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Abstract

Attention has become more attractive in person re-

identification (ReID) as it is capable of biasing the allo-

cation of available resources towards the most informative

parts of an input signal. However, state-of-the-art works

concentrate only on coarse or first-order attention design,

e.g. spatial and channels attention, while rarely explor-

ing higher-order attention mechanism. We take a step to-

wards addressing this problem. In this paper, we first pro-

pose the High-Order Attention (HOA) module to model and

utilize the complex and high-order statistics information in

attention mechanism, so as to capture the subtle differences

among pedestrians and to produce the discriminative atten-

tion proposals. Then, rethinking person ReID as a zero-shot

learning problem, we propose the Mixed High-Order Atten-

tion Network (MHN) to further enhance the discrimination

and richness of attention knowledge in an explicit manner.

Extensive experiments have been conducted to validate the

superiority of our MHN for person ReID over a wide variety

of state-of-the-art methods on three large-scale datasets, in-

cluding Market-1501, DukeMTMC-ReID and CUHK03-NP.

Code is available at http://www.bhchen.cn/.

1. Introduction

Since the quest for algorithms that enable cognitive abil-

ities is an important part of machine learning, person re-

identification (ReID) has become more attractive, where the

model is requested to be capable of correctly matching im-

ages of pedestrians across videos captured from different

cameras. This task has drawn increasing attention in many

computer vision applications, such as surveillance [49], ac-

tivity analysis [31, 32] and people tracking [55, 44]. It is

also challenging because the images of pedestrians are cap-

tured from disjoint views, the lighting-conditions/person-

poses differ across cameras, and occlusions are frequent in

real-world scenarios.

Affected by the aforementioned factors, the discrimina-

∗Corresponding author

Figure 1. Attention comparison. (1) Spatial attention uses

softmax-like gated functions to produce a spatial mask. (2) Chan-

nel attention [19] uses global average pooling and fully connected

layers to produce a scale vector. (3) Our high-order attention uses

high-order polynomial predictor to produce scale maps that con-

tain high-order statistics of convolutional activations.

tion of feature representations of pedestrian images actu-

ally is not good enough. In order to obtain discriminative

feature representations, many research works [30, 27, 25,

52, 21, 58, 45] resort to attention mechanism so as to high-

light the informative parts (e.g. spatial locations) of con-

volutional responses and suppress the noisy patterns (e.g.

background). Specifically, spatial attention [25, 27, 52] is a

form of visual attention that involves directing attention to

a location in space, it allows CNN to selectively process vi-

sual information of an area within the visual field. While, in

spatial attention, the processing strategy of spatial masking

is coarse and has no intrinsic effect on modulating the fine-

grained channel-knowledge. Recently, channel attention

[10, 19, 27] is proposed to adaptively recalibrates channel-

wise convolutional responses by explicitly modelling in-

terdependencies among channels. And the combination of

spatial and channel attention has also been successfully ap-

plied in person ReID [27]. However, we emphasize that

these commonly used attention methods (i.e. spatial and

channel attention) are either coarse or first-order, being con-

fined to mining only simple and coarse information, in per-

son ReID cases, they are insufficiently rich to capture the
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complex/high-order interactions of visual parts and the sub-

tle differences among pedestrians caused by various view-

points/person poses, as a result, the produced attention maps

are neither discriminative or detailed. To this end, we ded-

icate to modeling the attention mechanism via high-order

statistics of convolutional activations so as to capture more

complex and high-order relationships among parts and to

produce powerful attention proposals.

Moreover, we rethink the problem of person ReID as a

zero-shot learning (ZSL) task where there is no intersec-

tion of pedestrian identities between training and testing

sets. Zero-shot learning has large gap with conventional

full-shot learning (e.g. classification on CIFAR [8, 7], Im-

agenet [38]), and in zero-shot settings, the phenomenon of

‘partial/biased learning behavior of deep model’ [5] largely

affects the embedding performance, i.e. the deep model will

only focus on the biased visual knowledges that only ben-

efit to the seen identities and ignore the other helpful ones

that might be useful for identifying the unseen identities.

In other words, deep models easily learn to focus on sur-

face statistical regularities rather than more general abstract

concepts. However, many ReID works ignore this intrin-

sic problem of zero-shot learning. To this end, proposing

detail-preserving attention framework remains important.

In this paper, we first propose High-Order Attention

(HOA) module, a novel and powerful attention mechanism,

to model the complex and high-order relationships among

visual parts via high-order polynomial predictor, such that

the subtle differences among pedestrian can be captured and

discriminative attention results can be produced. Then, re-

thinking person ReID as a zero-shot problem, we propose

Mixed High-Order Attention Network (MHN) to prevent

the problem of ‘biased learning behavior of deep model‘ [5]

and to encourage the richness of attention information. It is

mainly achieved by employing multiple HOA modules with

different orders to model diverse high-order statistics, such

that all-sided attention knowledge can be preserved and thus

the unseen pedestrian identity can be successfully recog-

nized. Additionally, we introduce the adversarial learning

constraint for MHN to further prevent the order collapse

problem during training 1, so as to explicitly enhance the

discrimination of MHN. Our contributions can be summa-

rized as follows:

• The High-Order Attention (HOA) module is proposed

to capture and use high-order attention distributions.

