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Abstract

Visual knowledge bases such as Visual Genome power

numerous applications in computer vision, including visual

question answering and captioning, but suffer from sparse,

incomplete relationships. All scene graph models to date

are limited to training on a small set of visual relationships

that have thousands of training labels each. Hiring human

annotators is expensive, and using textual knowledge base

completion methods are incompatible with visual data. In

this paper, we introduce a semi-supervised method that as-

signs probabilistic relationship labels to a large number of

unlabeled images using few labeled examples. We analyze

visual relationships to suggest two types of image-agnostic

features that are used to generate noisy heuristics, whose out-

puts are aggregated using a factor graph-based generative

model. With as few as 10 labeled examples per relation-

ship, the generative model creates enough training data to

train any existing state-of-the-art scene graph model. We

demonstrate that our method outperforms all baseline ap-

proaches on scene graph prediction by 5.16 recall@100

for PREDCLS. In our limited label setting, we define a

complexity metric for relationships that serves as an indi-

cator (R2 = 0.778) for conditions under which our method

succeeds over transfer learning, the de-facto approach for

training with limited labels.

1. Introduction

In an effort to formalize a structured representation for

images, Visual Genome [27] defined scene graphs, a for-

malization similar to those widely used to represent knowl-

edge bases [13, 18, 56]. Scene graphs encode objects (e.g.

person, bike) as nodes connected via pairwise relation-

ships (e.g., riding) as edges. This formalization has led

to state-of-the-art models in image captioning [3], image

retrieval [25, 42], visual question answering [24], relation-

ship modeling [26] and image generation [23]. However,

all existing scene graph models ignore more than 98% of

relationship categories that do not have sufficient labeled

instances (see Figure 2) and instead focus on modeling the

Any existing 
scene graph 

model

Our semi-
supevised 

method

Probabilistic training labels Limited labels

Unlabeled images
Eat: 0.85

Eat: 0.3

Eat: 0.35

Eat: 0.7

Inputs

Figure 1. Our semi-supervised method automatically generates

probabilistic relationship labels to train any scene graph model.

few relationships that have thousands of labels [31, 49, 54].

Hiring more human workers is an ineffective solution to

labeling relationships because image annotation is so tedious

that seemingly obvious labels are left unannotated. To com-

plement human annotators, traditional text-based knowledge

completion tasks have leveraged numerous semi-supervised

or distant supervision approaches [6, 7, 17, 34]. These meth-

ods find syntactical or lexical patterns from a small labeled

set to extract missing relationships from a large unlabeled

set. In text, pattern-based methods are successful, as relation-

ships in text are usually document-agnostic (e.g. <Tokyo

- is capital of - Japan>). Visual relationships are

often incidental: they depend on the contents of the partic-

ular image they appear in. Therefore, methods that rely on

external knowledge or on patterns over concepts (e.g. most

instances of dog next to frisbee are playing with it)

do not generalize well. The inability to utilize the progress

in text-based methods necessitates specialized methods for

visual knowledge.

In this paper, we automatically generate missing rela-

tionships labels using a small, labeled dataset and use these

generated labels to train downstream scene graph models

(see Figure 1). We begin by exploring how to define image-

agnostic features for relationships so they follow patterns

across images. For example, eat usually consists of one

object consuming another object smaller than itself, whereas

look often consists of common objects: phone, laptop,

or window (see Figure 3). These rules are not dependent on

raw pixel values; they can be derived from image-agnostic

features like object categories and relative spatial positions

between objects in a relationship. While such rules are sim-

ple, their capacity to provide supervision for unannotated

relationships has been unexplored. While image-agnostic
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Figure 2. Visual relationships have a long tail (left) of infrequent relationships. Current models [49,54] only focus on the top 50 relationships

(middle) in the Visual Genome dataset, which all have thousands of labeled instances. This ignores more than 98% of the relationships with

few labeled instances (right, top/table).

features can characterize some visual relationships very well,

they might fail to capture complex relationships with high

variance. To quantify the efficacy of our image-agnostic

features, we define “subtypes” that measure spatial and cate-

gorical complexity (Section 3).

