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Figure 1. We present 3D-Craft, a new dataset of diverse houses built from scratch by human players in the game of Minecraft. The first

and second row illustrate the difference between a recorded human action sequence and a predefined raster scan order for building a house.

The human order information enables us to learn order-aware generative models to predict actions in a more intuitive, human-like manner.

Abstract

Research on 2D and 3D generative models typically

focuses on the final artifact being created, e.g., an im-

age or a 3D structure. Unlike 2D image generation, the

generation of 3D objects in the real world is commonly

constrained by the process and order in which the ob-

ject is constructed. For instance, gravity needs to be

taken into account when building a block tower.

In this paper, we explore the prediction of ordered

actions to construct 3D objects. Instead of predict-

ing actions based on physical constraints, we propose

learning through observing human actions. To en-

able large-scale data collection, we use the Minecraft1

environment. We introduce 3D-Craft, a new dataset

of 2,500 Minecraft houses each built by human play-

ers sequentially from scratch. To learn from these

human action sequences, we propose an order-aware

3D generative model called VoxelCNN. In contrast

to other 3D generative models which either have

no explicit order (e.g. holistic generation with 3D-

GAN [35]), or follow a simple heuristic order (e.g.

raster-scan), VoxelCNN is trained to imitate human

∗equal contribution
1Minecraft features: c©Mojang Synergies AB included courtesy of

Mojang AB

building order with spatial awareness. We also trans-

ferred the order to other dataset such as ShapeNet[10].

The 3D-Craft dataset, models, and benchmark sys-

tem will be made publicly available, which may in-

spire new directions for future research exploration.

https://github.com/facebookresearch/VoxelCNN.

1. Introduction

Generative modeling is a fundamental problem in ma-

chine learning and has a long history in computer vision.

Numerous approaches have been proposed for 2D image

generation, including autoregressive models [32, 31, 25]

and Generative Adversarial Networks (GANs) [40, 6].

Along with the success of 2D models, there is an increasing

interest in generative modeling of 3D objects in the vision

community, with many applications such as multi-view 3D

reconstruction [29], 3D editing [23], and probabilistic gen-

erative modeling [35].

Unlike 2D image generative models, a potential goal of

3D generative models is to create real world physical ob-

jects. It is often the case that the creation of a physical

object not only requires the final design of the object, but

also the order and process used to create it to ensure it can
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be feasibly constructed given the physical constraints of the

world. For instance, building IKEA furniture requires one

to know the assembly order, and the building of a house

must conform to gravity, e.g., the walls need to be built be-

fore the roof. 3D printing technology also imposes order-

ings and restrictions on the construction of objects.

This leads naturally to the following questions: how can

we learn the orderings necessary to construct a 3D object,

and how are they useful for generative modeling? One way

to learn orderings is to directly simulate the physics of the

environment, which is made difficult by the endless range

of possible constraints. An alternative approach is to learn

from observations: we can aim to imitate human behav-

ior, since human order implicitly conforms to the physi-

cal constraints of the world. Unfortunately, gathering large

amounts of human observations can be incredibly difficult.

This paper, following the second approach, explores

order-aware 3D generative models on the Minecraft plat-

form. While Minecraft is a simplified synthetic environ-

ment, we hypothesize that studying problems in this do-

main may shed light on effective approaches for learning to

build from observing humans. Similar to real world objects,

Minecraft houses have significant ambiguity in their con-

struction, have many material types, and contain numerous

sub-parts, e.g., roofs, walls, doors, windows, etc. We col-

lect a large dataset of houses each built by humans sequen-

tially from scratch. The houses are constructed of coarse

3D blocks, or voxels, of different materials (wood, stone,

glass, etc.). Our dataset, dubbed 3D-Craft, contains more

than 2,500 houses with objects built by 2.8 million building

steps of 256 materials from more than 200 unique human

players. To our knowledge, this is the first 3D volumetric

dataset with order information. As a popular game platform

with more than 91 million monthly players, Minecraft of-

fers a unique opportunity to collect a large dataset of this

type.