To our knowledge, it is the first work to propose and

apply high-order attention module in Person-ReID.

• We rethink ReID as zero-shot learning task and

propose the Mixed High-Order Attention Network

1Although, the proposed high-order attention module has ability to cap-

ture complex and high-order statistics, but suffering from ‘biased learn-

ing behavior of deep model‘, in zero-shot settings, the high-order module

might collapse to lower-order module.

(MHN) to efficiently utilize multiple HOA modules,

so as to enhance the richness of attention by explic-

itly suppressing the ‘biased learning behavior of deep

model‘. And adversary learning constraint is intro-

duced to further prevent the problem of order collapse.

• MHN is a generally applicable and model-agnostic

framework, it can be easily applied in the popular base-

line architectures, such as IDE [63] and PCB [43].

• Extensive experiments demonstrate the superiority of

the proposed MHN over a wide range of state-of-

the-art ReID models on three large benchmarks, i.e.

Market-1501 [61], DukeMTMC-ReID [37, 65] and

CUHK03-NP [26, 66].

2. Related work

Person ReID & Attention Mechanism: Person ReID

intends to correctly match images of pedestrians across

videos captured from different cameras, it has been widely

studied, such as ranking by pairwise constraints [34, 48],

metric learning [54, 51], deep embedding learning [63, 43],

re-ranking [62, 16] and attributes learning [40, 60]. Re-

cently, attention methods [10, 53, 19, 46] in deep commu-

nity are more attractive, in this paper, we focus on improv-

ing the performance of ReID via attention strategy.

Attention serves as a tool to bias the allocation of avail-

able resources towards the most informative parts of an in-

put. Li et al. [24] propose a part-aligning CNN network

for locating latent regions (i.e. hard attention) and then ex-

tract and exploit these regional features for ReID. Zhao et

at. [59] employ the Spatial Transformer Network [20] as the

hard attention model for finding discriminative image parts.

Except hard attention methods, soft attention strategies are

also proposed to enhance the performance of ReID. For ex-

ample, Li et at. [25] use multiple spatial attention modules

(by softmax function) to extract features at different spa-

tial locations. Xu et al. [52] propose to mask the convo-

lutional maps via pose-guided attention module. Li et al.

[27] employ both the softmax-based spatial attention mod-

ule and channel-wise attention module [19] to enhance the

convolutional response maps. However, spatial attention

and channel attention are coarse and first-order respectively,

and are not capable of modeling the complex and high-order

relationships among parts, resulting in loss of fine-grained

information. Thus, to capture detailed and complex infor-

mation, we propose High-Order Attention (HOA) module.

High-order statistics: It has been widely studied in tra-

ditional machine learning due to its powerful representation

ability. And recently, the progresses of challenging fine-

grained visual categorization task demonstrates integration

of high-order pooling representations with deep CNNs can

bring promising improvements. For example, Lin et al. [29]

proposed bilinear pooling to aggregate the pairwise feature

interactions. Gao et al. [15] proposed to approximate the
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second-order statistics via Tensor Sketch [35]. Yin et al.

[12] aggregated higher-order statistics by iteratively apply-

ing the Tensor Sketch compression to the features. Cai et al.

[2] used high-order pooling to aggregate hierarchical convo-

lutional responses. Moreover, the bilinear pooling and high-

order pooling methods are also applied in Visual-Question-

Answering task, such as [14, 22, 56, 57]. However, differ-

ent from these above methods which mainly focus on using

high-order statistics on top of feature pooling, resulting in

high-dimensional feature representations that are not suit-

able for efficient/fast pedestrian search, we instead intend

to enhance the feature discrimination by attention learning.

We model high-order attention mechanism to capture the

high-order and subtle differences among pedestrians, and to

produce the discriminative attention proposals.

Zero-Shot Learning: In ZSL, the model is required to

learn from the seen classes and then to be capable of utiliz-

ing the learned knowledge to distinguish the unseen classes.

It has been studied in image classification [28, 4], video

recognition [13] and image retrieval/clustering [5]. Interest-

ingly, person ReID matches the setting of ZSL well where

training identities have no intersection with testing identi-

ties, but most the existing ReID works ignore the problem

of ZSL. To this end, we propose Mixed High-Order Atten-

tion Network (MHN) to explicitly depress the problem of

‘biased learning behavior of deep model‘ [5, 6] caused by

ZSL, allowing the learning of all-sided attention informa-

tion which might be useful for unseen identities, preventing

the learning of biased attention information that only bene-

fits to the seen identities.

3. Proposed Approach

In this section, we will first provide the formulation of

the general attention mechanism in Sec. 3.1, then detail

the proposed High-Order Attention (HOA) module in Sec.

3.2, finally show the overall framework of our Mixed High-

Order Attention Network (MHN) in Sec. 3.3.

