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Abstract

Font selection is one of the most important steps in a
design workflow. Traditional methods rely on ordered lists
which require significant domain knowledge and are often
difficult to use even for trained professionals. In this pa-
per, we address the problem of large-scale tag-based font
retrieval which aims to bring semantics to the font selec-
tion process and enable people without expert knowledge to
use fonts effectively. We collect a large-scale font tagging
dataset of high-quality professional fonts. The dataset con-
tains nearly 20,000 fonts, 2,000 tags, and hundreds of thou-
sands of font-tag relations. We propose a novel generative
feature learning algorithm that leverages the unique char-
acteristics of fonts. The key idea is that font images are syn-
thetic and can therefore be controlled by the learning algo-
rithm. We design an integrated rendering and learning pro-
cess so that the visual feature from one image can be used
to reconstruct another image with different text. The result-
ing feature captures important font design details while is
robust to nuisance factors such as text. We propose a novel
attention mechanism to re-weight the visual feature for joint
visual-text modeling. We combine the feature and the atten-
tion mechanism in a novel recognition-retrieval model. Ex-
perimental results show that our method significantly out-
performs the state-of-the-art for the important problem of
large-scale tag-based font retrieval.

1. Introduction

Font is one of the most important elements in digital de-
sign. Designers carefully choose fonts to convey design
ideas. Since digital fonts were invented in the 1950s, mil-
lions of fonts have been created to help designers create en-
gaging and effective designs. For instance, MyFonts.com!,
one of the many font websites, offers over 130,000 fonts
with diverse designs, such as script, handwritten, decora-
tive, just to name a few categories. With the vast num-

ber of fonts available, font selection becomes a challenge.
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Figure 1. Overview of large-scale tag-based font retrieval.

Aspiring designers would take months to learn typography
and font selection as part of their design curriculum. How-
ever, an average person who uses Microsoft Word will not
have time to learn typography but may have an intuitive idea
about what she wants to create. In this work, we study the
problem of large-scale tag-based font retrieval (illustrated
in Figure 1), which we believe is an important step toward
developing intuitive font selection tools for average users.

Machine Learning approaches for tag-based font re-
trieval are first studied by O’Donovan et al. in [21] where
they collect a tag-based font dataset and use Gradient
Boosted Regression Trees [4]. However, this dataset only
contains 1,278 fonts and 37 tags, which significantly lim-
its its applicability. In this work, we are interested in a
broad range of tags that a user can choose to express her de-
sign needs including properties, functionalities, attributes,
to subjective descriptions, emotions, etc. To this end, we
collect a large-scale font dataset from MyFonts.com, which
contains nearly 20,000 high-quality professional fonts and
2,000 unique user tags. This dataset will be released as a
benchmark dataset for tag-based font retrieval.

Feature plays a critical role in learning-based retrieval
algorithms. The state-of-the-art image retrieval methods
use convolutional neural networks to obtain image features
which are typically pre-trained on large-scale image classi-
fication datasets such as ImageNet [11]. One may attempt to
follow this paradigm for font retrieval. For instance, she can
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Figure 2. An example to illustrate that a specific kind of visual fea-
ture can have different significance for tagging on different fonts.

use the DeepFont feature [27] which is trained to recognize
fonts from text images. We find that although the Deep-
Font feature is learned to be agnostic to characters, traces of
characters remain in the feature. For instance, the features
of one string with two different fonts is much closer to the
features of two different strings with the same font. Note
that this problem may not be unique in fonts but is certainly
much more severe in font retrieval than in image retrieval.
The reason is that the appearance variability of text images
is much larger than that of object images. In fact, there
are an infinite number of text combinations. Another ma-
jor problem in feature learning for tag-based font retrieval
is that different parts of the font feature may have different
significance for different tags in terms of tag prediction. As
shown in Figure 2, the change in line type from curved to
straight separates the upper two fonts from the bottom ones.
At the same time, the left two have very different tags, while
the right two have almost identical tags. This problem is
usually addressed through the visual attention mechanism
[31, 18, 30, 1, 13, 14]. However, the challenge is to learn
effective attention models.