With 3D-Craft, we not only focus on the final built

houses, but more importantly, understand how to generate

a 3D object in a natural order, and how to recover the nat-

ural order given the final 3D object. Inspired by successful

autoregressive approaches for generating 2D images, such

as PixelRNN [31] and PixelCNN [32] , we propose Voxel-

CNN to build a 3D object voxel-by-voxel for our sequen-

tial 3D generation problem. Conditioned on the previous

building sequence, our model recovers the partial 3D ob-

ject, employing a Convolutional Neural Network (CNN) to

encode spatial structure, and predicts a distribution over the

next voxel to be placed, including both the location and the

material of the voxel. In contrast to [31, 32] that generate

pixels in a predefined raster-scan order, our VoxelCNN is

trained to imitate natural human building order, which we

show experimentally improves the learnt generative mod-

els.

We propose several metrics to evaluate VoxelCNN. Un-

like the qualitative evaluation used in many other generative

tasks where only the final product is of interest, with order

information, our metrics quantitatively measure how well

the model predictions match human actions, how many vox-

els can be placed before a mistake is made, and how many

times a human needs to correct the model if it were to build

the entire house. These metrics help us better understand

the sequential generation process.

2. Related Work

3D Datasets. Numerous 3D datasets have been built

or collected for research on 3D objects. These include

the use of CAD models [10, 37], 3D objects aligned to

images with anchor points [39], template alignment [38],

and 3D printing models [41]. Our work is also related

to datasets that attempt to model 3D scenes, such as the

SUNCG [27] and Matterport3D [9] datasets. These have

been used for a variety of embodied QA [11, 8, 19] and

navigation tasks [26, 36, 8].

In this paper, we explore the task of building 3D envi-

ronments. The 3D-Craft dataset is unique in that it contains

the order in which humans created the the 3D houses, and

each block has an associated type (rock, wood, glass, etc.).

However, 3D-Craft is less visually realistic than both the

SUNCG [27] and Matterport3D [9] datasets.

3D Modeling. There has been impressive progress in 3D

synthesis and reconstruction over the decades, mostly based

on either parametric morphable models [5, 2] or part-based

template learning [12, 20]. Recent advance in deep learn-

ing has shown promising improvement in various 3D-vision

models and applications, including synthesis [35], recon-

struction [34, 42], part-based analysis [28] and interactive

editing [23].

Autoregressive Models. There have been many 2D au-

toregressive methods such as [22, 30, 31, 32, 25, 17].

Though flexible and expressive, these approaches tend to be

slow due to its sequential execution dependency (requiring

width× height steps), and the issue becomes more severe in

3D domain (width× length× height). Our approach makes

use of the sparsity of the 3D occupancy and only predicts

content on occupied voxels.

Order-aware Datasets. There have been datasets with

generative order annotation including hand-written charac-

ters [21] and buildings [24]; [21] records stroke-by-stroke

human order, while [24] contains top-down grammar for

building models.

Order-aware Generative Models. [33] shows that the

order of data organization matters significantly in sequence-

to-sequence (seq2seq) modeling. There has been a series

of recent works proposed to generate strokes on a white

canvas, such as Bayesian Program Learning [21], recur-

rent VAE [14], 3D-PRNN [42] and reinforcement learn-
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ing [13]. In [14, 13], there is no strict constraint to follow

human orders, and quality of generation is evaluated at the

last step when generation ends. Since action-level supervi-

sion is provided, these approaches tend to be more general

but also more complex and harder to train. [24] designed

a shape grammar for procedural modeling of CG architec-

tures, which builds the rough structures followed by details

such as windows and doors.

Game Platforms for AI. In recent years, a range of

game platforms for AI agents have been proposed. These

focus on a variety of tasks, such as reasoning and embodied

Question Answering [11, 19, 36, 16], reinforcement learn-

ing with defined goals [4, 7, 1, 18, 16], and visual control

and navigation [16, 18, 19, 26, 8, 16, 3]. We build our task

in the Minecraft setting. Similar to the Malmo project [16],

which is also built on Minecraft, we view Minecraft as an

attractive platform for studying open-ended creative tasks.

3. 3D-Craft Dataset

In this section, we introduce the Minecraft game and the

3D-Craft dataset.

3.1. Minecraft

Minecraft is a popular open-world sandbox video game

developed by Mojang 2. The game allows players to explore

and manipulate a procedurally generated world. Players can

place and destroy blocks of different material types in a 3D

grid. Minecraft, particularly in its creative mode setting, has

no win condition and encourages players to be creative.