3.1. Problem Formulation

Attention acts as a tool to bias the allocation of available

resources towards the most informative parts of an input. In

convolutional neural network (CNN), it is commonly used

to reweight the convolutional response maps so as to high-

light the important parts and suppress the uninformative

ones, such as spatial attention [25, 27] and channel atten-

tion [19, 27]. We extend these two attention methods to

a general case. Specifically, for a convolutional activation

output, a 3D tensor X , encoded by CNN and coming from

the given input image. We have X ∈ R
C×H×W , where

C,H,W indicate the number of channel, height and width,

resp. As aforementioned, the goal of attention is to reweight

the convolutional output, we thus formulate this process as:

Y = A(X )⊙X (1)

where A(X ) ∈ R
C×H×W is the attention proposal output

by a certain attention module, ⊙ is the Hadamard Product

(element-wise product). As A(X ) serves as a reweighting

term, the value of each element of A(X ) should be in the

interval [0, 1]. Based on the above general formulation of at-

tention, A(X ) can take many different forms. For example,

if A(X ) = rep[M ]|C where M ∈ R
H×W is a spatial mask

and rep[M ]|C means replicate this spatial mask M along

channel dimension by C times, Eq. 1 thus is the implemen-

tation of spatial attention. And if A(X ) = rep[V ]|H,W

where V ∈ R
C is a scale vector and rep[V ]|H,W means

replicate this scale vector along height and width dimen-

sions by H and W times resp, Eq. 1 thus is the implemen-

tation of channel attention.

However, in spatial attention or channel attention, A(X )
is coarse and unable to capture the high-order and complex

interactions among parts, resulting in less discriminative at-

tention proposals and failing in capturing the subtle differ-

ences among pedestrians. To this end, we dedicate to mod-

eling A(X ) with high-order statistics.

3.2. High­Order Attention Module

To model the complex and high-order interactions within

attention, we first define a linear polynomial predictor on

top of the high-order statistics of x, where x ∈ R
C denotes

a local descriptor at a specific spatial location of X :

a(x) =

R∑

r=1

〈wr,⊗rx〉 (2)

where 〈·, ·〉 indicates the inner product of two same-sized

tensors, R is the number of order, ⊗rx is the r-th order

outer-product of x that comprises all the degree-r mono-

mials in x, and w
r is the r-th order tensor to be learned that

contains the weights of degree-r variable combinations in x.

Considering w
r with large r will introduce excessive

parameters and incur the problem of overfitting, we sup-

pose that when r > 1, w
r can be approximated by Dr

rank-1 tensors by Tensor Decomposition [23], i.e. w
r =∑Dr

d=1 α
r,d

u
r,d
1 ⊗ · · · ⊗ u

r,d
r when r > 1, where u

r,d
1 ∈

R
C , . . . ,ur,d

r ∈ R
C are vectors, ⊗ is the outer-product, αr,d

is the weight for d-th rank-1 tensor. Then according to the

tensor algebra, Eq. 2 can be reformulated as:

a(x) = 〈w1,x〉+

R∑

r=2

〈

Dr∑

d=1

αr,d
u
r,d
1 ⊗ · · · ⊗ u

r,d
r ,⊗rx〉

= 〈w1,x〉+

R∑

r=2

Dr∑

d=1

αr,d

r∏

s=1

〈ur,d
s ,x〉

= 〈w1,x〉+
R∑

r=2

〈αr, zr〉 (3)
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where α
r = [αr,1, · · · , αr,Dr

]T is the weight vector, zr =
[zr,1, · · · , zr,D

r

]T with zr,d =
∏r

s=1〈u
r,d
s ,x〉. For later

convenience, Eq. 3 can also be written as:

a(x) = 1
T (w1 ⊙ x) +

R∑

r=2

1
T (αr ⊙ z

r) (4)

where ⊙ is Hadamard Product and 1
T is a row vector of

ones. Then, to obtain a vector-like predictor a(x) ∈ R
C ,

Eq. 4 is generalized by introducing the auxiliary matrixes

P
r:

a(x) = P
1T (w1 ⊙ x) +

R∑

r=2

P
rT (αr ⊙ z

r) (5)

where P
1 ∈ R

C×C , Pr ∈ R
Dr×C with r > 1. Since

all Pr,w1,αr are parameters to be learned, for implemen-

tation convenience, we can integrate {P1,w1} into a new

single matrix ŵ
1 ∈ R

C×C according to matrix algebra, and

{Pr,αr} into α̂
r ∈ R

Dr×C (simple proof is in Supple-

mentary file). Then Eq. 5 can be expressed as:

a(x) = ŵ
1T

x+

R∑

r=2

α̂
rT

z
r (6)

The above equation contains two terms, for clarity, we

intend to formulate it into a more general case. Suppose ŵ1

can be approximated by the multiplication of two matrixes

v̂ ∈ R
C×D1

and α̂
1 ∈ R

D1×C , i.e. ŵ1 = v̂α̂
1. then Eq. 6

can be reformulated as:

a(x) = α̂
1T (v̂T

x) +

R∑

r=2

α̂
rT

z
r =

R∑

r=1

α̂
rT

z
r (7)

where z
1 = v̂

T
x, and when r > 1, zr is the same as in Eq.

3. α̂r ∈ R
Dr×C are the trainable parameters.