In this work, we propose a novel generative feature learn-
ing algorithm for font retrieval that addresses the first prob-
lem. The key idea is that font is synthetic and font images
can be obtained through a process that can be controlled by
the learning algorithm. This is a fundamental difference be-
tween real images and synthetic images. Real images can-
not be controlled by the learning algorithm. We design the
learning algorithm and the rendering process so that the font
feature is agnostic to the characters. Specifically, we take
one font and two characters and render three images. The
first two images are rendered with the given font and the two
characters respectively. The third image is rendered with
the same character of the first image and a generic font. We
train the network so that the feature extracted from the first
image together with that of the third image can generate the
second image using a combination of reconstruction and ad-
versarial losses. This way, the feature from the first image
has to preserve the font information but not the character
information because it has to reconstruct the second image
which has a different character. To address the second at-
tention problem, we observe that there exists a strong corre-
lation between font recognition and attention maps. Based
on this observation, we design an implicit attention mecha-

nism to help the model adaptively select useful information
from the font recognition feature. In particular, we com-
pute an attention map re-weights the feature as an attentive
selection process.

1.1. Main Contributions

The main contributions of our paper are as follows: 1.
We collect a large-scale font tagging dataset of high-quality
professional fonts. The dataset contains nearly 20,000 fonts
and 2,000 tags and a human curated evaluation set. 2. We
propose a generative feature learning algorithm that lever-
ages the unique property of font images. 3. We propose
an attention mechanism to re-weight the learned feature for
visual-text joint modeling. 4. We combine the two com-
ponents in a recognition-retrieval model that achieves top
performance for font retrieval.

2. Related Work

The combination of font understanding and machine
learning starts from font recognition, where the problem is
to recognize a font from a text image. Early font recogni-
tion works try to recognize a font via artificial font features.
Zramdini et al. [39] identify the typeface, weight, slope, and
size of a font image and use a multivariate Bayesian clas-
sifier to classify the font. Zhu et al. [38] leverage Gabor
Filters to extract content-independent features for recogni-
tion. Chen et al. [3] feed local feature metric learning into
a nearest class mean font classifier. As deep learning be-
comes popular, Wang et al. [27] build a Convolution Neural
Network with domain adaptation techniques for font recog-
nition, while Liu et al. [16] use a multi-task adversarial net-
work to learn a disentangled representation and apply it to
recognize Japanese fonts. In [17], Liu et al. leverage GAN
to perform one-way transform from scene text to clean font
image for better recognition. Compared with [17], we es-
sentially perform font-specific mutual glyph transform as a
bridge to connect the glyph-level input and the font-level
tag. On the other hand, font generation and font style trans-
fer has became hot spot topics in recent years. The work of
Azadi et al. [2] successfully generates unobserved glyphs
from restricted observed ones through an stacked condi-
tional GAN model, Zhang et al. [34] propose an encoder-
decoder EMD model which separates content and style fac-
tors for font style transfer. Following their work, we focus
on tag-based font retrieval introduced in [21] and propose
a deep learning approach. Compared with other attribute-
based retrieval problems such as bird [25], scene [36], and
animal [12], there are larger numbers of tags organized
in complex semantic relationship, which significantly in-
creases the difficulty of this problem. While most recent
work [32, 23, 28] on the mentioned datasets focus on zero-
shot image retrieval , we currently do not consider unseen
tags for this task since there is no specialized knowledge
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base to describe font-related tags. But it is a problem of
future interests.

Generative Adversarial Network (GAN) is porposed by
Goodfellow et al. [6], which makes a generative model and
a discriminative model play a minimax game to encour-
age the generative model to output desired synthetic im-
ages. Recently, various GAN structures are proposed that
successfully achieve paired and unpaired image-to-image
transformation [9, 37], and image generation conditioned
on class labels [20]. The idea of GAN and adversarial learn-
ing are also applied on image retrieval task. Wang et al.
[26] propose an ACMR method for cross modal retrieval,
which implements adversarial learning to reduce the do-
main gap between the text feature and the image feature so
that a shared embedding space is constructed. Gu et al. [7]
achieve similar goal by directly integrating a GAN to gen-
erate corresponding images from text feature. The work of
Zhang et al. [33] train an attention module and a hashing
module in an adversarial way, which guides the attention
module to focus on useful regions/words of an image/text.