Minecraft is a closed-source game but several open

source community-built projects exist, including clones

of the game (e.g. Cuberite3 and Craft4). To enable us-

ing Minecraft for artificial intelligence research, Project

Malmo [16] has provided a platform built on top of

Minecraft that allows researchers to control a Minecraft bot.

For our paper, we leverage the Cuberite server to collect

the data. Cuberite is an open-sourced Minecraft-compatible

game server with extensive plugins for players and develop-

ers.

3.2. Data Collection

We used crowd sourcing to collect examples of humans

building houses in Minecraft. Each user is asked to build

a house on a fixed time budget (30 minutes), without any

additional guidance or instruction. Every action of the user

is recorded using the Cuberite server.

The data collection was performed in Minecraft’s cre-

ative mode, where the user is given unlimited resources,

has access to all material block types and can freely move

2https://mojang.com/category/minecraft/
3https://github.com/cuberite
4https://github.com/fogleman/Craft

in the game world (e.g. flying through the air). The action

space of the environment is thus straight-forward: moving

in x-y-z dimensions, choosing a block type, and placing or

breaking a block. Any placed blocks must be attached to a

neighboring block, i.e., blocks cannot be placed in the air.

Notably, there are hundreds of different block types

someone could use to build a house, including different

kinds of wood, stone, dirt, sand, glass, metal, ice, to list a

few. We show some materials in Figure 1. An empty voxel

is considered as a special block type “air” (block id=0).

We record sequences of atomic building actions for each

user, at each step using the following format:

[t, userid, [x, y, z],

[block-id, meta-id], "P"/"B"]

where the time-stamp t is always in monotonically increas-

ing order; [xt, yt, zt] is the absolute coordinate with respect

to the world origin in Minecraft; “P” and “B” refers to plac-

ing a new block and breaking (destroying) an existing block;

each house is built by a single player in our data collection

process with a unique user-id.

3.3. Data Cleaning

To encourage diversity and creativity in our data collec-

tion pipeline, we intentionally impose no restrictions on the

house crafting task except for the time allowed for building.

However, the raw data collected from human players needs

to be pre-processed based on a few observations. Firstly, a

player might change their mind while designing the house

and “undo” a build action by removing an existing block,

e.g., remove some blocks on a wall to make room for a

window. Secondly, a few constructions are caves or un-

derground shelters constructed by destroying blocks in the

ground or a mountainside. Finally, players might build arbi-

trarily large houses in the open world of Minecraft or create

disjoint structures over large areas.

We clean up the raw data in 3D-Craft by the follow-

ing preprocessing steps: 1) If multiple actions are taken on

the same location, we only keep the action with the largest

time-stamp. 2) We remove cave homes, underground shel-

ters or other excavated houses from our dataset. 3) We per-

form connected component analysis on houses and only the

largest connected structure is kept.

All statistics, experimental setup, and evaluation results

in the following sections are reported using the cleaned data.

3.4. Dataset Statistics

In this section, we describe the statistics of the 3D-Craft

dataset. Specifically, we analyze several properties of the

fully-built houses and the player action sequences that cre-

ated them. The houses were created by approximately 200

unique human players. The number of houses built per

player is shown in Figure 2 (f).
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Figure 2. Dataset statistics. (a) 67.9% of all the blocks are placed within a 1 block distance of the previously placed one. (b) On average,

each house has 635 blocks, but there are 120 houses built with more than 1,500 blocks. (c) House blocks are sparse in the 3D space. On

average, only 25% of the cuboid voxels in a house are occupied by human-built blocks. (d) Most frequently used block types. Wood plank

is used by 20% of all the 1.5M human-built blocks. (e) On an average, each house is built by 10.9 different block types. (f) Around 200

annotators contributed to the 2.5K houses. The most productive annotator built more than 40 houses.

We begin by examining how many blocks it takes to craft

a completed house from scratch. We show the histogram

of house sizes represented by the number of blocks in Fig-

ure 2 (b). We can observe that the distribution is single-

mode and heavy-tailed, with mean 635 and median 526. We

also observe that players tend to work with multiple types

of blocks to build the houses, with an average of 10.9 differ-

ent materials being used per house, shown in Figure 2 (e).

The block types used also have a heavy-tailed distribution

as shown in Figure 2 (d). Block types such as wood plank

and stone are commonly used, while fences, stairs, iron, etc.

are used less.

