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Abstract

Currently, most deep learning based disparity estimation

methods have the problem of over-smoothing at boundaries,

which is unfavorable for some applications such as point

cloud segmentation, mapping, etc. To address this problem,

we first analyze the potential causes and observe that the

estimated disparity at edge boundary pixels usually follows

multimodal distributions, causing over-smoothing estima-

tion. Based on this observation, we propose a single-modal

weighted average operation on the probability distribution

during inference, which can alleviate the problem effec-

tively. To integrate the constraint of this inference method

into training stage, we further analyze the characteristics

of different loss functions and demonstrate that cross en-

tropy loss with Gaussian distribution further improves the

performance consistently. For quantitative evaluation, we

propose a novel metric that measures the disparity error

in the local structure of edge boundaries. Experiments on

various datasets using various networks show our method’s

effectiveness and general applicability.

1. Introduction

Given a calibrated stereo-rig, the problem of disparity

estimation is to estimate per-pixel horizontal displacement

from left image to right image or vice versa. If the intrinsic

of the stereo-rig is known, per-pixel depth can be calculated

by depth = f ·b
disp

, where b is stereo baseline, f is the focal

length and disp is the estimated disparity. Stereo dispar-

ity plays an important role in many areas like robotics, au-

tonomous driving, and augmented reality as it provides an

economical way to obtain the depth of the scene, compared

with expensive depth sensors such as LIDAR.

The pipeline of disparity estimation usually consists

of four components: feature extraction, cost computation,

cost aggregation, and disparity refinement. Traditional ap-

proaches use hand-crafted features and energy minimiza-

tion methods to estimate disparity. Recent methods resort

to data-driven approach using Convolutional Neural Net-

work (CNN). MC-CNN [27] uses CNN for feature extrac-
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Figure 1. Point cloud converted from disparity. Please zoom in

for more details.

tion and cost computation, and use traditional approaches

for the remaining parts. Some recent works formulate dis-

parity estimation into an end-to-end manner. These meth-

ods can be divided into two categories: 2D CNN based

[15, 17, 10, 26] and 3D CNN based [11, 2, 23, 7]. These

two categories have two major differences in design. First,

given extracted left and right features, 2D CNN based meth-

ods use inner product or euclidean distance for cost com-

putation and 2D convolution are applied for further process,

while 3D CNN based methods use concatenation operation

and 3D convolution for cost computation and aggregation.

Second, most 2D CNN based methods directly regress the

disparity while 3D CNN based methods predict probability

distribution over enumerated disparity and the final result is

obtained by a weighted average operation.

While CNN based methods have achieved large im-

provement on disparity estimation, they usually suffer from

severe over-smoothing problem at edge boundaries. While

the estimated disparity map looks good, when converted

to point cloud, they usually have the “long tail” effect at
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boundaries. As shown in Fig. 1, 3D CNN based method

PSMNet [2] fails to estimate disparity correctly at the

boundaries of foreground and background regions. Note

that in the point cloud plenty of points are adhering to the

boundaries. Those over-smoothing estimations have a neg-

ative influence on some robotic applications like mapping,

local structure inference, and path planning.

In this work, we analyze the problem for 3D CNN based

methods. We observe that in most cases the over-smoothing

disparity is caused by the ambiguity between the locality of

estimation network and the weighted average operation. In-

spired by this, we first propose a simple yet effective strat-

egy to address this problem. Specifically, after acquiring

the probability output of estimation network, we replace

the original full-band weighted average with a single-modal

weighted average operation. With this simple change, the

over-smoothing problem is alleviated significantly.

As the proposed single-modal operation is only for post-

processing, an intuitive consideration is to integrate the

single-modal constraint into training stage as in [23]. To

this end, we further analyze the characteristics of regression

based and cross entropy based loss functions. We found that

using cross entropy with gaussian distribution has more sta-

ble and fine-grained supervision signal in training stage, and

it can further improve the estimation performance.

