate.

Since VNect can only estimate a single person, we de-

sign an additional baseline for 3D multi-person human pose

estimation in the world coordinate. We first extract a 2048-

D image feature vector using the Global Geometry Network

(GGN) [15] to capture the global geometry of the scene. The

concatenated vector (GGN image feature, 2D pose, 3D pose

in the local coordinate, and the camera intrinsic matrix) is

fed into a 5-layer fully connected network to predict the 3D

pose. The fully-connected layers are trained using the mean

squared error loss. We train the network on the training set

of the synthetic SUN RGB-D dataset. Please refer to supple-

mentary materials for more details of the baseline model.

6.2. Dataset

PiGraphs [34] contains 30 scenes and 63 video record-

ings obtained by Kinect v2, designed to associate human

poses with object arrangements. There are 298 actions avail-

able in approximately 2-hours of recordings. Each recording

is about 2-minute long, with an average 4.9 action annota-

tion. We removed the frames with no human appearance or

annotations, resulting in 36,551 test images.

Watch-n-Patch (WnP) [47] is an activity video dataset

recorded by Kinect v2. It contains several human daily ac-

tivities as compositions of multiple actions interacting with

various objects. The dataset comes with activity annotations,

depth maps, and 3D human poses. We test our algorithm on

1,210 randomly selected frames.

SUN RGB-D [38] contains rich indoor scenes that are

densely annotated with 3D bounding boxes, room layouts,

and camera poses. The original dataset has 5,050 testing im-

ages, but we discarded images with no detected 2D objects,

invalid 3D room layout annotation, limited space, or small

field of view, resulting in 3,476 testing images.

Synthetic SUN RGB-D is augmented from SUN RGB-

D dataset by sampling human poses in the scenes. Following

methods of sampling imaginary human poses in [16], we ex-

tend the sampling to more generalized settings for various

poses. The augmented human is represented by a 6-tuple
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Figure 5. Augmenting SUN RGB-D with synthetic human poses.

〈a, µ, t, r, s, µ̂〉, where a is the action type, µ the pose tem-

plate, t translation, r rotation, s scale, and µ̂=µ·r ·s+t the

imagined human skeleton. For each action label, we sample

an imagined human pose inside a 3D scene: 〈t∗, r∗, s∗〉=
argmin

t,r,s
Ephy+Ehoi. If a is involved with any HOI unit, we

further augment the 3D bounding box of the object. Af-

ter sampling a human pose, we project the augmented 3D

scenes back onto the 2D image plane using the ground truth

camera matrix and camera pose; see examples in Figure 5.

For a fair comparison of 3D human pose estimation on syn-

thetic SUN RGB-D, all the algorithms are provided with the

ground truth 2D skeletons as the input.

For 3D scene reconstruction, both [15] and the proposed

3D scene initialization are learned using SUN RGB-D train-

ing data and tested on the above three datasets. For 3D pose

estimation, both [27] and the initialization of the proposed

method are trained on public datasets, while the baseline is

trained on synthetic SUN RGB-D. Note that we only use the

SHADE dataset for learning a dictionary of HOIs.

6.3. Quantitative and Qualitative Results

We evaluate the proposed model on holistic++ scene un-

derstanding task by comparing the performances on both 3D

scene reconstruction and 3D pose estimation.

Scene Reconstruction: We compute the 3D IoU and

2D IoU of object bounding boxes to evaluate the 3D scene

reconstruction and the consistency between the 3D world

and 2D image. Following the metrics described in [15], we

compute the 3D IoU between the estimated 3D bounding

boxes and the annotated 3D bounding boxes on PiGraphs

and SUN RGB-D. For dataset without ground-truth 3D

bounding boxes (i.e., Watch-n-Patch), we evaluate the dis-

tance between the camera center and the 3D object center.

To evaluate the 2D-3D consistency, the 2D IoU is computed

between the projected 2D boxes of the 3D object bound-

ing boxes and the ground-truth 2D boxes or detected 2D

boxes (i.e., Watch-n-Patch). As shown in Table 1, the pro-

posed method improves the state-of-the-art 3D scene recon-

struction results on all three datasets without specific train-

ing on each of them. More importantly, it significantly im-

proves the results on PiGraphs and Watch-n-Patch compared

with [15]. The most likely reason is: [15] is trained on SUN

RGB-D dataset in a purely data-driven fashion, therefore dif-

ficult to generalize across to other datasets (i.e., PiGraphs,

and Watch-n-Patch). In contrast, the proposed model incor-

porates more general prior knowledge of HOI and physi-

Table 1. Quantitative Results of 3D Scene Reconstruction
Methods Huang et al. [15] Ours

Metric 2D IoU (%) 3D IoU (%) Depth (m) 2D IOU (%) 3D IoU (%) Depth (m)

PiGraphs 68.6 21.4 - 75.1 24.9 -

SUN RGB-D 63.9 17.7 - 72.9 18.2 -

WnP 67.3 - 0.375 73.6 - 0.162

Table 2. Quantitative Results of Global 3D Pose Estimation
Methods VNect[27] Baseline Ours

