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Figure 1: Interactive novel view synthesis: Given a single source view our approach can generate a continuous sequence of

geometrically accurate novel views under fine-grained control. Top: Given a single street-view like input, a user may specify a

continuous camera trajectory and our system generates the corresponding views in real-time. Bottom: An unseen hi-res internet

image is used to synthesize novel views, while the camera is controlled interactively. Please refer to our project homepage†.

Abstract

We propose a method to produce a continuous stream

of novel views under fine-grained (e.g., 1◦ step-size) cam-

era control at interactive rates. A novel learning pipeline

determines the output pixels directly from the source color.

Injecting geometric transformations, including perspective

projection, 3D rotation and translation into the network

forces implicit reasoning about the underlying geometry.

The latent 3D geometry representation is compact and mean-

ingful under 3D transformation, being able to produce geo-

metrically accurate views for both single objects and natural

scenes. Our experiments show that both proposed compo-

nents, the transforming encoder-decoder and depth-guided

appearance mapping, lead to significantly improved gener-

alization beyond the training views and in consequence to

more accurate view synthesis under continuous 6-DoF cam-

era control. Finally, we show that our method outperforms

state-of-the-art baseline methods on public datasets.

1. Introduction

3D immersive experiences can benefit many application

scenarios. For example, in an online store one would often

∗Equal contribution.

like to view products interactively in 3D rather than from

discrete view angles. Likewise in map applications it is

desirable to explore the vicinity of street-view like images

beyond the position at which the photograph was taken. This

is often not possible because either only 2D imagery exists,

or because storing and rendering of full 3D information does

not scale. To overcome this limitation we study the problem

of interactive view synthesis with 6-DoF view control, taking

only a single image as input. We propose a method that

can produce a continuous stream of novel views under fine-

grained (e.g., 1◦ step-size) camera control (see Fig. 1).

Producing a continuous stream of novel views in real-time

is a challenging task. To be able to synthesize high-quality

images one needs to reason about the underlying geometry.

However, with only a monocular image as input the task of

3D reconstruction is severely ill-posed. Traditional image-

based rendering techniques do not apply to the real-time

monocular setting since they rely on multiple input views

and also can be computationally expensive.

Recent work has demonstrated the potential of learning

to predict novel views from monocular inputs by leverag-

ing a training set of viewpoint pairs [52, 62, 40, 8]. This

†https://ait.ethz.ch/projects/2019/cont-view-synth/
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is achieved either by directly synthesizing the pixels in the

target view [52, 8] or predicting flow maps to warp the input

pixels to the output [62, 51]. However, we experimentally

show that such approaches are prone to over-fitting to the

training views and do not generalize well to free-from non-

training viewpoints. If the camera is moved continuously

in small increments, with such methods, the image quality

quickly degrades. One possible solution is to incorporate

much denser training pairs but this is not practical for many

real applications. Explicit integration of geometry represen-

tations such as meshes [26, 34] or voxel grids [58, 6, 16, 54]

could be leveraged for view synthesis. However, such rep-

resentations would limit applicability to settings where the

camera orbits a single object.

In this paper, we propose a novel learning pipeline that de-

termines the output pixels directly from the source color but

forces the network to implicitly reason about the underlying

geometry. This is achieved by injecting geometric trans-

formations, including perspective projection, 3D rotations

and translations into an end-to-end trainable network. The

latent 3D geometry representation is compact and memory

efficient, is meaningful under explicit 3D transformation and

can be used to produce geometrically accurate views for both

single objects and natural scenes.

More specifically, we propose a geometry aware neural

architecture consisting of a 3D transforming autoencoder

(TAE) network [21] and subsequent depth-guided appear-

ance warping. In contrast to existing work, that directly

concatenate view point parameters with latent codes, we

first encode the image into a latent representation which is

explicitly rotated and translated in Euclidean space. We then

decode the transformed latent code, which is assumed to

implicitly represent the 3D geometry, into a depth map in

target view. From the depth map we compute dense cor-

respondences between pixels in the source and target view

via perspective projection and subsequently the final out-

put image via pixel warping. All operations involved are

differentiable, allowing for end-to-end training.