For evaluation, the commonly evaluation metric [16],

End Point Error (EPE), concentrates on overall perfor-

mance in a point-to-point manner. In experiments, we found

that it can not reflect the quality of disparity around bound-

aries appropriately. To this end, we propose a novel metric,

Soft Edge Error (SEE), in this work. SEE computes error

only at edge regions in a point-to-patch manner and can bet-

ter reflect the performance on over-smoothing problem.

Compared with currently prevalent smooth ℓ1 loss func-

tion, using cross entropy with gaussian distribution dur-

ing training and single-modal weighted average operation

consistently improves the performance on over-smoothing

problem and overall estimation, which is validated on vari-

ous datasets [15, 16, 1, 18], for various networks [2, 11, 23].

We summarize the contributions of our work as follows:

• A simple yet effective strategy is proposed to address

the over-smoothing problem suffered by CNN based

disparity estimation methods.

• An analysis on regression based and cross entropy

based loss functions, which shows that cross entropy

is more appropriate for training of disparity network.

• A novel metric is proposed for the evaluation of the

quality of disparity estimation at boundary regions.

• We validate the effectiveness and general applicabil-

ity of the proposed method on various public datasets

using various networks.

2. Related Work

We briefly review recent works on CNN based disparity

estimation.

Hybrid Method. MCCNN [27] and ContentCNN [14]

utilize CNN for feature extraction traditional approaches

for cost aggregation and result refinement. PBCP [19] uses

CNN to predict confidence of disparity estimation. Based

on the cost volume constructed using MCCNN, it fuses

the confidence into SGM optimization process and achieves

better accuracy. SGMNet [20] uses CNN to predict penality

term in SGM [9] optimization process. For those methods

that use traditional method for cost aggregation, the dispar-

ity is acquired by applying a winner-take-all strategy on cost

volume. Post refinement is used for sub-pixel estimation.

2D CNN Based Method. DispNet [15] is an end-to-

end network for dispariry estimation. It uses an encoder-

decoder hourglass network architecture like FlowNet [5].

DispNetC [15] uses correlation of CNN features to build

cost volume before feeding to hourglass network. CRL [17]

proposes to use cascade residual learning to refine the dis-

parity iteratively by stacking two hourglass network. iRes-

Net [13] emphasizes the constraint on left-right feature con-

stancy. Recently, DispNet3.0 [10] proposes to jointly esti-

mate disparity, occlusion, and depth boundary in a generic

network. PWCNet [22] does warping on feature instead of

on image, for smaller model size and more efficient infer-

ence for optical flow estimation. Similar strategy is used

for disparity estimation in UnDepthflow [24] and HD3 [26].

SegStereo [25] exploits semantic information from joint

training of semantic segmentation and disparity estimation.

EdgeStereo [21] improves the performance by combining

disparity estimation with edge detection network.

3D CNN Based Method. GCNet [11] first utilizes 3D

convolution for end-to-end learning of disparity regression.

First, like 2D CNN based methods, it uses 2D convolution

for feature extraction. Then, instead of directly calculating

the cost by correlation or euclidean distance, it stacks the

left and right feature that corresponds to specified dispar-

ity, leading to a 4D cost volume. 3D convolution is then

used for joint learning of geometry and context. Similar to

the architecture of GCNet, many works have been proposed

recently. PSMNet [2] applies spatial pyramid module [8]

and dilated convolution [3] in feature extractor to exploit

multi-scale representation and a stack hourglass 3D network

for residual learning. For efficiency, StereoNet [12] pro-

poses doing 3D convolution in lower resolution and itera-

tively refining the disparity by image-guided residual learn-

ing. PDSNet [23] proposes reducing channels of 3D con-

volution for fast inference and training by sub-pixel cross

entropy loss for stable disparity range adaptation.
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Figure 2. Typical architecture of 3D CNN based network. Note

that only the d, h, w dimension of the 4D tensor is visualized.