Finally, we show the properties of sequential block

placement in Figure 2 (a). Under L1 (Manhattan) distance,

approximately 70% of blocks are placed within 1 block of

the previously placed block. 93.7% of blocks are placed

within 5 blocks. This is consistent with our intuition: people

tend to finish up a complete and structured sub-part, such as

an entire wall, before moving onto another. Large jumps

generally occur only when players jump between one sub-

part to another, e.g., moving from a roof to a window. The

reader can refer to videos in our supplemental materials for

recorded house building action sequences. This spatial lo-

cality property makes 3D-Craft a suitable test bed for or-

dered generation tasks, as discussed in the next section.

4. Order-aware 3D Generative Modeling

In this section, we formalize the problem of order-aware

generative modeling for 3D-Craft objects, and introduce

our VoxelCNN model to solve the problem.

4.1. Problem Definition

A house A is generated by a sequence of T actions

A = {a1, a2, ..., aT }, where each action at = {λt, bt}
places a new block at position λt = {xt, yt, zt} using block

type bt. We use at:t+k to denote the action sub-sequence

{at, at+1, . . . , at+k}. Our goal is to predict the next action

at+1 given a1:t.

4.2. VoxelCNN with Natural Human Order

VoxelCNN models the joint distribution of actions over

A as the product of conditional distributions, where action

ai is a single block (position and block type):

p(A) =
T−1∏

t=0

p(at+1|a1:t) (1)

Every block therefore depends on all the blocks placed be-

fore it, in natural human order. For each action at+1, we

let the block type bt+1 depend on the position λt+1 as:

p(at+1|a1:t) = p(λt+1, bt+1|a1:t)
= p(λt+1|a1:t)p(bt+1|λt+1, a1:t)

(2)

The intuition is that the what depends on the where, which

is inspired by Conditional PixelCNN [32] on 2D images,
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Figure 3. VoxelCNN architecture. Centered at the last action, the input for the local branch is a concatenation of 256× (2Dl +1)3 one-hot

vectors for the past k + 1 history actions, while for the global branch it is a 1× (2Dg + 1)3 binary tensor. We pass both inputs through 4

layers of 3D Convolution-BatchNorm-ReLU modules, and then concatenate and transform them to the feature tensor Ct+1. The (2Dl+1)3

probability of the position p(λt+1|a1:t) is first predicted , and then 256-d probability of materials p(bt+1|λt+1, a1:t) is predicted for the

most probable position.

where three channels R,G,B are modeled successively.

However, the PixelCNN follows heuristic raster-scan order,

while VoxelCNN targets on learning natural human order.

We model p(at+1|a1:t) by a CNN fθ with parameters θ.

As shown in Figure 3, the network first recovers the state of

the 3D object st in voxels based on the action sequence a1:t.

Then it centers on the last placed block, encoding the multi-

resolution spatial contexts, and predicts both p(λt+1|a1:t)
and p(bt+1|λt+1, a1:t). Note that p(λt+1|a1:t) is a distribu-

tion over the neighborhood relative to the last voxel λt.

To capture both the global design and detailed local

structure, a two-stream framework is proposed to encode

multi-resolution spatial contexts. The input state st consists

of two 3D patches – the local context st,l and the global con-

text st,g , with radius Dl and Dg respectively. As shown in

Figure 3, features are extracted from st,l and st,g separately

with a late feature fusion.

Local Encoding. A 3D local neighborhood of st,l is rep-

resented by a 256 × (2Dl + 1)3 tensor, which consists of

one-hot vector of block types of all voxels within the Dl-

neighborhood of the last block built at time t. We then ap-

ply multiple 3D-convolution layers to obtain a final local

representation Lt+1 of size fdim × (2Dl + 1)3.

Global Encoding. To capture the overall design of the

house, we encode the global state st,g with a much larger

radius Dg than the local state st,l (in our experiments, we

set Dg = 10 and Dl = 3). Compared with local context

st,l, the global context st,g only contains binary occupancy

(air/non-air), which focuses on the overall geometry of the

house and helps avoid overfitting during training. An ad-

ditional max-pooling layer is applied to reduce the size of

global representation Gt+1 to fdim × (2Dl + 1)3 as well.

Late Feature Fusion. We then concatenate the local rep-

resentation Lt+1 and global representation Gt+1 along the

feature channels, and apply a 1 × 1 × 1 3D-convolution

layer to obtain the final contextual representation Ct+1 of

fdim × (2Dl + 1)3.