Detailed experiments are performed on synthetic objects

[3] and natural images [15]. We assess the image quality,

granularity, precision of continuous viewpoint control and

implicit recovery of scene geometry qualitatively and quanti-

tatively. Our experiments demonstrate that both components,

the TAE and depth-guided warping, drastically improve the

robustness and accuracy for continuous view synthesis.

In conclusion, our main contributions are:

• We propose the task of continuous view synthesis from

monocular inputs under fine-grained view control.

• This goal is achieved via a proposed novel architecture

that integrates a transforming encoder-decoder network

and depth-guided image mapping.

• Thorough experiments are conducted, demonstrating

the efficacy of our method compared to prior art.

2. Related Work

View synthesis with multi-view images. The task of

synthesizing new views given a sequence of images as

input has been studied intensely in both the vision and

graphics community. Strategies can be classified into

those that explicitly compute a 3D representation of the

scene [42, 28, 41, 7, 47, 46, 65, 4, 30], and those in which

the 3D geometry is handled implicitly [12, 35, 36]. Others

have deployed full 4D light fields [18, 31], albeit at the cost

of complex hardware setups and increased computational

cost. Recently, deep learning techniques have been applied

in similar settings to fill holes and eliminate artifacts caused

by the sampling gap, dis-occlusions, and inaccurate 3D re-

constructions [14, 19, 61, 55, 49, 13, 37]. While improving

results over traditional methods, such approaches rely on

multi-view input and are hence limited to the same setting.

View synthesis with monocular input. Recent work lever-

ages deep neural networks to learn a monocular image-to-

image mapping between source and target view from data

[29, 52, 8, 62, 40, 51, 59]. One line of work [29, 52, 8, 39]

directly generates image pixels. Given the difficulty of the

task, direct image-to-image translation approaches struggle

with preservation of local details and often produce blurry

images. Zhou et.al. [62] estimate flow maps in order to warp

source view pixels to their location in the output. Others

further refine the results by image completion [40] or by

fusing multiple views [51].

Typically, the desired view is controlled by concatenating

latent codes with a flattened viewpoint transform. However,

the exact mapping between viewpoint parameters to images

is difficult to learn due to sparse training pairs from the con-

tinuous viewpoint space. We show experimentally that this

leads to a snapping to training views, with image quality

quickly degrading under continuous view control. Recent

works demonstrate the potential for fine-grained view syn-

thesis, but either are limited to single instances of objects

[48] or require additional supervision in the form of depth

maps [63, 33], surface normals [33] and even light field im-

ages [50], which are cumbersome to acquire in real settings.

In contrast, our method consists of a fully differentiable

network, which is trained with image pairs and associated

transformations as sole supervision.

3D from single image. Reasoning about the 3D shape can

serve as an implicit step of free-from view synthesis. Given

the severely under-constrained case of recovering 3D shapes

from a single image, recent works have deployed neural net-

works for this task. They can be categorized by their output

representation into mesh [26, 34], point cloud [11, 32, 23],

voxel [58, 6, 16, 54, 44], or depth map based [9, 60, 53].

Mesh-based approaches are still not accurate enough due to

the indirect learning process. Point clouds are often sparse

and cannot be directly leveraged to project dense color in-

formation in the output image and voxel-based methods are
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limited in resolution and number and type of objects due to

memory constraints. Depth maps become sparse and incom-

plete when projected into other views due to the sampling

gap and occlusions. Layered depth map representations [53]

have been used to alleviate this problem. However, a large

number of layers would be necessary which poses signifi-

cant hurdles in terms of scalability and runtime efficiency.

In contrast to explicit models, our latent 3D geometry rep-

resentation is compact and memory efficient, is meaningful

under explicit 3D transformation and can be used to render

dense images.

Deep generative models. View synthesis can also be seen

as an image generation process, which is related to the field

of deep generative modelling of images [27, 17]. Recent

models [2, 25] are able to generate high-fidelity images with

diversity in many aspects including viewpoint, shape and

appearance, but offer little to no exact control over the un-

derlying parameters. Disentangling latent factors has been

studied in [5, 20] to provide control over image attributes.