In Eq.7, a(x) is capable of modeling and using the high-

order statistics of the local descriptor x, thus, we can ob-

tain the high-order vector-like attention ‘map’ by perform-

ing Sigmoid function on Eq. 7:

A(x) = sigmoid(a(x)) = sigmoid(

R∑

r=1

α̂
rT

z
r) (8)

where A(x) ∈ R
C and the value of each element in A(x) is

in the interval [0, 1].
Nonlinearity: Moreover, in order to further improve the

representation capacity of this high-order attention ‘map’,

inspired by the common design of CNN, we provide a vari-

ation of Eq.8 by introducing nonlinearity as follows:

A(x) = sigmoid(

R∑

r=1

α̂
rTσ(zr)) (9)

where σ denotes an arbitrary non-linear activation function,

here, we use ReLU [33] function. A(x) in Eq.9 is finally

employed as the required high-order attention ‘map’ for the

corresponding local descriptor x. The experimental com-

parisons between Eq.8 and Eq.9 are in Sec. 4.

Full module: As aforementioned, A(x) is defined on a

local descriptor x, to obtain A(X ) which is defined on 3D

Figure 2. Illustration of High-Order Attention (HOA) modules.

tensor X , we generalize Eq.9. Specifically, we share the

learnable weights in A(x) among different spatial locations

of X and let A(X ) = {A(x(1,1)), · · · , A(x(H,W ))}, where

x(h,w) indicates a local descriptor at spatial location point

(h,w) of X . Employing this attention map A(X ) in CNN

has two benefits. (1) sharing weights among different spa-

tial locations will not incur excessive parameters. (2) A(X )
can be easily implemented by 1x1 convolution layers. After

obtaining the high-order attention map A(X ), our High-

Order Attention (HOA) module can be formulated in the

same way as Eq. 1, i.e. Y = A(X )⊙X .

Implementation: Since the learnable parameters are

shared among spatial locations, all operations in A(X ) can

be implemented by Convolution. As illustrated in Fig. 2.(a),

when R = 1, matrixes {v̂, α̂1} are implemented by 1x1

convolution layers with D1 and C output channels, resp.

When R > 1, r > 1, we first employ {ur,d
s }d=1,··· ,Dr as

a set of Dr 1x1 convolutional filters on X so as to produce

a set of feature maps Zr
s with channels Dr, then feature

maps {Zr
s}s=1,··· ,r are combined by element-wise product

to obtain Zr = Zr
1 ⊙ · · · ⊙ Zr

r , where Zr = {zr}, and α̂
r

can also be implemented by 1x1 convolution layer. A toy

example of HOA when R = 3 is illustrated in Fig.2.(b).

Remark: The proposed HOA module can be easily im-

plemented by the commonly used operations, such as 1x1

convolution and element-wise product/addition. Equipped

by the powerful high-order predictor, the attention propos-

als could be more discriminative and is capable of model-

ing the complex and high-order relationships among parts.

Moreover, the channel attention module in [19, 27] is called

to be first-order because (1) GAP layer only collects first-

order statistics while neglecting richer higher-order ones,

suffering from limited representation ability [11] (2) fully-

connected layers can be regarded as 1x1 convolution layers

and thus the two cascaded fully-connected layers used in
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Figure 3. Illustration of Mixed High-Order Attention Network

(MHN). Our MHN is model-agnostic, it can be applied in both

IDE [63] and PCB [43] architectures, here for clarity, we take

ResNet50 [18] based IDE for example. The adversary constraint

is used to regularize the order of HOA modules.

channel-attention [19] are equivalent to our HOA module

when R = 1 (regardless of the spatial dimensions and see

Fig.2.(a)). In summary, the full channel attention module

can only collect and utilize the first-order information, be-

ing insufficiently rich to capture the complex interactions

and to produce the discriminative attention maps. And if

without using GAP, the channel attention module can be re-

garded as a special case of our HOA with R = 1, further

demonstrating it indeed is first-order.

3.3. Mixed High­Order Attention Network

Considering that Person ReID essentially pertains to

zero-shot learning (ZSL), where there is no intersection be-

tween training identities and testing identities, we should

explicitly suppress the problem of ‘biased learning behav-

ior of deep model’ caused by zero-shot settings [5]. Specif-

ically, in ZSL, the deep model easily learn to focus on sur-

face statistical regularities rather than more general abstract

concepts, in other words, deep model will selectively learn

the biased knowledge that are only useful to distinguish the

seen identities, while ignore the knowledge that might be

useful for unseen ones. Therefore, to correctly recognize

the unseen identities, we propose Mixed High-Order At-

tention Network (MHN) to utilize multiple HOA modules

with different orders such that the diverse and complemen-

tary high-order information can be explicitly used, encour-

aging the richness of the learned features and preventing the

learning of partial/biased visual information.

For a toy example as shown in Fig. 3, the proposed MHN

is constituted by several different HOA modules such that

the diverse statistics of visual knowledge could be modeled

and used. In particular, ResNet50 is first decomposed into

two parts, i.e. P1 (from conv1 to layer22) and P2 (from

layer3 to GAP). P1 is used to encode the given image from

raw pixel space to mid-level feature space, P2 is used to

encode the attentional information to the high-level feature

space where the data can be classified. HOA modules with

2Named in pytorch [36] manner.

different orders (e.g. {R = 1, 2, 3}) are placed between

P1 and P2 so as to produce the diverse high-order attention

maps and intensify the richness within learned knowledge.