Temporal Information. It is also of interest to ex-

plicitly model longer-term temporal information in encod-

ing, since consecutive actions tend to be spatially corre-

lated. We propose to concatenate the local house states

st,l, st−1,l, . . . , st−k,l together into ŝt,l, and then feed ŝt,l
as the input to the local encoding module.

Factorized Prediction. Based on the final representa-

tion Ct+1, we apply a 1 × 1 × 1 3D-convolution layer

on top to predict the position p(λt+1|a1:t) as a tensor of

(2Dl + 1)3, followed by a softmax layer. For block type

bt+1, we take the fdim vector in Ct+1 at either ground truth

location (training), or greedy predicted location by argmax

(test), and use a linear layer to obtain a 256-d vector, fol-

lowed by a softmax layer. We apply cross-entropy loss to

train both predictions.

Note that the current prediction could be limited to

within a local neighborhood of the last block. However,

setting Dl = 3 already covers over 90% of all the ground

truth cases. It can be extended by setting larger Dl or using

pyramid-like hierarchical predictions.

5. Evaluation Metrics

Evaluating generative models quantitatively is known to

be non-trivial. However, the ground truth sequential order-
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ing a1:T in 3D-Craft allows us to evaluate sequential pre-

diction â1:T with four quantitative metrics, measuring the

quality of both the final house and the generation process:

1) accuracy of the next block placement; 2) action sequence

perplexity; 3) number of consecutive correct actions before

making a mistake; and 4) number of mistakes that need to

be corrected in order to complete a house.

Accuracy of next step (ACC@N): We measure how

well a method can predict the next block (position and block

type) that matches natural human order. Since it could be

ambiguous for human actions in some cases as well, we re-

lax the metrics to evaluate whether the predicted block is

in the next N ∈ {1, 5, 10} moves made by a human. This

allows for some flexibility in the local ordering of block

placement. Formally, we test if the prediction ât+1 matches

any one of the ground truth actions at+1:t+N .

Perplexity: We can also measure the performance of a

generative model by Perplexity (ppl):

log2 ppl = E[−log(p(ât+1 = at+1|a1:t))]

Perplexity measures the quality of the immediate behavior-

cloning and only considers an action to be correct if it ex-

actly follows the human action order.

Number of Consecutive Correct Actions (CCA):

Starting from a house X% complete, we record the number

of consecutive blocks the model can place {ât+1, ât+2, ...}
before it makes a mistake. An action ât+1 is considered

correct if the placed block belongs to the finished house,

i.e. ât+1 ∈ at+1:T . For each house, we set X to be

10, 25, 50, 75, 90, and take the average over all possible X

values and houses as the final metric.

Number of Mistakes to Complete (MTC): Starting

from a house X=10% complete, we record the number

of mistakes made before completing the house. When the

model makes a mistake, we correct the wrong prediction

by an “oracle” block, which is the earliest block from the

ground truth data that has not been placed yet. Since differ-

ent houses might require vastly different number of blocks

to complete, we further consider dividing the number of

mistakes by the number of blocks for each house, and av-

eraging across all the houses to be the Normalized MTC

metric.

6. Experiments

In this section, we detail the experiment settings, com-

paring the proposed VoxelCNN with several baseline ap-

proaches for order-aware generation, order recovery and

transferability.

6.1. Baselines

We propose several baselines to evaluate how well our

model mimics the human ordering of actions, and gauge

overall generation performance.

LSTM. For sequential prediction tasks, one commonly

used baseline approach is Long Short-Term Memory [15].

We embed the previous actions a1:t into 512-d embedding

space, and employ an one-layer LSTM to predict the next

actions. Detailed architectures can be found in supplemen-

tary materials. In our problem, LSTM leverages the order

information but does not explicitly model the spatial struc-

ture of the 3D object.

Besides, we observe that human building order may fol-

low certain patterns, for example, continuing to build the

same type of blocks in a line. We also notice that similar lo-

cal structures may appear frequently, such as the windows,

doors, and stairs. Therefore, we propose two intuitive non-

learning baselines based on these observations:

Naive Inertia. At each step t + 1, place the block at

λt+1 ← 2λt − λt−1, and keep the same block type as

bt+1 ← bt.