In particular, recent work [64, 38] demonstrates inspiring

results of viewpoint disentanglement by reasoning about the

geometry. Although such methods can be used for view syn-

thesis, the generated views lack consistency and moreover

one cannot control which object to synthesize.

3. Method

Our main contribution is a novel geometry aware network

design, shown in Fig. 2, that consists of four components: 3D

transforming auto-encoder (TAE), self-supervised depth map

prediction, depth map projection and appearance warping.

The source view is first encoded into a latent code

(z = Eθe(Is)). This latent code z is encouraged by our

learning scheme to be meaningful in 3D metric space. After

encoding we apply the desired transformation between the

source and target to the latent code. The transformed code

(zT = Ts→t(z)) is decoded by a neural network to predict

a depth map Dt as observed from the target viewpoint. Dt

is projected back into the source view based on the known

camera intrinsics K and extrinsics Ts→t, yielding dense cor-

respondences between the target and source views, encoded

as dense backward flow map Ct→s. This flow map is used

to warp the source view pixel-by-pixel into the target view.

Note that attaining backward flow and hence predicting

depth maps in the target view is a crucial difference to prior

work. Forward mapping of pixel values into the target view

It would incur discretization artifacts when moving between

ray and pixel-space, visible as banding after re-projection of

the (source view) depth map. The whole network is trained

end-to-end with a simple per-pixel reconstruction loss as sole

guidance. Overall, we want to learn a mapping M : X → Y ,

which in our case can be decomposed as:

M(Is) = B(Pt→s(Dθd(Ts→t(Eθe(Is)))), Is) = Ît, (1)

where B is the bi-linear sampling function, Pt→s is the

perspective projection, and Eθe , Dθd are the encoder and

decoder networks respectively. This decomposition is an

important contribution of our work. By asking the network

to predict a depth map Dt in the target view, we implic-

itly encourage the TAE encoder Eθe to produce position

predictions for features and the decoder Dθd learns to gen-

erate features at corresponding positions by rendering the

transformed representation from the specified view-angle.

3.1. Transforming Autoencoder

We take inspiration from recent work [45, 22, 57, 43]

which itself builds upon earlier work by Hinton et al. [21],

that uses encoder-decoder architectures to learn represen-

tations that are transformation equivariant, establishing a

direct correspondence between image and feature spaces.

We leverage such a latent space to model the relationship

between viewpoint and implicit 3D shape.

To this end, we represent the latent code zs as vectorized

set of points zs ∈ R
n×3, where n is a hyper-parameter.

This representation is then multiplied with the ground-truth

transformation Ts→t = [R|t]s→t describing the viewpoint

change between source view Is and target view It to attain

the rotated code zt:

zt = [R|t]s→t · z̃s, (2)

where z̃s is the homogeneous representation of zs. In this

way the network is trained to encode position predictions

for features which can then be decoded into images. All

functions in the TAE module including encoding, vector

reshaping, matrix multiplication and decoding are differ-

entiable and hence amenable to training via backpropagation.

3.2. Depth Guided Appearance Mapping

We decode zt into 3D shape in the target view, repre-

sented as a depth image Dt. From Dt we compute the dense

correspondence field Ct→s deterministically via perspective

projection Pt→s. The dense correspondences are then used

to warp the pixels of the texture (source view) Is into the

target view Ît. This allows the network to warp the source

view into the target view and makes the prediction of target

view invariant to the texture of the input, resulting in sharp

and detail-preserving outputs.

Establishing correspondences. The per-pixel correspon-

dences Ct→s are attained from the depth image Dt in the

target view by conversion from the depth map to 3D coordi-

nates [X,Y, Z] and perspective projection:

[X,Y, Z]T = Dt(xt, yt)K
−1[xt, yt, 1]

T (3)

and [xs, ys, 1]
T ∼ KTt→s[X,Y, Z, 1]T . (4)
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Figure 2: Pipeline overview. 2D source views are encoded and the latent code is explicitly rotated before a decoder network

predicts the depth map in the target view. Dense correspondences are attained via perspective projection and used to warp

pixels from source view to the target with bilinear sampling. All operations are differentiable and trained end-to-end without

ground-truth depth or flow maps. The only supervision is a L1 reconstruction loss between target view and ground truth image.

where each pixel (xt, yt) encodes the corresponding pixel

position in the source view (xs, ys). Furthermore, K is the

camera intrinsic matrix describing normalized focal length

along both axes fx, fy and image center cx, cy. Note that

only the focal length ratio fx/fy as well as image center

affect view synthesis, while the absolute scale of the focal

length is only important to predict geometry at correct scale.