Based on our analysis, we propose a semi-supervised ap-

proach that leverages image-agnostic features to label miss-

ing relationships using as few as 10 labeled instances of each

relationship. We learn simple heuristics over these features

and assign probabilistic labels to the unlabeled images using

a generative model [39, 46]. We evaluate our method’s label-

ing efficacy using the completely-labeled VRD dataset [31]

and find that it achieves an F1 score of 57.66, which is 11.84
points higher than other standard semi-supervised methods

like label propagation [57]. To demonstrate the utility of

our generated labels, we train a state-of-the-art scene graph

model [54] (see Figure 6) and modify its loss function to

support probabilistic labels. Our approach achieves 47.53

recall@1001 for predicate classification on Visual Genome,

improving over the same model trained using only labeled

instances by 40.97 points. For scene graph detection, our ap-

proach achieves within 8.65 recall@100 of the same model

trained on the original Visual Genome dataset with 108×
more labeled data. We end by comparing our approach to

transfer learning, the de-facto choice for learning from lim-

ited labels. We find that our approach improves by 5.16

recall@100 for predicate classification, especially for re-

lationships with high complexity, as it generalizes well to

unlabeled subtypes.

Our contributions are three-fold. (1) We introduce the

first method to complete visual knowledge bases by finding

missing visual relationships (Section 5.1). (2) We show the

utility of our generated labels in training existing scene graph

prediction models (Section 5.2). (3) We introduce a metric to

characterize the complexity of visual relationships and show

it is a strong indicator (R2 = 0.778) for our semi-supervised

method’s improvements over transfer learning (Section 5.3).

1Recall@K is a standard measure for scene graph prediction [31].

2. Related work

Textual knowledge bases were originally hand-curated by

experts to structure facts [4,5,44] (e.g. <Tokyo - capital

of - Japan>). To scale dataset curation efforts, recent

approaches mine knowledge from the web [9] or hire non-

expert annotators to manually curate knowledge [5, 47]. In

semi-supervised solutions, a small amount of labeled text is

used to extract and exploit patterns in unlabeled sentences [2,

21, 33–35, 37]. Unfortunately, such approaches cannot be

directly applied to visual relationships; textual relations can

often be captured by external knowledge or patterns, while

visual relationships are often local to an image.

Visual relationships have been studied as spatial priors [14,

16], co-occurrences [51], language statistics [28, 31, 53], and

within entity contexts [29]. Scene graph prediction mod-

els have dealt with the difficulty of learning from incom-

plete knowledge, as recent methods utilize statistical mo-

tifs [54] or object-relationship dependencies [30, 49, 50, 55].

All these methods limit their inference to the top 50 most

frequently occurring predicate categories and ignore those

without enough labeled examples (Figure 2).

The de-facto solution for limited label problems is trans-

fer learning [15, 52], which requires that the source domain

used for pre-training follows a similar distribution as the

target domain. In our setting, the source domain is a dataset

of frequently-labeled relationships with thousands of exam-

ples [30, 49, 50, 55], and the target domain is a set of limited

label relationships. Despite similar objects in source and

target domains, we find that transfer learning has difficulty

generalizing to new relationships. Our method does not rely

on availability of a larger, labeled set of relationships; in-

stead, we use a small labeled set to annotate the unlabeled

set of images.

To address the issue of gathering enough training la-

bels for machine learning models, data programming has

emerged as a popular paradigm. This approach learns to

model imperfect labeling sources in order to assign train-

ing labels to unlabeled data. Imperfect labeling sources

can come from crowdsourcing [10], user-defined heuris-

tics [8, 43], multi-instance learning [22, 40], and distant su-
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Categorical features
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Figure 3. Relationships, such as fly, eat, and sit can be characterized effectively by their categorical (s and o refer to subject and object,

respectively) or spatial features. Some relationships like fly rely heavily only on a few features — kites are often seen high up in the sky.

pervision [12, 32]. Often, these imperfect labeling sources

take advantage of domain expertise from the user. In our

case, imperfect labeling sources are automatically generated

heuristics, which we aggregate to assign a final probabilistic

label to every pair of object proposals.