Nearest Neighbor. We create a look-up table of 3D

binary-occupancy patches for all the time steps in the train-

ing set. For each occupancy pattern, we record its most

probable next-step action. At test time, for a new local

patch, we find its nearest neighbor in L2 distance and copy

over the next-step action.

Inspired by PixelCNN and PixelRNN for generating 2D

images, we propose another two baselines using raster-

scan order, rather than natural human order, to generate 3D

houses and objects.

3D PixelCNN. We extend the PixelCNN [32] to the 3D

scenario by enforcing the model to predict blocks in a raster-

scan order over the 3D grid. We change our VoxelCNN

framework by using masked 3D convolution layers, remov-

ing position prediction head, but adding an additional block

type “air” (place nothing).

Learned Raster-Scan. Given a partially built house in

human order At, we train a VoxelCNN to predict the next

unplaced block in the raster scan order instead of the human

order at+1.

6.2. Implementation Details

The dataset is randomly split into 70% of the data

(1750 houses; 1,074,647 steps) for training, 10% (250

houses; 159,787 steps) for validation, and 20% (500 houses;

313,265 steps) for testing.

We set hyper-parameters Dl = 3 and Dg = 10. We use

four convolution layers with fdim = 16 and kernel size of

3× 3× 3. To encode temporal information, we stack k = 3
states of previous steps. Our network is trained using SGD

with learning rate 0.01, Nesterov momentum 0.9, and mini-

batch size of 64 for 20 epochs, and we select the model

based on best ACC@1 on the validation dataset to do the

final test evaluation.
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6.3. Order­Aware Generation

We first evaluate different models on the task of order-

aware generation (Section 4.1) with various metrics pro-

posed in Section 5.

Comparison with Baselines. In Table 1, we compare

VoxelCNN with the two groups of baseline approaches. The

first group (row 1-3) shows the results of heuristic algo-

rithms or conventional sequential model based on natural

human order. While the second group (row 4-5) consists of

the models based on raster-scan order. Our proposed Voxel-

CNN outperforms all the other baselines by a large margin,

as analyzed below in more details.

In the first group, we can see that LSTM performs com-

parably with or even worse than the other two heuristic al-

gorithms. As explained in Section 6.1, LSTM is designed

for general sequential prediction tasks. In our problem, it

leverages the building order information in a brute-force

way, without explicitly modeling the spatial structure of the

3D house, which makes it hard to be trained effectively.

However, VoxelCNN takes both spatial structure (locally

and globally) and temporal order into consideration, which

leads to superior results.

Additionally, comparing VoxelCNN with 3D PixelCNN

or Learned from Raster-Scan, we can see that learning from

different orders may dramatically impact the performance

of generation. In our dataset, many of the chunks of blocks

are semantically meaningful, such as forming a wall, pil-

lars, doors, etc. We hypothesize that raster-scan will break

the semantic continuity in generation, making the prediction

less accurate.

Additional Analysis. It is of interest to study how the

task difficulty varies conditioned on different percentages

of building progress. As shown in Figure 4 (top), the task

is much harder when the house crafting just starts (less than

10%) and almost finishes (larger than 75%), likely because

the former gives too little information about the structure

and the latter leaves some decoration work incomplete with

much larger uncertainty and unpredictability. Also in Fig-

ure 4 (bottom), we show the distribution of p.d.f. and c.d.f.

of CCA, which is heavy-tailed. For more ablation studies,

please refer to the supplementary materials.

Qualitative Results. We display qualitative results

demonstrating the sequential behavior of VoxelCNN. For

a given house in the test set, we start from 50% complete

and let our model predict for another 50 steps, without in-

terrupting it even when it makes a mistake. In this scenario,

undesirable wrong steps may result in error-compounding

and the results may significantly deviate from the original

design.

In Figure 5 we show samples of half-finished houses

and compare the model results with ground truth. The

first row contains five houses half-way finished; we show

the progress of our model after 50 steps (middle row) and
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Figure 4. Evaluation results of our best VoxelCNN. (a) The model

makes more mistakes when building the final stage of the house.

We noticed that, towards the final stages of a house in the ground

truth, both the mean and std of the distances between consecutive

blocks get increased, which correlates with the MTC curve. (b)

Given 10% complete houses over the dataset, the probability of

CCA follows a heavy-tailed distribution.

ground truth after 50 steps (third row).