The proportion of #Modal (%)

Network Region 1 2 3 Others

Basic
All 95.70 2.70 1.01 0.59

Edge 83.30 12.30 2.98 1.42

Shg.
All 97.30 1.49 0.48 0.73

Edge 87.14 10.56 1.31 0.99

Table 1: #Modal statistics of result from basic and stack-

hourglass(shg.) version of PSMNet [2], on Sceneflow [15].

3. Methodology

3.1. 3D CNN based Method Revisited

As shown in Fig. 2, for disparity estimation, 3D CNN

based method first extracts feature map of left and right

image in 1

16
resolution, using a custom 2D convolution

based submodule, then a 4D tensor is constructed by con-

catenating left and right feature on location corresponding

to specified disparity value. The 4D tensor has shape of

2c × dmax

4
× h

4
× w

4
, where c is the dimension of 2D fea-

ture map, dmax is the user-specified maximum diparity and

(h,w) is the size of image. This 4D tensor is then fed into

a 3D convlution based submodule for cost calculation and

aggregation. The output of 3D submodule is a per-pixel log-

likelihood for every possible disparity value, in the form of
dmax

4
× h

4
× w

4
feature map. This low resolution feature

map is then trilinear upsampled to full resolution. By apply-

ing softmax on the per-pixel log-likelihood, one can get the

probability distribution p(·). Finally, the estimated disparity

is calculated using full-band weighted average operation, as

d̂ =

dmax
∑

d=0

d · p(d) (1)

3.2. The Over­Smoothing Problem

With weighted average operation as in Equation (1), one

is able to achieve sub-pixel estimation directly. However,

as shown in Fig. 1, 3D CNN based method PSMNet [2]’s

disparity estimation has severe over-smoothing problem on

edge boundaries. By visualizing the predicted probability

distribution of boundary pixels, we found that a large part

of those pixels’ distribution is a multimodal distribution,
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Figure 3. The multimodal distribution of pixel’s disparity es-

timation. After applying full-band weighted average, the green

triangle—the estimated disparity lies on between two modals.

d

h

w

Figure 4. Visualization of 3×3×3 3D convolution operation on a

single feature map with size d× h×w, which has strong locality.

The connection between two red indices far apart on d dimension,

which corresponds to pixel’s distribution output, is too weak.

which disobeys the assumption that the full-band weighted

average operation supposes. As shown in Fig. 3, the dis-

tribution of pixel’s disparity presents with two modals. We

further count the number of distribution’s modals on Scene-

flow [15] dataset for two networks presented in [2]. The

statistics in Table 1 coincides with our observation. Bi-

modal distribution takes up a secondary proportion, which

is more obvious on edge regions. After weighted aver-

age operation, the estimated disparity deviates far from the

groundtruth value, and the corresponding 3D point cloud

lies on between foreground and background as in Fig. 1,

which is the over-smoothing problem.

From another point of view, first, as 3D CNN methods

extract feature of 1

16
resolution, part of spatial accuracy is

lost and it’s hard to determine whether pixel on edge bound-

ary belongs to foreground or background. Second, although

the 3D convolution submodule may use hourglass network

to enlarge the perceptive field, as show in Fig. 4, it still

can not cover the whole range of dmax

4
× h

4
× w

4
cost vol-

ume. This means that the output log-likelihood at location

(10, 100, 200) indeed has few connection with the one at lo-

cation (70, 100, 200), in which (x, y, z) is the coordinate of

cost volume with size dmax × h × w. Therefore, we con-

sider that the estimated distribution has strong locality, and

the modes of distribution correspond to locations where the

left and right features have strong similarity.
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3.3. Single­Modal Weighted Average

Based on the assumption that the estimated distribution

has strong locality, we propose single-modal weighted av-

erage operation to alleviate the over-smoothing problem.