3. Analyzing visual relationships

We define the formal terminology used in the rest of the

paper and introduce the image-agnostic features that our

semi-supervised method relies on. Then, we seek quantita-

tive insights into how visual relationships can be described

by the properties between its objects. We ask (1) what image-

agnostic features can characterize visual relationships? and

(2) given limited labels, how well do our chosen features

characterize the complexity of relationships? With these in

mind, we motivate our model design to generate heuristics

that do not overfit to the small amount of labeled data and

assign accurate labels to the larger, unlabeled set.

3.1. Terminology

A scene graph is a multi-graph G that consists of objects

o as nodes and relationships r as edges. Each object oi =
{bi, ci} consists of a bounding box bi and its category ci ∈
C where C is the set of all possible object categories (e.g.

dog, frisbee). Relationships are denoted <subject

- predicate - object> or <o - p - o′>. p ∈ P is a

predicate, such as ride and eat. We assume that

we have a small labeled set {(o, p, o′) ∈ Dp} of annotated

relationships for each predicate p. Usually, these datasets

are on the order of a 10 examples or fewer. For our semi-

supervised approach, we also assume that there exists a large

set of images DU without any labeled relationships.

3.2. Defining imageagnostic features

It has become common in computer vision to utilize pre-

trained convolutional neural networks to extract features

that represent objects and visual relationships [31, 49, 50].

Models trained with these features have proven robust in

the presence of enough training labels but tend to overfit

when presented with limited data (Section 5). Consequently,

an open question arises: what other features can we utilize

to label relationships with limited data? Previous literature

has combined deep learning features with extra information

extracted from categorical object labels and relative spatial

object locations [25, 31]. We define categorical features,

< o,−, o′ >, as a concatenation of one-hot vectors of the

subject o and object o′. We define spatial features as:

x− x′

w
,
y − y′

h
,
(y + h)− (y′ + h′)

h
,

(x+ w)− (x′ + w′)

w
,
h′

h
,
w′

w
,
w′h′

wh
,
w′ + h′

w + h

where b = [y, x, h, w] and b′ = [y′, x′, h′, w′] are the top-

left bounding box coordinates and their widths and heights.

To explore how well spatial and categorical features can

describe different visual relationships, we train a simple

decision tree model for each relationship. We plot the im-

portances for the top 4 spatial and categorical features in

Figure 3. Relationships like fly place high importance on

the difference in y-coordinate between the subject and object,

capturing a characteristic spatial pattern. look, on the other

hand, depends on the category of the objects (e.g. phone,

laptop, window) and not on any spatial orientations.

3.3. Complexity of relationships

To understand the efficacy of image-agnostic features,

we’d like to measure how well they can characterize the

complexity of particular visual relationships. As seen in

Figure 4, a visual relationship can be defined by a number of

image-agnostic features (e.g. a person can ride a bike, or

a dog can ride a surfboard). To systematically define this

notion of complexity, we identify subtypes for each visual

relationship. Each subtype captures one way that a relation-

ship manifests in the dataset. For example, in Figure 4, ride

contains one categorical subtype with <person - ride -

bike> and another with <dog - ride - surfboard>.

Similarly, a person might carry an object in different rela-

tive spatial orientations (e.g. on her head, to her side). As

shown in Figure 5, visual relationships might have signifi-

cantly different degrees of spatial and categorical complex-

ity, and therefore a different number of subtypes for each.

To compute spatial subtypes, we perform mean shift clus-

tering [11] over the spatial features extracted from all the
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Figure 4. We define the number of subtypes of a relationship as a measure of its complexity. Subtypes can be categorical — one subtype of

ride can be expressed as <person - ride - bike> while another is <dog - ride - surfboard>. Subtypes can also be spatial —

carry has a subtype with a small object carried to the side and another with a large object carried overhead.
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Figure 5. A subset of visual relationships with different levels of complexity as defined by spatial and categorical subtypes. In Section 5.3,

we show how this measure is a good indicator of our semi-supervised method’s effectiveness compared to baselines like transfer learning.

relationships in Visual Genome. To compute the categorical

subtypes, we count the number of unique object categories

associated with a relationship.