Worthy of mention is that our MHN won’t introduce exces-

sive parameters since P2 modules share the same weights

across different attention streams.
However, simply employing multiple HOA modules

with different orders won’t lead the best performance of
MHN, since one HOA module with higher order might col-
lapse to a relatively lower order module due to ‘the par-
tial/biased learning behavior of deep model’. Specifically,
from Eq. 7, one can observe that for a k-th order HOA
module, a(x) also contains the l-th order sub-term (where
l < k). In theory, HOA module with R = k can cap-
ture and use the k-th order statistics of local descriptor x,
but in actual, especially in zero-shot learning settings, due
to the fact that the deep model will selectively learn sur-
face statistical regularities that are the easiest ones to distin-
guish the seen classes [5], the k-th order attention module
might collapse to a lower-order counterpart as lower-order
statistics are common and are much easier to collect than
higher-order statistics. Therefore, these HOA modules with
different Rs actually collapse to some similar lower-order
counterparts, and the wanted diverse higher-order attention
information are not captured. To this end, inspired by GAN
[17], we introduce the adversary constraint for regularizing
the order of HOA to be different, as shown in Fig. 3, it can
be formulated as:

max
HOA|R=k

R=1

min
F

(Ladv) = max
HOA|R=k

R=1

min
F

(

k∑

j,j
′
,j 6=j

′

‖F (fj)−F (f
j
′ )‖22)

(10)
where HOA|R=k

R=1 means there are k HOA modules (from

first-order to k-th order) in MHN, F indicates the encod-

ing function parameterized by the adversary network which

contains two fully-connected layers, fj is the feature repre-

sentation vector learned from the corresponding HOA mod-

ule with R = j. In Eq. 10, the adversary network F tries to

minimize the discrepancies among features fj while HOA

modules try to maximize these discrepancies. After obtain-

ing the Nash Equilibrium, the orders of HOA modules will

be different with each other, since during the optimization

of Eq.10, P2 shares across streams and the only differentiat-

ing parts in MHN are HOA modules, when maximizing the

feature discrepancies, the only solution is to make the HOA

modules have different orders and produce diverse attention

knowledge. In other words, only diverse HOA modules will

make Ladv large. Thus the problem of order collapse can be

suppressed.

Then, the overall objective function of MHN is as:

min(Lide) + λ( max
HOA|R=k

R=1

min
F

(Ladv)) (11)

where Lide indicates the identity loss based on Softmax

classifier, λ is the coefficient.

Remark: From Eq.11, one can observe that we regular-

ize the order/diversity of HOA modules by imposing con-

straint on the encoded feature vectors, instead of directly on
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the high-order attention maps, since these attention maps

come from the complex high-order statistics and the defini-

tion of the order difference of HOA modules in the attention

space is too hard to be artificially made. Thus, the order

constraint is imposed on the feature vectors. Moreover, it

seems that using Hinge loss based constraint instead of the

adversary strategy to maximize the feature discrepancies is

also feasible. However, we want to emphasize that in Hinge

loss based function there is another margin-controller ‘m’

which needs extra tuning, and the discrepancies between

features that coming from different HOA modules will be

heterogeneous, thus to determine the optimal margin ‘m’,

many redundant experiments must be executed. To this end,

we employ the adversary constraint so as to allow the auto-

matic learning of the optimal discrepancies.

By preventing the problem of order collapse, the HOA

modules are explicitly regularized to model the wanted

high-order attention distributions and thus can produce the

discriminative and diverse attention maps which could be

benefit for recognizing the unseen identities.

4. Experiments

Datasets: We use three popular benchmark datasets

based on zero-shot learning (ZSL) settings, i.e. Market-

1501 [61], DukeMTMC-ReID [37, 65] and CUHK03-NP

[26, 66]. Market-1501 have 12,936 training images with

751 different identities. Gallery and query sets have 19,732

and 3,368 images respectively with another 750 identities.

DukeMTMC-ReID includes 16,522 training images of 702

identities, 2,228 query and 17,661 gallery images of another

702 identities. CUHK03-NP is a new training-testing split

protocol for CUHK03, it contains two subsets which pro-

vide labeled and detected (from a person detector) person

images. The detected CUHK03 set includes 7,365 training

images, 1,400 query images and 5,332 gallery images. The

labeled set contains 7,368 training, 1,400 query and 5,328

gallery images respectively. The new protocol splits the

training and testing sets into 767 and 700 identities.