Specifically, when calculating the estimated disparity dur-

ing inference, instead of using full-band weighted average

operation as in Equation (1) on whole disparity range, we

only apply weighted average operation on the modal with

maximum probability, as

d̂ =

dr
∑

d=dl

d · p̂(d) (2)

in which dl and dr specify the range of modal with maxi-

mum probability. We first locate the maximum probability

index, which should also be a local maximum, then march

from this index to left and right respectively until it doesn’t

descend monotonically. p̂(·) is normalized probability dis-

tribution, as

p̂(d) =











p(d)
∑dr

i=dl
p(i)

dl ≤ d ≤ dr

0 otherwise

(3)

We first locate the modal with maximum probability and

the corresponding range, then normalize distribution on this

range, and apply weighted average operation only on this

range with the normalized distribution p̂(·). By applying

single-modal weighted average, we aim to do one more in-

ference step on the posterior distribution of network output.

This single-modal operation is only applied during infer-

ence.

3.4. Fine­Grained Supervision by Cross Entropy

Although the single-modal weighted average in Section

3.3 is able to alleviate the over-smoothing problem, it’s a

post-processing operation, without imposing any constraint

on the output of network, which may affect the performance

on other aspects. Inspired by PDSNet [23], here we analyze

the characteristics of different loss function when training

3D CNN based disparity network.

During training stage, currently, most works use

smoothed regression based loss function Lreg defined as

Lreg(d̂, d) =

{

0.5(d̂− d)2 |d̂− d|≤ 1

|d̂− d|−0.5 otherwise
(4)

in which d̂ is estimated disparity and d is groundtruth value.

Another is cross entropy based loss function Lce as

Lce(pgt, p) = −

dmax
∑

d=0

pgt(d) · log p(d) (5)

where pgt(·) is a constructed groundtruth distribution. As

listed in Table 1, most pixels’ distribution has only one

modal. Therefore, we construct Laplace and Gaussian dis-

tribution as groundtruth. The computation graph of these

two types of loss function is shown in Fig. 5.

LossLoss

Log-likelihood
Disparity

Enum.
Gt.

Softmax

Smooth L1

Disparity

Enum.
Gt.

Log 
Softmax

Log-likelihood

Construct    
Gt Distrib.

Sum

Sum

a) Regression b) Cross Entropy

Figure 5. Computation graph of two types of loss function.

As both softmax and log softmax operation do not

change the relative scale of input values during forward, the

main differences are the multiplication operation and the

ℓ1 loss. For an intuitive explanation, we generate a 100-

dimension random vector as log-likelihood to be optimized

and set the grountruth at index 30. Then we optimize this

vector by using regression based loss function and cross

entropy based loss function with constructed groundtruth

gaussian distribution centering at target index respectively.

The variation of log-likelihood, negative gradient, and prob-

ability during optimization are presented in Fig. 6.

As elaborated in Section 3.2, the modes of distribution

corrrespond to locations where the left and right feature

have strong similarity. Therefore, the magnitude of output

log-likelihood at index corresponding to groundtruth dispar-

ity should be the largest, so as the negative gradient (i.e. the

updated magnitude) during training. In Fig. 6, for regres-

sion based method, the magnitude of negative gradient at

groundtruth is smaller than values in one side, which con-

flicts with our intuition, while for cross entropy based one,

it coincides with our analysis. There is a limitation of re-

gression based loss function. From the computation graph

in Fig. 5, as regression based one uses weighted average es-

timation as proxy and ℓ1 loss, the gradient back propagated

is just a scalar. And as the probability is multiplied with

disparity enumeration from 0 to dmax in weighted average

operation, the gradient back propagated to log-likelihood

needs to be multiplied with disparity enumeration too, caus-

ing the slanted phenomenon in Fig. 6. As cross entropy

loss directly imposes constraint on the entire distribution, it

is able to produce more stable and fine-grained supervision

signal, which coincides with results in Fig. 6.