With access to 10 or fewer labeled instances for these

visual relationships, it is impossible to capture all the sub-

types for given relationship and therefore difficult to learn a

good representation for the relationship as a whole. Conse-

quently, we turn to the rules extracted from image-agnostic

features and use them to assign labels to the unlabeled data

in order to capture a larger proportion of subtypes in each

visual relationship. We posit that this will be advantageous

over methods that only use the small labeled set to train a

scene graph prediction model, especially for relationships

with high complexity, or a large number of subtypes. In

Section 5.3, we find a correlation between our definition of

complexity and the performance of our method.

4. Approach

We aim to automatically generate labels for missing visual

relationships that can be then used to train any downstream

scene graph prediction model. We assume that in the long-

tail of infrequent relationships, we have a small labeled

set {(o, p, o′) ∈ Dp} of annotated relationships for each

predicate p (often, on the order of a 10 examples or less). As

discussed in Section 3, we want to leverage image-agnostic

features to learn rules that annotate unlabeled relationships.

Our approach assigns probabilistic labels to a set DU of

un-annotated images in three steps: (1) we extract image-

agnostic features from the objects in the labeled Dp and

Algorithm 1 Semi-supervised Alg. to Label Relationships

1: INPUT: {(o, p, o′) ∈ Dp}∀p ∈ P — A small dataset of object pairs (o, o′)
with multi-class labels for predicates.

2: INPUT: {(o, o′)} ∈ DU} — A large unlabeled dataset of images with ob-

jects but no relationship labels.

3: INPUT: f(·, ·) — A function that extracts features from a pair of objects.

4: INPUT: DT (·) — A decision tree.

5: INPUT: G(·) — A generative model that assigns probabilistic labels given

multiple labels for each datapoint

6: INPUT: train(·) — Function used to train a scene graph detection model.

7: Extract features and labels, Xp, Yp := {f(o, o′), p for (o, p, o′) ∈ Dp},

XU := {(f(o, o′) for (o, o′) ∈ DU}
8: Generate heuristics by fitting J decision trees DTfit(Xp)
9: Assign labels to (o, o′) ∈ DU , Λ = DTpredict(XU ) for J decision trees.

10: Learn generative model G(Λ) and assign probabilistic labels ỸU := G(Λ)

11: Train scene graph model, SGM := train(Dp + DU , Yp + ỸU )
12: OUTPUT: SGM(·)

from the object proposals extracted using an existing object

detector [19] on unlabeled DU , (2) we generate heuristics

over the image-agnostic features, and finally (3) we use a

factor-graph based generative model to aggregate and as-

sign probabilistic labels to the unlabeled object pairs in DU .

These probabilistic labels, along with Dp, are used to train

any scene graph prediction model. We describe our approach

in Algorithm 1 and show the end-to-end pipeline in Figure 6.

Feature extraction: Our approach uses the image-agnostic

features defined in Section 3, which rely on object bounding

box and category labels. The features are extracted from

ground truth objects in Dp or from object detection outputs

in DU by running existing object detection models [19].

Heuristic generation: We fit decision trees over the la-

beled relationships’ spatial and categorical features to cap-

ture image-agnostic rules that define a relationship. These
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Figure 6. For a relationship (e.g., carry), we use image-agnostic features to automatically create heuristics and then use a generative model

to assign probabilistic labels to a large unlabeled set of images. These labels can then be used to train any scene graph prediction model.

image-agnostic rules are threshold-based conditions that are

automatically defined by the decision tree. To limit the com-

plexity of these heuristics and thereby prevent overfitting, we

use shallow decision trees [38] with different restrictions on

depth over each feature set to produce J different decision

trees. We then predict labels for the unlabeled set using these

heuristics, producing a Λ ∈ R
J×|DU | matrix of predictions

for the unlabeled relationships.