Implementation: The proposed MHN is applied on both

ResNet50-based IDE [63] and PCB [43] architectures. For

both architectures, we adopt the SGD optimizer with a mo-

mentum factor of 0.9, set the start learning rate to be 0.01

for backbone CNN and ten times learning rate for the new

added layers, and a total of 70 epochs with the learning rate

decreased by a factor of 10 each 20 epochs. The dimension

of feature fj is 256 and the two FC layers in F have 128,

128 neurons resp, we set all Dr|Rr=1 to be 64. For IDE, the

images are resized to 288x144. For PCB, the images are

resized to 336x168. We set the batch size to 32 in all exper-

iments and use one 1080Ti GPU. MHN is implemented by

Pytorch [36] and modified from the public code[1], random

erasing[67] is also applied. Notation: We use ‘MHN-k’ to

denote that in MHN there are k HOA modules with orders

Market-1501 (%)

Methods Ref R-1 R-5 R-10 mAP

BoW+kissme [61] ICCV15 44.4 63.9 72.2 20.8

SVDNet [42] ICCV17 82.3 - - 62.1

DaRe(De)+RE [50] CVPR18 89.0 - - 76.0

MLFN [3] CVPR18 90.0 - - 74.3

KPM [39] CVPR18 90.1 96.7 97.9 75.3

HA-CNN [27] CVPR18 91.2 - - 75.7

DNN-CRF [9] CVPR18 93.5 97.7 - 81.6

PABR [41] ECCV18 91.7 96.9 98.1 79.6

PCB+RPP [43] ECCV18 93.8 97.5 98.5 81.6

Mancs [47] ECCV18 93.1 - - 82.3

CASN+PCB [64] CVPR19 94.4 - - 82.8

IDE∗ [63] 89.0 95.7 97.3 73.9

MHN-6 (IDE) 93.6 97.7 98.6 83.6

PCB∗ [43] 93.1 97.5 98.5 78.6

MHN-6 (PCB) 95.1 98.1 98.9 85.0

Table 1. Results comparisons over Market-1501 [61] under Single-

Query settings. ∗ indicates the re-implementation by our code.

The best/second results are shown in red/blue, resp.

DukeMTMC-ReID (%)

Methods Ref R-1 R-5 R-10 mAP

BoW+kissme [61] ICCV15 25.1 - - 12.2

SVDNet [42] ICCV17 76.7 - - 56.8

DaRe(De)+RE [50] CVPR18 80.2 - - 64.5

MLFN [3] CVPR18 81.0 - - 62.8

KPM [39] CVPR18 80.3 89.5 91.9 63.2

HA-CNN [27] CVPR18 80.5 - - 63.8

DNN-CRF [9] CVPR18 84.9 92.3 - 69.5

PABR [41] ECCV18 84.4 92.2 93.8 69.3

PCB+RPP [43] ECCV18 83.3 - - 69.2

Mancs [47] ECCV18 84.9 - - 71.8

CASN+PCB [64] CVPR19 87.7 - - 73.7

IDE∗ [63] 80.1 90.7 93.5 64.2

MHN-6 (IDE) 87.5 93.8 95.6 75.2

PCB∗ [43] 83.9 91.8 94.4 69.7

MHN-6 (PCB) 89.1 94.6 96.2 77.2

Table 2. Results comparisons over DuckMTMC-ReID [37, 65].
∗ indicates the re-implementation by our code. The best/second

results are shown in red/blue, resp.

CUHK03-NP (%)

Methods Ref
Labeled Detected

R-1 mAP R-1 mAP

BoW+XQDA [61] ICCV15 7.9 7.3 6.4 6.4

SVDNet [42] ICCV17 - - 41.5 37.3

DaRe(De)+RE [50] CVPR18 66.1 61.6 63.3 59.0

MLFN [3] CVPR18 54.7 49.2 52.8 47.8

HA-CNN [27] CVPR18 44.4 41.0 41.7 38.6

PCB+RPP [43] ECCV18 - - 63.7 57.5

Mancs [47] ECCV18 69.0 63.9 65.5 60.5

CASN+PCB [64] CVPR19 73.7 68.0 71.5 64.4

IDE∗ [63] 52.9 48.5 50.4 46.3

MHN-6 (IDE) 69.7 65.1 67.0 61.2

PCB∗ [43] 61.9 56.8 60.6 54.4

MHN-6 (PCB) 77.2 72.4 71.7 65.4

Table 3. Results comparisons over CUHK03-NP [26, 66]. ∗ indi-

cates the re-implementation by our code. The best/second results

are shown in red/blue, resp.
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CUHK03-NP [26, 66]
DukeMTMC-ReID [37, 65] Market-1501 [61]

Methods
Labeled Detected

R-1 mAP R-1 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

IDE∗ [63] 52.9 48.5 50.4 46.3 80.1 90.7 93.5 64.2 89.0 95.7 97.3 73.9

IDE∗+era 61.4 55.71 56.9 51.3 83.6 92.1 94.3 67.4 90.3 96.5 97.6 75.9

MHN-2 (IDE) 65.9 59.1 60.9 54.8 84.5 92.6 94.7 68.9 90.6 96.1 97.6 76.1

MHN-4 (IDE) 67.4 60.3 62.7 55.8 86.3 93.1 95.6 72.4 91.8 97.6 98.5 80.1

MHN-6 (IDE) 69.7 65.1 67.0 61.2 87.5 93.8 95.6 75.2 93.6 97.7 98.6 83.6

PCB∗ [43] 61.9 56.8 60.6 54.4 83.9 91.8 94.4 69.7 93.1 97.5 98.5 78.6

PCB∗+era 57.4 52.5 54.3 49.9 83.4 91.5 94.3 68.2 91.9 97.4 98.4 76.8

MHN-2 (PCB) 71.2 66.3 67.9 61.9 86.9 93.3 95.3 73.5 94.0 97.8 98.5 82.5

MHN-4 (PCB) 75.1 70.6 71.6 66.1 88.7 94.4 95.9 76.8 94.5 98.0 98.6 84.2

MHN-6 (PCB) 77.2 72.4 71.7 65.4 89.1 94.6 96.2 77.2 95.1 98.1 98.9 85.0

Table 4. Effect (%) of attention modules. ∗ indicates the re-implementation and ‘era’ means random erasing.