3.5. The Soft Edge Error

The End Point Error (EPE) metric is commonly used to

evaluate the performance of disparity estimation. Given es-

timated disparity map d̂ and groundtruth disparity map d,

the EPE is defined as

E(d̂, d) =
1

N

N
∑

i=1

|d̂i − di| (6)

Another commonly used metric is computing the aver-

age number of erroneously estimated pixels given specific
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Figure 6. The variation of log-likelihood, negative gradient, and probability during optimization using regression based and cross entropy

based loss function. From left to right, columns are values at iteration n ∈ {1, 11, 21, 31}. For all subfigures, the x-axis is disparity index.

disparity error threshold [6]. These metrics have two limi-

tations. First, for pixels with groundtruth available, the er-

ror is calculated in a point-to-point manner, which can not

reflect the over-smoothing problem in local structure. Sec-

ond, these metrics count all the pixels, thus can not reflect

the quality of disparity at boundaries which would be dom-

inated by other regions. To this end, we propose the Soft

Edge Error(SEE) metric, which only counts disparity error

for pixels around edge boundaries Edge(d). Formally, it’s

computed by

SEEk(d̂, d) =
1

N

N
∑

i=1

sek(d̂i, di) i ∈ Edge(d), (7)

where sek(·, ·) is Soft Error defined as:

sek(d̂i, di) = min|d̂i − dj | j ∈ Nk(i). (8)

Nk(i) denotes the local k × k neighbourhoods of point i.

Note that when k = 1, se1(·, ·) is the same as vanilla point-

to-point error.

By definition, Soft Error sek(d̂i, di) is the minimum

absolute error between the estimated disparity and it’s

corresponding local groundtruth patch. We match the

groundtruth pixel in a patch because the disparity values at

the exact boundary pixels could be uncertain. Practically,

minor misalignment artifact of disparity at boundaries is

acceptable as it hardly affects the local structure and over-

smoothing artifact is much more undesirable. With Soft Er-

ror, we mean to relax the vanilla point-to-point error metric

and impose more penalty on the damage of local structure.

As shown in Fig. 7, for a naive 1D case, suppose the step

function shown in red circle is the groundtruth, although

misalignment artifact causes larger point-to-point error than

20 30 40 50 60 70
1

2

3

4

5

6

20 30 40 50 60 70
1

2

3

4

5

6

20 30 40 50 60 70
1

2

3

4

5

6

groundtruth
misalignment
over-smoothing

Figure 7. 1D artifact visualization.

over-smoothing artifact, it can still preserve the local struc-

ture while it’s not the case for over-smoothing artifact. For

over-smoothing artifact, local structure is corrupted and it

has larger Soft Error than misalignment artifact.

Edge(d) denotes the discontinuous disparity regions in

the image. For datasets with dense per-pixel groundtruth

such as sceneflow [15], we extract the edge boundaries

by choosing pixel with absolute gradient on groundtruth

disparity map exceeding a specific threshold, which is set

to 2 in our benchmark. For datasets only having sparse

groundtruth like KITTI 2015 [16], it’s hard to determine the

discontinuous disparity region precisely. We approximate

it using semantic information for boundary extraction. As

KITTI 2015 provides instance segmentation groundtruth,

we extract the boundaries between object instances (e.g.,

vehicles) and background regions (e.g., wall), which are

supposed to be spatially apart in the 3D world. For back-

ground regions such as road, sidewalk, and ground that are

spatially connected, we treat them as one instance. The edge

extracted is enlarged using dilation with 3× 3 kernel.
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Method Loss Infr.