Attention mechanism has been successfully applied to
different visual-textual joint learning tasks such as image
captioning [31, 18], visual question answering [30, 1], text-
based image retrieval [13, 14] and semantic synthesis [19].
In most situations, attention mechanism directly guides the
model to capture useful image regions or language seg-
ments, which can be visualized and considered as explicit
attention. On the other hand, Kim et al. [10] propose an
implicit attention mechanism, which generates the attention
weight on feature maps instead of on raw data. Inspired by
this work, we design an effective approach to select useful
features adaptively for each input font image.

3. Large-scale Font Tagging Dataset

To the best of our knowledge, there exists no previous
public large-scale dataset suitable for tag-based font re-
trieval. The only font-tag dataset available is the one col-
lected by O’Donovan et al. [21]. It contains 1,278 Google
web fonts and 37 attributes. To facilitate research in this di-
rection, we collect a benchmark font tagging dataset from
MyFonts.com. We select MyFonts for the following rea-
sons: (1) Compared with free font resources such as Google
fonts, the fonts on MyFonts are designed by well-known
commercial font foundries which are in the typography
business for decades and use by professional graphic de-
signers. (2) MyFonts allows foundries, designers, and users
to label fonts using arbitrary tags instead of selecting tags
from a pre-defined set. This tremendously expands the tag
vocabulary of the font retrieval system and enables semantic
search of fonts. The fonts on MyFonts are originally labeled
according to font families. Specifically, each font family
contains a set of fonts of different design variations (e.g.
regular, italic, and bold). A family is labeled by a list of

|| sans-serif plain rough legible
#|AaBbCc
}||handwrite cursive handmade script
—
ol e
ballpoint script informal handwrite notebook
ghost geometric unusual outline art-deco
@ decorative funny cartoon informal comic cute round
Which is best matching font for the tag “happy”? HGBbCC
The quick brown fox ) ) )
- ornamental heavy poster ancient classic shade signage
The quick brown fox
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Figure 3. Overview of our large-scale font tagging dataset: (a) A
word cloud of high-frequency tags; (b) Font samples with labeled
tags; (c) A sample font group for AMT workers to rank.

associated tags. We find that under most conditions, a font
family is labeled based on the regular version of the family.
Therefore, for each font family, we use a set of pre-defined
rules to find the regular version and render text images of
the regular font as visual samples. In the end, we obtain in
total 18,815 fonts and their corresponding labeled tag lists.
We collect the complete Roman character glyph set (includ-
ing both uppercase and lowercase of the 26 characters) for
each font and render images of random character strings for
all the fonts. We randomly split the entire dataset into train-
ing, validation, and test sets according to the proportion of
0.8/0.1/0.1.

As each font may be tagged by different foundries, de-
signers, and users with varying quality, to guarantee the tag
consistency and filter out the noisy labels, we sequentially
apply the following tag pre-processing procedures: (1) con-
vert all the words to lowercase and correct misspelling; (2)
lemmatizing every word (e.g. kids — kid); (3) converting
a N-Gram tag into a word with hyphens (e.g. sans serif —
sans-serif); (4) combining the same tags based on the first
three steps; and (5) removing infrequent tags occurring less
than 10 times in the training set. In the end, we obtain 1,824
tags for our dataset. An overview of our collected dataset is
shown as Figure 3.

It should be noted that the tag data from MyFonts only
indicate whether a font matches a tag, but do not include
the relative ranking of the matching. Moreover, tag labels
collected from the web are inevitably noisy and incomplete.
For the purpose of evaluating algorithms, we additionally
collect a high-quality tagging set via Amazon Mechani-
cal Turk (AMT). This additional tagging dataset contains
the ranking information of different fonts for a given tag.
Specifically, we choose the top-300 frequent tags of the
MyFonts dataset. For each tag, we randomly generate 30
groups, each of which contains three test fonts that are al-
ready labeled with this tag. For each group of fonts, three
AMT workers are requested to select the best matching font
to the given tag after viewing a list of training fonts labeled
with this tag as a reference. To avoid bias from text seman-
tics, each font is represented by a font image rendered with a
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Figure 4. Overview of the proposed font retrieval system. We il-
lustrate the stages where a specific module is trained.

standard text as in Figure 3. We add a group into the test set
and label one of the fonts as the ground-truth only when all
three workers select this font from this group. In the end,
we collect 1,661 high confidence groups for the 300 tags,
which we use as the evaluation test set in the experiments.