Moreover, we only use these heuristics when they have

high confidence about their label; we modify Λ by converting

any predicted label with confidence less than a threshold

(empirically chosen to be 2× random) to an abstain, or no

label assignment. An example of a heuristic is shown in

Figure 6: if the subject is above the object, it assigns a

positive label for the predicate carry.

Generative model: These heuristics, individually, are noisy

and may not assign labels to all object pairs in DU . As a

result, we aggregate the labels from all J heuristics. To do so,

we leverage a factor graph-based generative model popular

in text-based weak supervision techniques [1, 39, 41, 45, 48].

This model learns the accuracies of each heuristic to combine

their individual labels; the model’s output is a probabilistic

label for each object pair.

The generative model G uses the following distribution

family to relate the latent variable Y ∈ R
|DU |, the true class,

and the labels from the heuristics, Λ:

πφ(Λ, Y ) =
1

Zφ

exp
(

φTΛY
)

where Zφ is a partition function to ensure π is normalized.

The parameter φ ∈ R
J encodes the average accuracy of

each heuristic and is estimated by maximizing the marginal

likelihood of the observed heuristic Λ. The generative model

assigns probabilistic labels by computing πφ(Y | Λ(o, o′))
for each object pair (o, o′) in DU .

Training scene graph model: Finally, these probabilistic

labels are used to train any scene graph prediction model.

While scene graph models are usually trained using a cross-

entropy loss [31,49,54], we modify this loss function to take

Table 1. We validate our approach for labeling missing relationships

using only n = 10 labeled examples by evaluating our probabilistic

labels from our semi-supervised approach over the fully-annotated

VRD using macro metrics dataset [31].

Model (n = 10) Prec. Recall F1 Acc.

RANDOM 5.00 5.00 5.00 5.00

DECISION TREE 46.79 35.32 40.25 36.92

LABEL PROPAGATION 76.48 32.71 45.82 12.85

OURS (MAJORITY VOTE) 55.01 57.26 56.11 40.04

OURS (CATEG. + SPAT.) 54.83 60.79 57.66 50.31

into account errors in the training annotations. We adopt a

noise-aware empirical risk minimizer that is often seen in

logistic regression as our loss function:

Lθ = EY∼π

[

log
(

1 + exp(−θTV TY )
)]

where θ is the learned parameters, π is the distribution

learned by the generative model, Y is the true label, and V

are features extracted by any scene graph prediction model.

5. Experiments

To test our semi-supervised approach for completing vi-

sual knowledge bases by annotating missing relationships,

we perform a series of experiments and evaluate our frame-

work in several stages. We start by discussing the datasets,

baselines, and evaluation metrics used. (1) Our first exper-

iment tests our generative model’s ability to find missing

relationships in the completely-annotated VRD dataset [31].

(2) Our second experiment demonstrates the utility of our

generated labels by using them to train a state-of-the-art

scene graph model [54]. We compare our labels to those

from the large Visual Genome dataset [27]. (3) Finally, to

show that our semi-supervised method’s performance com-

pared to strong baselines in limited label settings, we com-

pare extensively to transfer learning; we focus on a subset of

relationships with limited labels, allow the transfer learning

model to pretrain on frequent relationships, and demonstrate
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<man-fly-kite> ✓

a b c d e

<book-ride-shelf>
✗ GT: sit

<glasses-cover-face>
✗ GT: sit<man-look-phone> ✓

<shirt-sit-chair>
✗ GT: hang

Figure 7. (a) Heuristics based on spatial features help predict <man - fly - kite>. (b) Our model learns that look is highly correlated

with phone. (c) We overfit to the importance of chair as a categorical feature for sit, and fail to identify hang as the correct relationship.

(d) We overfit to the spatial positioning associated with ride, where objects are typically longer and directly underneath the subject. (e)

Given our image-agnostic features, we produce a reasonable label for <glass - cover - face>. However, our model is incorrect, as two

typically different predicates (sit and cover) share a semantic meaning in the context of <glasses - ? - face>.

that our semi-supervised method outperforms transfer learn-

ing, which has seen more data. Furthermore, we quantify

when our method outperforms transfer learning using our

metric for measuring relationship complexity (Section 3.3).