Sceneflow [15] Sintel [1] Kitti 2015 [16] Middlebury [18]

SEE EPE SEE EPE
3SEE 3EPE 3SEE 3EPE

Avg 3px Avg 3px Avg 3px Avg 3px

Shg [2]

Lreg FB 1.57 9.40 0.89 3.13 2.82 10.80 3.17 8.86 7.82 2.00 23.97 26.36

Lreg SM 1.01 4.17 0.90 2.83 2.53 8.07 3.16 8.39 6.99 1.86 17.94 24.14

Llap SM 0.99 3.20 0.89 2.35 2.32 8.13 3.27 8.15 6.85 1.77 14.92 22.11

Lgau SM 0.79 2.53 0.77 2.21 2.29 7.33 3.24 8.18 6.66 1.70 11.94 19.05

Basic [2]

Lreg FB 1.83 10.97 1.11 4.20 3.84 12.68 5.26 11.87 8.28 2.47 27.49 33.11

Lreg SM 1.29 5.36 1.18 3.82 4.05 10.47 5.48 10.84 7.42 2.25 18.78 27.14

Llap SM 1.16 4.14 1.13 3.28 3.45 9.25 5.10 10.49 8.41 2.76 16.02 24.06

Lgau SM 1.01 3.60 1.02 3.12 3.35 9.12 5.11 10.12 7.04 2.23 14.32 21.68

GCNet [11]

Lreg FB 1.60 9.81 0.89 3.56 3.13 13.23 3.18 9.98 8.90 2.46 25.07 28.86

Lreg SM 1.27 5.39 1.24 3.51 2.79 10.18 3.37 9.32 8.36 2.65 18.30 25.10

Llap SM 1.44 6.91 1.47 4.07 4.21 11.49 4.12 16.84 8.36 2.40 16.00 22.81

Lgau SM 1.07 3.92 1.07 3.18 3.94 11.12 3.95 10.06 8.71 2.50 14.24 20.39

PDSNet [23]

Lreg FB 1.97 12.11 1.19 4.40 3.02 12.37 2.60 9.19 8.89 2.44 22.11 24.15

Lreg SM 1.32 6.01 1.20 3.97 2.82 9.93 2.63 8.82 8.16 2.34 17.66 22.64

Llap SM 1.69 10.04 1.57 4.84 3.17 11.24 2.82 19.79 10.84 2.85 19.30 21.88

Lgau SM 1.04 3.43 1.04 2.93 5.14 9.28 2.69 7.61 7.40 2.05 13.00 15.81

Table 2: Evaluation of average (Avg) and 3px SEE, EPE on four datasets. Here we report SEE5 with a tolerance of 2px

edge misalignment. The loss functions are regression based Lreg , and cross entropy based methods with Laplace (Llap) and

Gaussian (Lgau) distribution. The inference (Infr.) methods include full band (FB) and single-modal (SM) weighted average.

4. Experiments

4.1. Implementation Detail
Datasets. For experiments, we use four datasets: Scene-

flow [15], Sintel [1], KITTI 2015 [16], and Middlebury

stereo [18]. Sceneflow has 35 454 training and 4370 test-

ing images while Sintel stereo is a small dataset. Both

Sceneflow and Sintel are synthesis dataset with per-pixel

disparity groundtruth. KITTI 2015 is a real world city

scene autonomous driving dataset with 200 training images

and sparse groundtruth. Middlebury is a real-world indoor

dataset with 15 training images and dense groundtruth.

Networks. We use four 3D CNN based disparity net-

works. Namely, the basic and stack-hourglass version of

PSMNet [2], GCNet [11], and PDSNet [23]. Both PSMNet

and PDSNet construct cost volume at 1

16
resolution while

GCNet at 1

4
resolution. We trilinearly upsample the final

per-pixel log-likelihood to full resolution for all networks.

Training. For all networks, we train 10 epochs on Scene-

flow [15]. The learning rate(lr) is initially set to 0.001 and

halved at epoch 6, 7, 8. For KITTI, we finetune with lr as

0.001 for first 200 and 0.01 for more 100 epochs. We use

160 images for finetune and 40 for validation. As Sintel

is a small synthesis dataset and middlebury stereo only has

15 images, we use model trained on Sceneflow. We train

all networks with regression based loss function smooth ℓ1
and cross entropy based loss function with Gaussian and

Laplace groundtruth distribution. The variance of gaussian

is set to 2 and the scale parameter of Laplace is set to 4. Ex-

cept for loss function, the training config is set to the same

for every network respectively for a fair comparison.