R = {1, · · · , k} resp, and ‘MHN-k (IDE/PCB)’ to denote

using IDE/PCB architectures, resp.

Evaluation: In testing, the feature representations

fj , j ∈ {1, · · · , k} are concatenated after L2 normaliza-

tion. Then, the metrics of cumulative matching characteris-

tic (CMC) and mean Average Precision (mAP) are used for

evaluation. No re-ranking tricks are adopted.

4.1. Comparison with State­of­the­Art Methods

In order to highlight the significance of the proposed

MHN for person ReID task, we compare it with some recent

remarkable works, including methods of alignment [39, 41,

64, 43], deep supervision [50], architectures [63, 43], at-

tention [27, 64, 47] and others [42, 9, 3], over the popu-

lar used benchmarks Market-1501, DukeMTMC-ReID and

CUHK03-NP. For fair comparison, we re-implement the

baseline models, i.e. ResNet50-based IDE and PCB, with

the same training configurations as ours. MHN is then ap-

plied over both IDE and PCB architectures. The compari-

son results are listed in Tab. 1, Tab. 2 and Tab. 3. From

these tables, one can observe that by explicitly intensify the

discrimination and diversity within the deep embedding via

high-order attention modules, our MHN-6 can significantly

improve the performances over both the baseline methods

IDE and PCB (e.g. comparing with PCB, MHN-6 (PCB)

has 2%/6.4% improvements of R-1/mAP on Market and

5.2%/7.5% improvements of R-1/mAP on DukeMTMC),

demonstrating the effectiveness of our high-order attention

idea. And our MHN-6 (PCB) achieves the new SOTA per-

formances on all these three benchmarks, showing the su-

periority of our method.

4.2. Component Analysis

Effect of MHN: We conduct quantitative comparisons

on MHN as in Tab. 4. From this table, one can ob-

serve that the proposed MHN can significantly improve

the performances of person ReID task over both IDE and

PCB baseline architectures. Specifically, comparing MHN-

2(IDE/PCB) with IDE/PCB, we can see that using higher-

order attention information indeed encourage the discrim-

ination of the learned embedding. Moreover, the perfor-

Methods
DukeMTMC-ReID Market-1501

R-1 mAP R-1 mAP

IDE∗ [63] 80.1 64.2 89.0 73.9

MHN-6 (IDE) w/o Ladv 85.5 70.8 91.8 80.0

MHN-6 (IDE) 87.5 75.2 93.6 83.6

PCB∗ [43] 83.9 69.7 93.1 78.6

MHN-6 (PCB) w/o Ladv 87.7 75.4 93.9 83.2

MHN-6 (PCB) 89.1 77.1 95.1 85.0

Table 5. Effect (%) of adversary constraint. ∗ indicates the re-

implementation by our code.

Methods
DukeMTMC-ReID Market-1501

R-1 mAP R-1 mAP

MHN-6 (IDE) w/o nonli 87.1 74.9 93.3 83.1

MHN-6 (IDE) 87.5 75.2 93.6 83.6

MHN-6 (PCB) w/o nonli 88.7 76.8 95.0 84.5

MHN-6 (PCB) 89.1 77.1 95.1 85.0

Table 6. Effect (%) of nonlinearity.

mances will further increase with the number of HOA mod-

ules, e.g. on CUHK03-NP Labeled dataset, applying MHN

on PCB, when increasing the number of HOA modules from

2 to 6 the performance of R-1 will be increased from 71.2%
to 77.2%, the same phenomenon can be observed in other

datasets and architecture. This phenomenon also shows that

employing multiple HOA modules is benefit for modeling

diverse and discriminative information for recognizing the

unseen identities, and MHN-6 outperforms all the baseline

models by a large margin over all the three benchmarks,

demonstrating the effectiveness of our method. However,

when further increase the number of HOA modules, e.g.

k = 8, the performance improvements are few, thus we

don’t report it here.