Warping with correspondences. With the dense correspon-

dences obtained, we are now able to warp the source view

to the target view. This operation propagates texture and

local details. Since the corresponding pixel positions that

are derived from Eq. 4 are non-integer, this is done via dif-

ferentiable bilinear sampling as proposed in [24]:

It(xt, yt) =
∑

xs

∑

ys

Is(xs, ys)max(0, 1− |xs − Cx(xt, yt)|)

max(0, 1− |ys − Cy(xt, yt)|).

(5)

The use of backward flow Ct→s, computed from the

predicted depth map Dt, makes the approach amenable to

gradient based optimization since the gradient of the per-

pixel reconstruction loss provides meaningful information

to correct erroneous correspondences. The gradients also

flow back to provide useful information to the TAE network

owing to the fact that the correspondences are computed

deterministically from the predicted depth maps. While bear-

ing similarity to [62], we introduce the intermediate step of

predicting depth, instead of predicting the correspondences

directly. This enforces the network to obey geometric con-

straints, resolving ambiguous correspondences.

3.3. Training

All steps in our network, namely 3D transforming auto-

encoder (TAE), self-supervised depth map prediction, depth

map projection and appearance warping, are differentiable

which enables end-to-end training. Among all modules,

only the TAE module contains trainable parameters (θe, θd).

To train the network only pairs of source and target views

and their transformation are required. The network weights

are optimized via minimization of the L1 loss between the

predicted target view Ît and the ground truth It.

Lrecon =
∥

∥

∥
It − Ît

∥

∥

∥

1

(6)

Minimizing this reconstruction loss, the network learns to

produce realistic novel views, to predict the necessary flow

and depth maps and learn to form a geometrical latent space.

4. Experiments

We now evaluate our method quantitatively and quali-

tatively. We are especially interested in assessing image

quality, granularity and precision of fine-grained viewpoint

control. First, we conduct detailed experiments on synthetic

objects, where ground-truth of continuous viewpoint is easy

to obtain, to numerically assess the reconstruction quality.

Notably, we vary the viewpoints in much smaller step-sizes

than what is observed in the training data. Second, to evalu-

ate generalizability, we test our system on natural city scenes.

In this setting, given an image input, we specify the desired

ground-truth camera trajectories along which the system gen-

erates novel views. Then we run an existing visual odometry

system on these synthesized continuous views to recover the

camera trajectory. By comparing the recovered trajectory

with the ground-truth, we can evaluate the geometrical prop-

erty of the synthesized images under the consideration of

granularity and continuous view control. Finally, to better un-

derstand the mechanism of our proposed network, we further

conduct studies on its two key components, namely depth-

guided texture mapping and transforming auto-encoder. We

evaluate the intermediate depth and flow, and qualitatively

verify the meaningfulness of the latent space of the TAE.
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      Source         Tatarchenko et al.       Zhou et al.            Sun et al.             Ours (w/o depth)       Ours (w/o TAE)      Ours (full)           Ground-truth

Continuous views overlayed

View after rotation by +13°  

Figure 3: Qualitative results for granularity and precision of viewpoint control on ShapeNet. In the top two rows, we

generate and overlay 80 continuous views with step size of 1◦ from a single input. Our method exhibits similar spin pattern as

the ground truth, whereas other methods mostly converge to the fixed training views (see wheels of the car and chair indicated

by the box). In the bottom row, a close look at specific views is given, which reveals that previous methods display distortions

or converge to neighboring training views (Zhou et al.[62], Sun et al.[51]). The image generated by Tatarchenko et al.[52] is

blurry. Corresponding error maps are also depicted. Best viewed in color.

4.1. Datasets

We conduct our experiments on two challenging datasets:

synthetic objects [3] and real natural scenes [15].