Evaluation Metrics. To evaluation the performance on

over-smoothing problem, for synthesis datasets, we com-

pute average and 3px Soft Edge Error(SEE) on Sceneflow

testing split and Sintel. As 3px error is the proportion of

outliers with error exceeds 3 pixels, it’s more robust and

practical. Therefore for real-world datasets we compute 3px

SEE on KITTI validation split and Middlebury. To evaluate

the overall performance we compute End Point Error(EPE).

4.2. Results

The Performance Gap. From the result in Table 2, there

is a large gap between EPE evaluated on whole image and

SEE evaluated on discontinuous disparity regions for all

methods. For stack-hourglass version of PSMNet [2], al-

though it has 3.13 3px EPE on Sceneflow dataset, it’s 3px

SEE with k = 5, which means a tolerance of 2 pixel edge

misalignmentis, is 9.40. It is larger than 3.13 by a margin

that can not be overlooked. The performance on discontin-

uous disparity regions needs more attention.

Benefits of Single-Modal Weighted Average. From the

first two rows of each block in Table 2, we can see that using

single-modal weighted average is consistently better than

full-band one on SEE. By applying single-modal weighted

average operation on the probabilistic output, noteworthy

improvement is achieved on discontinuous disparity regions

compared with result of full-band weighted average. We

further evaluate the average and 3px SEE, with k varying

from 1 to 15, at tolerance of 0-7 pixels edge misalignment.

From the results in Fig. 8, we can also see the consistent

improvement from full-band to single-modal operation for

various networks on various datasets.

Benefits of Cross Entropy Based Loss. As listed in Table

2 and Fig. 8, by training with cross entropy based loss func-

tion, all four networks get much lower SEE and EPE. Com-
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Figure 8. The variation of 3px Soft Edge Error with the size of local neighbourhood patch k varying from 1 to 11, and tolerance of edge

misalignment from 0 to 5 pixels. For all subfigs the x-axis is k and y-axis is 3px SEE.

pared with regression based loss function, entropy based

loss function can impose the constraint of output distribu-

tion during training and have more stable and fine-grained

supervision signal during training as analyzed in Section

3.4. It is more suitable for 3D CNN based disparity esti-

mation and achieves better performance on over-smoothing

problem as well as on overall estimation. About the spec-

ified groundtruth distribution used for training, the result

shows that Gaussian distribution based one is consistently

more stable and better than Laplace distribution based.

The Sharpness of Gaussian Distribution. From the re-

sults in Table 2 and Fig. 8, networks training with Laplace

distribution is suboptimal compared with Gaussian based.

As Laplace distribution is usually used for long-tail data

while Gaussian for short tails, here we study the relation

between the sharpness of Gaussian distribution and the per-

formance by controlling the variance parameter. In Fig.

9, on over-smoothing performance, we get better 3px SEE

with lower variance. However, there is no obvious re-

lation on overall performace. We consider that sharper

groundtruth distribution helps to learn more discriminative

feature, which is beneficial to challenging edge regions.

However, as networks construct cost volume at low reso-

lution, it will introduce artifacts when upsampled to full

image size. Therefore, for overall performance, a sharper

distribution may not be necessary.
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Figure 9. Performance of model trained with different variance.

Multimodal Distribution For Edge Regions. As listed

in Table 1, a large proportion of pixels’ probability on

edge regions follows a bimodal distribution. Here we study

the groundtruth distribution for edge regions. For pix-

els on edge regions, we use Gaussian mixture distribution

for training. The modes of mixture distribution are set

to edge pixels’ groundtruth and groundtruth of it’s neigh-

bour which has maximum disparity difference. Table 3 lists

the results training with different mixing coefficient. From

3px SEE5 results, by choosing the mixing coefficient ap-

propriately, one can achieve better performance on over-

smoothing problem as it can better fit the real distribution.