4. Our Method

In this paper, we follow the common setting of image
retrieval tasks [29, 14, 26, 15]. We train a model to pre-
dict an affinity score between an input query and a a font
as their similarity. The font is represented by 52 glyph im-
ages (a-b and A-B). The affinity score between a font and
a query is averaged over all the 52 glyph images belonging
to this font. When a user inputs a query, we compute the
affinity scores of this query with all the fonts in the system
and recommend the ones with the highest affinity scores. In
contrast to the previous work [27] where each image con-
tains multiple characters, we find the global structure of a
text image (its character composition) does not provide ex-
tra information for the font retrieval problem. The overall
architecture of the proposed model is illustrated in Figure 4,
which is sequentially trained in four stages. In the following
subsections we describe each stage in details.

4.1. Basic Tag Recognition Model

In the first stage, different from typical retrieval models
[22, 26, 35] that directly learn a joint embedding for image
and tag features, we train a tag recognition model which
predicts the probability of an input glyph image with respect
to each tag. Overall, this is a multi-label learning task, since
one image may correspond to multiple tags. Specifically, let
{F}, ..., Far} be the training font set and {L1, ..., Ls2} be
the glyph set. We denote the text image containing glyph
L; of font F; as I]. Our basic tag recognition model first
extracts a hidden feature fij using a convolutional neural
network. The feature is then fed into a fully-connected layer
with N output nodes, where [V is the total tag vocabulary
size. In the end, a sigmoid unit maps the value of each
node to the range of (0, 1), which corresponds to the tag
probability for the input image. We employ a cross-entropy
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Figure 5. Generative Feature Learning: we transform input glyph
image’s character with a generative adversarial network.

loss to train the model:

N
Lo =33 (wF log(pl") + (1-y¥) log(1-pi™)), (1)

ij k=1

where pi"]C is the predicted probability for /; f wrt the k*" tag;
y¥ is 1if F; is labeled with the k'" tag, and 0 otherwise.

4.2. Generative Feature Learning

After training the tag recognition model, in the second
stage, we further encourage the extracted latent feature of a
glyph image to better capture the information about the font
instead of the character content. Otherwise, it may bias tag
prediction with irrelevant information. Our idea is that we
require a glyph image to be accurately generated via the la-
tent feature of another glyph image with a different charac-
ter but the same font. In particular, we design a conditional
generative adversarial network [6] consisting of a generator
and a discriminator as in Figure 5. Conditioned on the fea-
ture f; of image I/, the generator G is trained to convert an
input image I! rendered with a fixed standard font Fs and an
arbitrary character L, to a target image I I of the same font
style as I and same character as I* (i.e. If = G(f7, I')).
The discriminator D is trained to discriminate between the
generated image I! and the real image I}. The objective of
the GAN is expressed as:

Lgan = min max(E;;,1: [log D(I7, I7)]+ @)

E log (1 — D(G( ) Iﬁ),li))])

st i

Following [9], we design a PatchGAN architecture for the
discriminator to enhance the local details of the generated
image. Random noise is provided in the form of dropout.
Compared with DR-GAN [24], we do not require the dis-
criminator to explicitly recognize the character class of the
generated glyph image, which is irrelevant in our case. To
further encourage the generated image to have the same font
style as the targeted one, we add an L, distance loss as [9]:

Ly, :Eff,i;(||ff—jf||1)~ 3)

Our final objective of the GAN branch is:
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ngn,n = Lgan +A- LL1 (4)

The training objective of the recognition model is:
Lrec = Lc + 5 : ngana (5)

where A\ and 3 are hyper-parameters to adjust the relative
weights among different loss terms. In this training stage,
we first train GAN using Equation 4, and the features f] are
taken from the pre-trained tag recognition model without
back-propagation. After convergence, the tag recognition
model is fine-tuned by the ground-truth tags and GAN alter-
nately. More concretely, we split each training epoch into
two sub-epochs. In the first sub-epoch, we optimize the pa-
rameters of the CNN by 3 - L;44, While fixing the last fully-
connected layer. In the second sub-epoch, we optimize the
parameters of the CNN and the fully-connected layer by
L.. This training strategy yields better performance than
a multi-task training that jointly updates all the parameters.