ShapeNet [3] is a large collection of 3D synthetic objects

from various categories. Similar to [62, 40, 51] we choose

car and chair to evaluate our method. We use the same

train test split as proposed in [62]. For training we render

each models from 54 viewpoints with different azimuth and

elevation. The azimuth goes from 0◦ to 360◦ with a step size

of 20◦ and the elevation from 0◦ to 30◦ with a step size of

10◦. Each training pair consists of two views of the same

instance, with a difference in azimuth within ±40◦.

KITTI [15] is a standard dataset for autonomous driving,

containing complex city scenes in uncontrolled environ-

ments. We conduct experiments on the KITTI odometry

subset which contains image sequences as well as the global

camera poses of each frame. In total there are 18560 im-

ages for training and 4641 images for testing. We construct

training pairs by randomly selecting target view among 10

nearest frames of source view. The relative transformation is

obtained from the global camera poses.

4.2. Metrics

In our evaluations we report the following metrics:

Mean Absolute Error L1 is used to measure per-pixel value

differences between ground-truth and the predictions.

Structural SIMilarity (SSIM) Index[56] has values in [-1,

1] and measures the structural similarity between synthesized

image and ground truth. We report SSIM in addition to the

L1 loss since it i) gives an indication of perceptual image

quality and ii) serves as further metric that is not directly

optimized during training.

Percentage of correctness under threshold δ (Acc). The

predicted flow/depth ŷi at pixel i, given ground truth yi, is

regarded as correct if max(yi

ŷi

, ŷi

yi

) < δ is satisfied. We count

the portion of correctly predicted pixels. Here δ = 1.05.
Rotation error and translation error are defined as:

RE = arccos(
Tr(R̃ ·RT )− 1

2
), TE = arccos(

t̃ · tT

˜‖t‖
2
· ‖t‖

2

) (7)

where Tr represents the trace of the matrix.

4.3. Comparison with other methods

We compare with several representative state-of-the-art

learning-based view synthesis methods. Tatarchenko et

al. [52] treat the view synthesis as an image-to-image trans-

lation task and generate pixels directly. In their framework

the viewpoint is directly concatenated with the latent code.

Zhou et al. [62] generates flow instead of pixels. The view

information is also directly concatenated. Sun et al. [51]

combines both pixel generation [52] and image warping [62].

The original implementation in Zhou et al. [62] and Sun et

al. [51] does not support continuous viewpoint input for ob-

jects. To allow for continuous input for comparison, we

replace their encoded discrete one hot viewpoint represen-
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tation with cosine and sine values of the view angles. The

same encoder and decoder are used for all comparisons.

40 20 0 20 40

rotation angle

0.00
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0.04
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0.12

0.14

L
1

Tatarchenko et al.

Zhou et al.

Sun et al.

Ours (w/o depth)

Ours (w/o TAE)

Ours (full)

Figure 4: Comparison of L1 reconstruction error as a func-

tion of view rotation on car. Ours outperforms other state-of-

the-art baselines over the entire range and yields a smoother

loss progression. Note that 0◦ here means no transformation

applied to the source view. (±40◦,±20◦ are training views

indicated by black boxes).

4.4. ShapeNet Evaluation

To test the granularity and precision of viewpoint control,

for each test object, given a source view Is, the network syn-

thesizes 80 views around the source view with a step size of

1◦ which is much denser than the step size of 20◦ for training

(and much denser than previously reported experiments). In

total the test set contains 100,000 view pairs of objects.

To study the effectiveness of the transformation-aware

latent space, we introduce Ours (w/o TAE) concatenating

the viewpoint analogously to [52, 8, 62, 40, 62] while still

keeping the depth-guided texture mapping process. To evalu-

ate the depth-guided texture mapping process, we introduce

Ours (w/o depth) which directly predicts flow without the

depth guidance but does deploy the TAE.

Viewpoint dependent error. Fig. 4 plots the L1 reconstruc-

tion error between [−40◦, 40◦] of all methods. Note that

0◦ here means no transformation applied to the source view.