Metrics 2D (pix) 3D (m) 2D (pix) 3D (m) 2D (pix) 3D (m)

PiGraphs 63.9 0.732 284.5 2.67 15.9 0.472

SUNRGBD - - 45.81 0.435 14.03 0.517

WnP 50.51 0.646 325.2 2.14 20.5 0.330

Table 3. Ablative results of HOI on 3D object IoU (%), 3D pose

estimation error (m), and miss-detection rate (MR, %)

Methods w/o hoi Full model

HOI Type Object ↑ Pose ↓ MR ↓ Object ↑ Pose ↓ MR ↓

Sit 26.9 0.590 15.2 27.8 0.521 13.1

Hold 17.4 0.517 78.9 17.6 0.490 54.6

Use Laptop 14.1 0.544 58.8 15.0 0.534 43.3

Read 14.5 0.466 65.3 14.3 0.453 41.9

cal commonsense, and combines such knowledge with 2D-

3D consistency (likelihood) for joint inference, avoiding the

over-fitting caused by the direct 3D estimation from 2D. Fig-

ure 6 shows the qualitative results on all three datasets.

Pose Estimation: We evaluate the pose estimation in

both 3D and 2D. For 3D evaluation, we compute the Eu-

clidean distance between the estimated 3D joints and the

3D ground-truth and average it over all the joints. For 2D

evaluation, we project the estimated 3D pose back to the

2D image plane and compute the pixel distance against the

ground truth. See Table 2 for quantitative results. The pro-

posed method outperforms two other methods in both 2D

and 3D. On the synthetic SUN RGB-D dataset, all algo-

rithms are given the ground truth 2D poses as the input for a

fair comparison. Although the baseline model achieves bet-

ter performances since the baseline model fits well for the

3D human poses synthesized with limited templates, the 3D

poses estimated by VNect and baseline model deviate a lot

from the ground truth for datasets with real human poses

(i.e., PiGraph, and Watch-n-Patch). In contrast, the proposed

algorithm performs consistently well, demonstrating an out-

standing generalization ability across various datasets.

Ablative Analysis: To analyze the contributions of

HOI and physical commonsense, we compare two variants

of the proposed full model: (i) model w/o HOI: without HOI

Ehoi(pg), and (ii) model w/o phy.: without physical com-

monsense Ephy(pg).
• Human-Object Interaction. We compare our full model

with model w/o hoi to evaluate the effects of each category

of HOI. Evaluation metrics include 3D pose estimation er-

ror, 3D bounding box IoU, and miss-detection rate (MR)

of the objects interacted with agents. The experiments are

conducted on PiGraphs dataset and Synthetic SUN RGB-

D dataset with the annotated HOI labels. Note that for the

consistency of the ablative analysis across three different

datasets, we merge the sit and sit-at into sit, and eliminate

the make-phone-call. As shown in Table 3, the performances

of both scene reconstruction and human pose estimation are
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Figure 6. Qualitative results of the proposed method on three datasets. The proposed model improves the initialization with accurate spatial

relations and physical plausibility and demonstrates an outstanding generalization across various datasets.

(a) (b)

Input

w/o 

phy.

Full

model

Figure 7. Qualitative comparison between (a) model w/o phy. and

(b) the full model on PiGraphs dataset.

hindered without reasoning HOI, indicating HOI helps to in-

fer the relative spatial relationship between agents and ob-

jects to improve the performance of both two tasks further.

Moreover, a marked performance gain of miss-detection rate

implies the effectiveness of the top-down sampling process

during the joint inference.

• Physical Commonsense. Reasoning about physical com-

monsense drives the reconstructed 3D scene to be physically

plausible and stable. We test 3D estimation of object bound-

ing boxes on the PiGraphs dataset using w/o phy. and the full

model. The full model outperforms w/o phy. in two aspects:

(i) 3D object detection IoU (from 23.5% to 24.9%), and (ii)

physical violation (from 0.223m to 0.150m); see qualitative

comparisons in Figure 7. The physical violation is computed

as the distance between the lower surface of an object and the

upper surface of its supporting object. Objects detected by

model w/o phy. may float in the air or penetrate each other,

while the full model yields physically plausible results.

7. Conclusion

This paper tackles a challenging holistic++ scene under-

standing problem to jointly solve 3D scene reconstruction

and 3D human pose estimation from a single RGB image. By

incorporating physical commonsense and reasoning about

HOI, our approach leverages the coupled nature of these two

tasks and goes beyond merely reconstructing the 3D scene

or human pose by reasoning about the concurrent action of

human in the scene. We design a joint inference algorithm

which traverses the non-differentiable solution space with

MCMC and optimizes the scene configuration. Experiments

on PiGraphs, Watch-n-Patch, and Synthetic SUN RGB-D

demonstrate the efficacy of the proposed algorithm and the

general prior knowledge of HOI and physical commonsense.
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