We observe some interesting behaviors of our model, for

example, it has the ability to add a roof on top of the walls

(column 1, 2, 3). Furthermore, it sometimes mimics the

way humans design by not just trivially copying the same

material from the last step, but trying to switch to a different

material to finish a wall (column 4). It is encouraging to

see that our model performs reasonably well on half-done

houses that are very distinct from one another. Admittedly,

sometimes it does not perform that compelling, as shown in

column 5, where it just repeatedly adds more “wall-blocks”

but ignores the clear intention of finishing up with a roof

and adding some doors as a human would.

6.4. Order Recovery and Transferability

VoxelCNN is shown capable of generating reasonable

3D houses voxel-by-voxel in natural order. A straightfor-

ward extension is to explore if the model can be used to

recover the human building order given a final 3D house we

would like to build. This order recovery problem itself is

interesting and may help with tasks such as segmentation or

inferring part primitives.

To this end, we make a slight modification in VoxelCNN

by adding an extra input of the final object in our local en-

coding. We show the performance of our VoxelCNN and

the Nearest Neighbor baseline that is also informed of the

final object in Table 2.
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Methods ACC@1 (%) ACC@5 (%) ACC@10 (%) CCA MTC Normalized MTC (%) Perplexity

LSTM 32.1 41.3 43.5 - 278.3 50.6 4.60

Naive Inertia 38.7 47.0 48.3 1.8 287.7 52.5 -

Nearest Neighbor 42.9 59.7 61.9 4.7 209.2 37.9 -

Naive VoxelCNN - - - 2.2† 430.5† - 3.79†

Learned Raster-Scan 31.5 49.0 52.8 2.4 295.3 53.1 4.44

VoxelCNN 62.7±0.17 77.2±0.14 78.9±0.15 11.7±0.42 122.8±1.07 23.2±.002 3.24±.016

Table 1. Comparisons between baseline approaches and variants of VoxelCNN. Standard deviation is measured by running our model 5

times with different random seeds. Please see Section 5 for definitions of evaluation metrics, and Section 6.1 for descriptions for each of

the baseline.

Half-Done

Houses

Model 

Constructions

(50 Steps)

Human

Constructions

(50 steps)

Figure 5. Sample results generated by our best model. Top row: houses with 50% blocks placed; Middle row: constructions from our

model with 50 newly generated blocks; Bottom row: constructions from ground truth data with next 50 blocks.

Methods ACC@1 (%) ACC@10 (%) Perplexity

Nearest Neighbor 43.3 62.4 -

VoxelCNN 69.3 88.0 1.41

Table 2. Results of order recovery from a given object. We extend

the VoxelCNN to condition on an extra input of the final state of

the house, and test how well it can recover the underlying sequence

of human building the house.

It is of interest to see if the synthetic order learned from

3D-Craft can be transferred to realistic 3D objects such as

ShapeNet [10]. We observe that our model tends to build an

object part by part, even though it was trained on a differ-

ent domain (houses vs. chairs/tables/etc) without any parts

information. Please refer to our supplemental materials for

more visualizations and results.

7. Future Work and Conclusion

Several possible directions exist for future work. We cur-

rently construct houses one block at a time. An alternative

is to construct houses one part, e.g., wall, roof, door, etc., at

a time. We plan to add these semantic labels to the dataset

in the future. Our model also assumes the next block to be

placed is within a local window of the last block placed. If

we used part-based building, we may be able to better pre-

dict large jumps in blocks, which, though not common, are

important for whole house generation. Our dataset is based

on a synthetic Minecraft world. We view this as a first step

in studying the problem of constructing 3D objects in the

real world. However, our simplified world does not have

the same complexity as many real world problems. For in-

stance, building with wooden blocks would result in a much

larger action space.

In this paper, we study the novel problem of predicting

the order in which 3D objects are constructed. We introduce

a new dataset 3D-Craft consisting of 2500 houses built by

human players in Minecraft. In addition to the 3D arrange-

ment of blocks making up the structure, we record the order

in which the block were placed. We propose a VoxelCNN

model that can predict the position, material and order in

which to place blocks. The model may be conditioned on a

predefined house, or may generate new blocks given a par-

tially built structure. Apart from 3D object generation, the

3D-Craft dataset may also inspire future research for indoor

layout and decoration, finding 3D primitives, and human-AI

collaborative creation.
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