Ours consistently produces lower errors. More importantly it

yields much lower variance between non-training and train-

ing views (±40◦,±20◦ are training views). While previ-

ous methods can achieve similar performance to ours at

training views, their performance significantly decreases for

non-training views. Notably, both of our designs (TAE and

depth-based appearance) contribute to the final performance

and the problem of snapping to training views persists with

either of the two components discarded (Ours (w/o TAE)

and Ours (w/o depth)). Tab. 1 summarizes the average L1

error and SSIM for all generated views between [−40◦, 40◦].
Inline with Fig. 4, our method significantly outperforms pre-

vious methods on both car and chair. In addition, both of our

ablative methods also perform better than previous methods,

demonstrating the effectiveness of both modules.

Car Chair

L1 SSIM L1 SSIM

Tatarchenko et al. [52] 0.084 0.919 0.110 0.917

Zhou et al. [62] 0.062 0.924 0.074 0.920

Sun et al. [51] 0.056 0.926 0.070 0.921

Ours (w/o depth) 0.052 0.932 0.066 0.926

Ours (w/o TAE) 0.045 0.943 0.065 0.930

Ours (full) 0.039 0.949 0.056 0.938

Table 1: Quantitative analysis of fine-grained view con-

trol on ShapeNet. Average L1 error and SSIM for all gen-

erated views between [−40◦, 40◦] from the source view.

Qualitative results. The qualitative results in Fig. 3 confirm

the quantitative findings. To demonstrate the capability of

continuous viewpoint control, we generate and overlay 80

views with step size of 1◦ from a single input. Compared

to previous approaches, our method exhibits similar spin

pattern as the ground truth, whereas other methods mostly

snap to the fixed training views (Zhou et al. [62], Sun et

al. [51]). This suggests that overfitting occurs, limiting the

granularity and precision of view control. A close look at

specific views reveals that previous methods display distor-

tions at non-training views, highlighted in red. The image

generated by Tatarchenko et al. [52] is blurry.

4.5. KITTI Evaluation

We now evaluate our method in the more realistic setting

of the KITTI dataset. Note that the dataset only contains

fairly linear forward motion recorded from a car’s dash. This

setting is a good testbed for the envisioned application scenar-

ios where one desires to extract 3D information retroactively.

Qualitative results In Fig. 5 we show qualitative results

from novel views synthesized along a straight camera trajec-

tory: Zhou et al. [62] and Sun et al. [51] both have difficulties

to deal with viewpoints outside of the training setting and

produce distorted images while ours are sharp and geomet-

rically correct. Ours more faithfully reproduces the desired

motion than [62] and [51] which remains stationary.

Complex trajectory recovery. To simulate real use cases,

we introduce a new experimental setting. We specify ar-

bitrary desired trajectories, specifically so that the camera

moves away from the car’s original motion. From this spec-

ification we generate a sequences of 100 images along the

trajectories. Subsequently we run a state-of-the-art visual

odometry [10] system to estimate the camera pose based

on the synthesized views. If the view synthesis approach is
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Figure 5: Simple camera motion. Setting: Given a source view we synthesize linear forward motion over 0.6m. Our method

produce sharp and correct images while [62, 51] produces distorted images. Zhou et al. [62]’s motion is incorrect, while Sun

et al. [51] stays stationary. Ours reflects a reasonable straight forward transition.

Source Ours

View synthesis Camera pose estimation

Sun et al.Zhou et al.

Input Trajectory

OursInput  trajectory Baselines

... ... ...

Figure 6: Complex camera motion. Setting: given a source view and an input trajectory, a continuous sequence of views is

synthesized along the user defined trajectory (green). Trajectories are estimated via a state-of-the-art visual odometry system

[10] and compared to the desired trajectory. The trajectory estimated from Ours align well with the ground-truth, while

[62, 51] mostly produce straight forward or wrong motion regardless of the input.

geometrically accurate, the visual odometry system should

recover the desired trajectory. Fig. 6 illustrates one such

experiment. The estimated trajectory from ours aligns well

with the ground-truth. In contrast, views from [62] result in

a wrong trajectory and [51] mostly produce straight forward

motion, possibly due to overfitting to training trajectories.