4.3. Attentive Feature Selection

In the third stage, as motivated by the problem shown in
Figure 2, our model is further guided to select relevant infor-
mation based on the font class prediction of the input image.
To this end, we train a font classification model to predict
the font type of the input glyph image as in Figure 6. The
structure of the font classification model is similar to that
of the tag recognition model. It integrates a CNN to extract
the hidden feature of the image and feeds it into a fully-
connected layer with an output node size equal to the total
number of font classes. Since one glyph image uniquely
belongs to one font, this task is a single-label classification
task. We thus replace the sigmoid unit with the softmax unit
to map the outputs of the fully-connected layer, and train the
font classification model using the cross-entropy loss. We
feed the predicted font class probability distribution ¢ for
an input glyph I 7 into an attention module which contains a
fully-connected layer followed by a sigmoid unit. The dis-
tribution is transformed into an attention map BJ where Bj
has the same dimension as the hidden feature ij , and its
values are in the range of (0, 1).

Feature Tag Probability

Tag List Query Binary Embedding

heavy.
q round, Vg
Legmii: 777777 Retrieval Model
Afflmty Score

Glyph Image Tag Probabmty

i Tag j
Ii G Recognition pi

Model

Figure 7. Combined recognition-retrieval model: the retrieval
model is trained on top of the tag recognition model with query
tag combinations.

The attention map estimated based on one image I; J may
not be reliable. Therefore, during training, we aggregate
the attention maps from a set of .J images {I7*, ..., 77}
of the same font F; and randomly selected character set
Lj,,...,L;,. The final attention map B; for font F; is com-
puted as:

Bi=B' ©B*®..0 B, (©6)

where © represents the element-wise multiplication. This
random selection of multiple glyph images improves the
accuracy and selectivity of the attention map for a spe-
cific font. In the end, we take the element-wise multipli-
cation between f7 and B; to obtain the re-weighted feature
of I f , which is then fed into the top fully-connected layer
of the tag recognition model. As in [10], our node-level
feature re-weighting enforces an implicit attention mech-
anism. Figure 6 shows the overall structure of our tag
prediction model with the attentive feature selection mod-
ule integrated. When we train the model in this stage, the
same training objective as Section 4.1 is employed to update
only the parameters of the attention module and the last tag
recognition fully-connected layer. Given a glyph image at
test time, we only extract one attention map from this single
image without further aggregation, leading to a significantly
faster retrieval speed as well as competitive accuracy.

4.4. Combined Recognition-Retrieval Model

For a single-tag query, we define its affinity score to a
glyph image as the predicted probability of the tag recogni-
tion model. Indeed, the model can also be used for retriev-
ing fonts from multi-tag queries by computing the affinity
score as the product or sum of the predicted probabilities of
all the tags in the query. However, due to the imbalance of
tag occurrence, the predicted probabilities of popular tags
are usually much higher than those unpopular ones, leading
to the tag dominance problem. The top recommended fonts
may just match few tags of a multi-tag query.