Effect of Adversary Constraint: From Tab. 5, when

comparing {MHN-6 (IDE) w/o Ladv} with {IDE} and

comparing {MHN-6 (PCB) w/o Ladv} with {PCB}, one

can observe that on both DukeMTMC and Market datasets

the performances of R-1 and mAP can be improved by sim-

ply employing multiple HOA modules without any regular-

izing constraint, showing that using higher-order attention

information will indeed increase the discrimination of the

learned knowledge in ZSL settings. However, as mentioned

in Sec. 3.3, the task of person ReID pertains to zero-shot

settings, the problem of ‘partial/biased learning behavior
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Methods
DukeMTMC-ReID Market-1501

R-1 mAP R-1 mAP

IDE∗ [63] 80.1 64.2 89.0 73.9

SENet50∗ [19] 81.2 64.8 90.0 75.6

HA-CNN [27] 80.5 63.8 91.2 75.7

SpaAtt+Q∗ [25] 84.7 69.6 91.6 77.4

CASN+IDE [64] 84.5 67.0 92.0 78.0

MHN-6 (IDE) 87.5 75.2 93.6 83.6

Table 7. Comparison to other attention methods (%). ∗ indicates

our reproducing.

of deep model’ will incur the problem of order collapse of

HOA modules, i.e. the deep model will partially model the

easy and lower-order information regardless the theoretical

capacity of HOA module. Therefore, we introduce the ad-

versary constraint to explicitly prevent the problem of order

collapse. After equipping with Ladv , MHN-6(IDE/PCB)

can further improve the performances over both the bench-

marks, demonstrating the effectiveness of Ladv and imply-

ing that explicitly learning diverse high-order attention in-

formation is essential for recognizing the unseen identities.

Effect of Nonlinearity: The nonlinearity comparisons

are listed in Tab. 6, from this table, one can observe that by

adding nonlinearity into the high-order attention modules,

the performances can be further improved.

Comparison to other attention methods: To demon-

strate the effectiveness of our idea of high-order attention,

we compare with some other attention methods as in Tab.

7. Specifically, our MHN-6(IDE) outperforms both the spa-

tial and channel attention methods, i.e. HA-CNN [27] and

SENet50 3 [19], showing the superiority of high-order at-

tention model to these coarse/first-order attention methods.

Moreover, although {SpaAtt+Q} [25] employs multiple di-

verse attention modules like MHN to enhance the richness

of attention information, the used attention method is spa-

tial attention which is coarse and insufficiently rich to cap-

ture the complex and high-order interactions of parts, failing

in producing more discriminative attention proposals and

thus performing worse than MHN-6(IDE). {CASN+IDE}
[64] regularizes the attention maps of the paired images be-

longing to the same identity to be similar and indeed im-

proves the results, but it still performs worse than MHN-

6(IDE) since the consistence constraint for attention maps

is only based on the the coarse spatial attention maps.

In summary, because of the ability of modeling and using

complex and high-order information, the proposed MHN

can significantly surpass all the listed coarse/first-order at-

tention methods as shown in Tab. 7.

Ablation study on the configurations of P1 & P2: As

mentioned in Sec. 3.3, the HOA modules are placed be-

tween P1 and P2, to investigate the effect of the placed

position of HOA modules, we conduct experiments as in

Tab. 8. One can observe that placing HOA modules after

3We fine-tune the pre-trained SENet50 released at https://

github.com/moskomule/senet.pytorch.

Methods
Market-1501

R-1 mAP

1©:P1={conv1∼layer1},P2={layer2∼GAP} 92.2 81.8

2©:P1={conv1∼layer2},P2={layer3∼GAP} 93.6 83.6

3©:P1={conv1∼layer3},P2={layer4∼GAP} 92.7 82.1

Table 8. Ablation study on the configurations of P1 and P2. All

the layer names are shown in Pytorch manner. Here, for conve-

nience we conduct experiments with MHN-6 (IDE) and test three

configurations, i.e. 1©, 2© and 3©.

Models PN (million) Depth R-1 (on Market)

IDE [63] 24.2 50 89.0%

SENet50 [19] 27.4 50 90.0%

MHN-2 (IDE) 24.4 50 90.6%

MHN-4 (IDE) 25.2 50 91.8%

MHN-6 (IDE) 26.8 50 93.6%

Table 9. Model size comparisons. PN means Parameter Number.

‘layer2’ (i.e. using the configuration 2©) performs the best

since when placing it at the relatively lower layer (i.e. using

the configuration 1©) the knowledge input to HOA module

is more relevant to the low-level texture information and

contains much noise, while placing it at relatively higher

layer (i.e. using the configuration 3©), some useful knowl-

edge for recognizing the unseen identities might be already

lost during the forward propagation of information as a re-

sult of partial/biased learning behavior. To this end, we use

the configuration 2© for both IDE and PCB architectures

throughout the experiments.

Model size: We compare the model size as in Tab. 9,

from this table, one can observe that the parameter num-

ber of our MHN increases with the order. While compar-

ing with SENet50 [19], the total parameter number of each

MHN is not so much, and in terms of the performance, each

MHN can outperform SENet50, showing that our MHN is

indeed ‘light and sweet’.

5. Conclusion
In this paper, we first propose the High-Order Attention

(HOA) module so as to increase the discrimination of atten-

tion proposals by modeling and using the complex and high-

order statistics of parts. Then, considering the fact that the

person-ReID task pertains to zero-shot learning where the

deep model will easily learn the biased knowledge, we pro-

pose the Mixed High-Order Attention Network (MHN) to

utilize the HOA modules at different orders, preventing the

learning of partial/biased visual information that only bene-

fit to the seen identities. The adversary constraint is further

introduced to prevent the problem of order collapse of HOA

module. And Extensive experiments have been conducted

over three popular benchmarks to validate the necessity and

effectiveness of our method.
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