Quantitative results. To evaluate the geometrical proper-

ties quantitatively, we generate new views with randomly

sampled transformation T = [R|t]. We then estimate the rel-

ative transformation between the input and the synthesized

view T̃ = [R̃|t̃] and compare to the ground-truth T . This

is done by first detecting and matching SURF features [1]

in both views, and then computing and decomposing the es-

sential matrix. We report the numerical error in Tab. 2. Our

method produces drastically lower error in rotation and the

translation, indicating accurate viewpoint control. Note that

we had to remove [52] from this comparison since SURF

feature detection fails due to the very blurry images.
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TE RE

Zhou et al. [62] 0.557 0.086

Sun et al. [51] 0.435 0.080

Ours 0.108 0.019

Table 2: Precision evaluation of viewpoint control by cam-

era pose estimation on KIITI.

4.6. Depth and Flow Evaluation

The quality of predicted depth map and warping flow

is essential to produce geometrically correct views. We

evaluate the accuracy of depth and flow prediction with

two metrics (L1 and Acc). Tab. 3 summarizes results for

ShapeNet. Ours achieves the best accuracy in both flow

and depth prediction, which directly benefits view synthesis

(cf. Tab. 1). The relative ranking of the ablative baselines

furthermore indicates that both the TAE and the depth-guided

texture mapping help to improve the flow accuracy. The TAE

furthermore guides the depth prediction. To illustrate that the

reconstructed depth maps are indeed meaningful, we predict

depth in different target views and visualize the extracted

normal maps, as shown in Fig. 7.

Discussion Together these experiments indicate that the pro-

posed self-supervision indeed forces the network to infer

underlying 3D structure (yielding good depth which is nec-

essary for accurate flow maps) and that it helps the final task

without requiring additional labels.

Flow Depth

L1 Acc L1 Acc

Zhou et al. [62] 0.035 69.1% - -

Ours (w/o depth) 0.029 76.3% - -

Ours (w/o TAE) 0.022 84.6% 0.134 89.0%

Ours (full) 0.021 85.7% 0.132 91.1%

Table 3: Quantitative analysis of flow and depth predic-

tion on car. Average L1 error and accuracy for all predicted

flow and depth in target views between [−40◦, 40◦] from the

source view. Ours significantly outperforms the baselines.

   Source                  Predicted 3D structure

Figure 7: Unsupervised depth prediction. Depth map is

predicted from the source view and visualized as point clouds

depicted from different viewing angles.

4.7. Latent Space Analysis

To verify that the learned latent space is indeed inter-

pretable and meaningful under geometrical transformation,

we i) linearly interpolate between latent points of two objects

and ii) rotate each interpolated latent point set. These point

sets are then decoded into depth maps, visualized as normal

maps in the global frame. Fig. 8 shows that interpolated sam-

ples exhibit a smooth shape transition while the viewpoint

remains constant (i). Moreover, rotating the latent points

only changes the viewpoint without affecting the shape (ii).

R
ot
at
io
n

Interpolation

Figure 8: Latent space analysis showing consistency of

embeddings. Left-to-right: latent space interpolation be-

tween different objects. Top-to-bottom: Rotation of same

latent code. (Normals in global frame, extracted from depth).

4.8. Generalization to unseen data

We find that our model generalizes well to unseen data

thanks to the usage of depth-based warping. Interestingly,

our model trained on 2562 images can be directly applied to

high resolution (10242) images without additional training.

The inference process takes 50ms per frame on a Titan X

GPU, allowing for real time rendering of synthetized views.

This enables many appealing application scenarios. For

example, our model, trained on ShapeNet only, can be used

in an app where downloaded 2D images are brought to life

and a user may browse the depicted object in 3D. With a

model trained on KITTI, a user may explore a 3D scene from

a single image, via generation of free-viewpoint videos or

AR/VR content (see Fig. 1).

5. Conclusion

We have presented a novel learning pipeline for contin-

uous view synthesis. At its core lies a depth-based image

prediction network that is forced to satisfy explicitly for-

mulated geometric constraints. The latent representation

is meaningful under explicit 3D transformation and can be

used to produce geometrically accurate views for both sin-

gle objects and natural scenes. We have conducted thor-

ough experiments on synthetic and natural images and have

demonstrated the efficacy of our approach.
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