However, using Gaussian mixture distribution for training

harms the overall performance from EPE results.

KITTI Benchmark. For benchmark of the proposed

method’s overall performance, we use the model with the

best performance on validation set. Specifically, we use the
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Figure 10. Point cloud converted from disparity with known intrinsic using MeshLab [4]. From top to bottom: the left input image, result

from PSMNet [2], result from ours, and groundtruth. Please zoom in for more details.

Coefficient SEE5 EPE

Gt. Ngb. Avg 3px Avg 3px

1.0 0.0 0.79 2.53 0.77 2.21

0.9 0.1 0.90 2.65 0.96 2.63

0.8 0.2 0.92 2.56 1.10 2.79

0.7 0.3 0.82 2.19 0.94 2.52

0.6 0.4 0.83 2.15 0.98 2.69

Table 3: Results of models trained with different mixing co-

efficient on groundtruth(Gt) and neighbour(Ngb.) disparity.

All (%) Noc (%)

Method Bg Fg All Bg Fg All

PDSNet [23] 2.29 4.05 2.58 2.09 3.68 2.36

PSMNet [2] 1.86 4.62 2.32 1.71 4.31 2.14

SegStereo [25] 1.88 4.07 2.25 1.76 3.70 2.08

EdgeStereo [21] 1.87 3.61 2.16 1.72 3.41 2.00

Ours 1.54 4.33 2.14 1.70 3.90 1.93

Table 4: Results on KITTI 2015 [16] benchmark over

nonoccluded(Noc) and overall(All) regions.

>2px (%) >3px (%) >4px (%) >5px (%)

Method Noc All Noc All Noc All Noc All

PDSNet [23] 3.82 4.65 1.92 2.53 1.38 1.85 1.12 1.51

SegStereo [25] 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21

PSMNet [2] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15

EdgeStereo [21] 2.32 2.88 1.46 1.83 1.07 1.34 0.83 1.04

Ours 2.17 2.81 1.35 1.81 1.04 1.39 0.87 1.16

Table 5: Results on KITTI 2012 [6] benchmark.

stack hourglass version of PSMNet [2] trained using cross

entropy based loss function with Gaussian distribution and

applying single-modal weighted average during inference.

The results on KITTI 2012 [6] and 2015 [16] testing sets are

listed in Table 4 and 5. As listed, compared with the result

of original PSMNet [2], by applying the proposed method,

we achieve consistent non-trivial improvement, which even

surpasses strong baselines [21, 25] that use semantic infor-

mation of edge or segmentation.

Qualitative Results. We show some qualitative results in

Fig. 10 and 1, where we visualize the 3D point cloud con-

verted from estimated disparity. Our method is able to es-

timate more sharp disparity on discontinuous regions, with

few over-smoothing estimations, while PSMNet [2] fails to

estimate disparity at the boundaries of foreground (e.g. ve-

hicles) and background (e.g. wall) regions.

5. Conclusions

In this work, we aim at addressing the over-smoothing

problem of CNN based disparity estimation, which is unfa-

vorable by many practical applications but seldom explored

in previous work. For 3D CNN based methods, after an-

alyzing the probability distributions of disparity, we pro-

pose a simple yet effective method to alleviate this problem.

We then analyze the characteristics of different loss func-

tion and found cross entropy based one is more appropri-

ate for 3D CNN based disparity estimation. By integrating

the singe-modal constraint into training stage, further im-

provements are achieved, both on the over-smoothing prob-

lem and overall performance. As existing disparity met-

ric can not reflect the error at local boundary structure, we

propose a novel metric, Soft Edge Error, for evaluation.

Experiments on various public datasets using various net-

works clearly validate the effectiveness and general applica-

bility of the proposed method, which significantly reduces

the over-smoothing effect and improves the overall perfor-

mance. We hope this work could inspire further research in

this direction.
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