Therefore, for multi-tag query, in the fourth stage, we
introduce a retrieval model (as Figure 7) on top of the tag
recognition model that maps the predicted tag probabilities
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to a comprehensive affinity score with unbiased consider-
ation for each query tag. Given a pair of input image I}
and query g, the tag recognition model first predicts the tag
probability distribution p] € RY. On the other hand, the
query is encoded as a binary vector v, € RY, whose ¢-th en-
try is set to 1 if the query contains the ¢-th tag. The retrieval
model takes the element-wise multiplication of p] and v,
to generate a query-based tag probability vector, and feeds
it into two-layer fully-connected network to get the affinity
score between I and ¢. Before fed into the fully-connected
layer, the query-based tag probability vector is first mapped
by a power activation function  — (z + €)%, where « is
a hyper-parameter and e is used to prevent infinite gradient.
It shows better performance in transforming probabilities
than other common activation functions. At the top of the
second layer there has a sigmoid activation function which
maps the output score in the range of (0, 1). Following [29],
we train the retrieval model as a relation network by sam-
pling triplets of query, positive image and negative image.
The query is composed of 2 to 5 randomly selected tags,
all/not all of which are included in the ground-truth tags of
the positive/negative image. We train the retrieval model by
minimizing the following pairwise soft ranking loss:

Lyet = Eq,[*,]* [1Og(1 + exp(’Y(S(lLIi)_S((LIJF)))} ’
(7

where I™ and I~ are positive and negative samples for
query g, and s(g, I) is the affinity score between ¢ and
outputted by the retrieval model. The parameters of the tag
recognition model are fixed in this stage.

5. Experiments

In this section, we compare our proposed method with
state-of-the-art image retrieval methods adapted to our font
retrieval dataset. An ablation study is presented to demon-
strate the effectiveness of each component in our method.

5.1. Dataset and Experiment Settings

We train all our models on the MyFonts training set and
evaluate them on the two test sets presented in Section 3,
which are named MyFonts-test and AMT-test, respectively.
MyPFonts-test contains 1,877 fonts split from the original
MyFonts dataset and is labeled with 1,684 different tags.
We construct three query sets for evaluation. The first query
set focuses on single-tag queries. It contains all the 1,684
tags with each tag considered as a query. The second query
set focuses on multi-tag queries. For each font in MyFonts-
test, we randomly generate 3 subsets of its ground-truth
tags as 3 multi-tag queries. The query size ranges from 2
to 5 tags. After filter out repeating queries, this query set
contains 5,466 multi-tag queries. The third query set fo-
cuses on testing the retrieval performance of the model on

frequent tags that are more likely be searched. It contains
the top-300 frequent tags in the training set with each tag
considered as a query. For the first and third query sets, a
font matches to a query (i.e. a positive font) if its ground-
truth tag list contains the corresponding tag. For the second
query set, a font matches to a query if its ground-truth tag
list contains all the tags of the query. For each query set,
we adopt two well-known retrieval metrics, i.e., Mean Av-
erage Precision (mAP) and Normalized Discounted cumu-
lative gain (nDCG) for model evaluation. Please refer to our
supplementary material for a detailed description of the two
metrics. AMT-test contains 1,661 groups, with each group
associating a tag with one most relevant ground-truth font.
Given a tag from a group, we compute and rank the affinity
scores of all the fonts with respect to the tag for different
models. We compare both the accuracy of each model se-
lecting the ground-truth font in each group and the average
rank of the ground-truth.

5.2. Implementation Details

For both tag recognition model and font classification
model, we select ResNet-50 [8] as the base CNN architec-
ture, where the hidden feature of an image is extracted from
the pool5 layer of ResNet-50. We follow the pix2pix GAN
[9] to build the generator as an encoder-decoder structure
with skip connections. It receives a standard 128 x 128
glyph image with a fixed font F from its encoder, and con-
catenates the hidden feature computed by the tag recogni-
tion model before the bottleneck layer. For the discrimina-
tor, we apply a 14 x 14 local discriminator with three con-
volutional layers, to differentiate between real and fake lo-
cal patches. We use hyper-parameters A=10 in Equation 4,
£5=0.04 in Equation 5, J=4 in Section 4.3, and a=0.1,
=100 in Section 4.4. When being trained in a particu-
lar stage, the learning rates of the CNN, the GAN, the last
fully-connected layer, and the top retrieval model are set
to 5x10™%, 2x 1073, 5x 1072 and 5x10~2. We use batch
size 20 in all the training experiments. Weight initialization
details are provided in the supplementary material.

5.3. MyFonts Test

Since there are no prior works for large-scale font re-
trieval, we adapt and compare against several state-of-the-
art image retrieval methods [15, 5, 29] for our task. The
implementation details are as follows.

GNA-RNN [15]: the modified GNA-RNN model uses
ResNet-50 [8] to extract the font image feature. Because
there is no order among query tags, we use two fully-
connected layers to extract the query feature from the binary
encoding of the query input instead of using a RNN. After
that, the image feature and query feature are mapped into
the same embedding. Their inner product is further com-
puted to obtain the affinity score. We use random positive
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Figure 8. Retrieval results of our model on typical single-tag and multi-tag queries (font is represented by a random 5-character image).

Methods Single tag (300) | Single tag (full) Multi tag

mAP | NDCG | mAP | NDCG | mAP | NDCG

GNA-RNN [15] 1490 | 56.97 5.03 28.41 7.01 27.49
DeViSE [5] 13.43 | 55.98 3.73 26.04 5.48 25.80
RelationNet [29] 1533 | 57.49 5.66 29.27 7.52 28.05

Ours
GAN | Att | Retr

X X X 26.29 | 68.67 | 16.77 | 42.63 | 1493 | 3552
v X X 2699 | 69.18 | 17.30 | 43.15 | 1537 | 35.87
X v X 27.75 | 69.81 1776 | 43.65 | 15.78 | 36.40
v v X 28.08 | 70.04 | 18.02 | 4395 | 16.06 | 36.72
v v v | 28.08 | 70.04 | 18.02 | 43.95 | 16.74 | 37.57

Table 1. Comparison of different retrieval models on MyFonts-
test set. “GAN” denotes our generative feature learning module.
“Att” denotes our attentive feature selection module. “Retr” de-
notes our retrieval model. “v” denotes with while “X” denotes
without. For a framework without the retrieval model, it computes
the affinity score between a glyph image and a query as the product
of the image’s predicted probabilities of all the tags in the query.

and negative pairs of font images and query tags as training
samples to train the model using a cross-entropy loss.

DeViSE [5]: Image features are extracted using the same
ResNet-50 model. Tag embedding is trained from scratch
because there is no appropriate text dataset with font re-
lated words. The method directly transforms an image and
a query feature into an affinity score using a transformation
matrix. Hinge ranking loss is applied during training.

RelationNet [29]: We use the same networks as in GNA-
RNN to extract and map the font features and the tag fea-
tures. The two features are concatenated and mapped to
affinity scores using two fully-connected layers. Mean
square error loss is employed during training.

The results of our method compared with other retrieval
methods on the MyFonts-test set are presented in Table 1. It
is clear that our method outperforms all the other methods
by a large margin. Surprisingly, our basic tag recognition
model described in Section 4.1 (the 4th result in Table 1)
is already better than the other image retrieval based meth-
ods. We believe that the recognition based model is more
suitable for the font retrieval task than the retrieval models

«f B N IM - E
«»f B N I L E
«K B N M L E
(@ R 5 11 '( |(_) E

(1) () (m) ) (v1)
Figure 9. Comparison of the reconstructed glyph images using
different feature nodes: (a) ground-truth (input) glyph, (b) re-
constructed glyph from the top-100 feature nodes of the input’s
own attention map, (c) reconstructed glyph from the bottom-100
feature nodes of the input’s own attention map, (d) reconstructed
glyph from the top-100 feature nodes of the adjacent glyph’s atten-
tion map (“T” «<» “II”, “III” <> “IV”, “V” < “VI”). Each column
represents an input/reconstructed group.

which usually learn a joint embedding between the image
feature and the tag feature. This can be attributed to the fact
that font tags have very subtle meaning which is hard to cap-
ture by a joint embedding. In addition, the training data we
collected from the web may not be complete. For example,
some tags may be omitted by web users for a given font.
In comparison to commonly used ranking loss and triplet
loss for image retrieval, the multi-label cross-entropy loss
can be considered as a separately training classifier for each
tag, which is more robust to handle such annotation noise,
and thus achieves better results.

The bottom part of Table 1 shows the ablation study of
our method. With individual modules added one by one,
our method gets steady improvements, which demonstrates
the effectiveness of each component. The generative feature
learning module and the attentive feature selection module
capture font specific features and thus learn a better font
feature representation, which leads to improved retrieval re-
sults. The retrieval model handles the imbalanced tag fre-
quency in multi-tag queries, so that the top ranked fonts can
match all the tags in the query. We show some font retrieval
results based on our full model in Figure 8.
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Figure 10. Comparison of the models with (“+RetM”) and with-
out (“-RetM”) the retrieval model on typical queries. The obvious
failure cases are outlined by blue boxes.

We show some qualitative results to further demonstrate
the effectiveness of the proposed modules. We first ver-
ify that the attentive selection is effective in guiding the
model to select useful and discriminated features for dif-
ferent fonts. Because the implicit attention mechanism is
implemented at the node level, it is difficult to visualize
as explicit attention mechanism. Therefore, we design a
novel way for visualization. First, we train a GAN in the
same way as Section 4.2 to reconstruct a glyph image from
its extracted hidden feature. Given an input glyph image,
we further restrict the GAN to reconstruct the glyph image
by only using its top-100/bottom-100 hidden feature nodes
with the highest/lowest attention weights from this atten-
tion map. We manually set the rest nodes to 0. For the
last row in Figure 9, we reconstruct each glyph image us-
ing its 100 feature nodes correspond to the highest atten-
tion weights on the attention map of another glyph image.
From Figure 9, we find that a glyph image reconstructed by
the top-100 nodes based on its own attention map is more
similar to the original input image. This serves our moti-
vation for attentive feature selection, which is to adaptively
select features that have effect on the input glyph image’s
tags and filter out the useless ones that cause error. In ad-
dition, the cross-attention generation results in the last row
indicate that the model pays attention to different features
for different fonts, instead of simply focusing on a uniform
set of features.

Finally, Figure 10 shows the different multi-tag retrieval
results obtained with and without the retrieval model. Given
a multi-tag query including a frequent tag “script” and an in-
frequent tag “noisy”, our retrieval model can retrieve fonts
which match both tags. While without the retrieval model,
our retrieval results are less satisfactory, it recommends

Methods Accuracy | Ave. Rank
Ours-Basic 44.49 1.81
Ours 47.50 1.75

Table 2. Comparison of our basic tag recognition model and full
model on the AMT-test set.

block headline
THE ALICH broun FEN ./ [The quick brewn fox
‘The quick brown fox CPMHE QUICR BREWIN FOR

iThe quick brown fox X The quick brown fox

halloween thin

(THE QUICH BROIIT FOH  {The quick brown fox
¢ {THE QUICK BROWN FOX

{THE QUICB BROWN FOX b & i
The quick hrawn Tox i iThe quick brown fox ¥

Figure 11. Qualitative comparison of our basic recognition model
and full model on typical groups of AMT-test. The fonts with “X”
are falsely predicted by the basic recognition model, the ground-
truth fonts with “v” are correctly predicted by the full model.

some fonts that don’t have attribute “script” because of the
tag dominance problem.

5.4. AMT Test

Table 1 shows that our basic recognition model is a
strong baseline and much better than previous retrieval
methods. We only compare our full model with the basic
recognition model on the AMT-test set. Overall, the task
on AMT-test is difficult because all fonts in the group of a
tag is originally labeled with the tag. The model needs to
select the fonts that are more relevant. As shown in Table 2,
our full model achieves better performance than the basic
version. It indicates that for the top-related fonts toward
one tag, the ranking of the full model is still more consis-
tent with the human judgment. Some qualitative results are
illustrated in Figure 11.

6. Conclusion

In this paper, we study the problem of tag-based font re-
trieval. We collect a large-scale font tagging dataset. We
propose a joint recognition-retrieval model. In particular, a
recognition model is first trained to predict the tag proba-
bilities of a font. With the guidance of the generative fea-
ture learning and attentive feature selection mechanisms,
the model adaptively selects the general and significant in-
formation of the font and makes better tag probability pre-
diction. A retrieval model is further integrated to map tag
probabilities to font-query affinity scores. Extensive quali-
tative and quantitative evaluations validate the effectiveness
of our model for font retrieval.
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