Eliminating synonyms and supersets. Typically, past

scene graph approaches have used 50 predicates from Visual

Genome to study visual relationships. Unfortunately, these

50 treat synonyms like laying on and lying on as sep-

arate classes. To make matters worse, some predicates can

be considered a superset of others (i.e. above is a superset

of riding). Our method, as well as the baselines, is unable

to differentiate between synonyms and supersets. For the

experiments in this section, we eliminate all supersets and

merge all synonyms, resulting in 20 unique predicates. In the

Supplementary Material we include a list of these predicates

and report our method’s performance on all 50 predicates.

Dataset. We use two standard datasets, VRD [31] and Vi-

sual Genome [27], to evaluate on tasks related to visual

relationships or scene graphs. Each scene graph contains

objects localized as bounding boxes in the image along with

pairwise relationships connecting them, categorized as ac-

tion (e.g., carry), possessive (e.g., wear), spatial (e.g.,

above), or comparative (e.g., taller than) descriptors.

Visual Genome is a large visual knowledge base containing

108K images. Due to its scale, each scene graph is left with

incomplete labels, making it difficult to measure the preci-

sion of our semi-supervised algorithm. VRD is a smaller

but completely annotated dataset. To show the performance

of our semi-supervised method, we measure our method’s

generated labels on the VRD dataset (Section 5.1). Later,

we show that the training labels produced can be used to

train a large scale scene graph prediction model, evaluated

on Visual Genome (Section 5.2).

Evaluation metrics. We measure precision and recall of our

generated labels on the VRD dataset’s test set (Section 5.1).

To evaluate a scene graph model trained on our labels, we

use three standard evaluation modes for scene graph predic-

tion [31]: (i) scene graph detection (SGDET) which expects

input images and predicts bounding box locations, object

categories, and predicate labels, (ii) scene graph classifica-

tion (SGCLS) which expects ground truth boxes and predicts

object categories and predicate labels, and (iii) predicate clas-

sification (PREDCLS), which expects ground truth bounding

boxes and object categories to predict predicate labels. We

refer the reader to the paper that introduced these tasks for

more details [31]. Finally, we explore how relationship

complexity, measured using our definition of subtypes, is

correlated with our model’s performance relative to transfer

learning (Section 5.3).

Baselines. We compare to alternative methods for generat-

ing training labels that can then be used to train downstream

scene graph models. ORACLE is trained on all of Visual

Genome, which amounts to 108× the quantity of labeled

relationships in Dp; this serves as the upper bound for how

well we expect to perform. DECISION TREE [38] fits a single

decision tree over the image-agnostic features, learns from

labeled examples in Dp, and assigns labels to DU . LABEL

PROPAGATION [57] employs a widely-used semi-supervised

method and considers the distribution of image-agnostic

features in DU before propagating labels from Dp to DU .

We compare to a strong frequency baselines: (FREQ) uses

the object counts as priors to make relationship predictions,

and FREQ+OVERLAP increments such counts only if the

bounding boxes of objects overlap. We include a TRANS-

FER LEARNING baseline, which is the de-facto choice for

training models with limited data [15, 52]. However, unlike

all other methods, transfer learning requires a source dataset

to pretrain. We treat the source domain as the remaining

relationships from the top 50 in Visual Genome that do not

overlap with our chosen relationships. We then fine tune

with the limited labeled examples for the predicates in Dp.

We note that TRANSFER LEARNING has an unfair advantage

because there is overlap in objects between its source and

target relationship sets. Our experiments will show that even

with this advantage, our method performs better.

Ablations. We perform several ablation studies for the

image-agnostic features and heuristic aggregation com-

ponents of our model. (CATEG.) uses only categorical

features, (SPAT.) uses only spatial features, (DEEP) uses

only deep learning features extracted using ResNet50 [20]

from the union of the object pair’s bounding boxes,

(CATEG. + SPAT.) uses both categorical concatenated with
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Table 2. Results for scene graph prediction tasks with n = 10 labeled examples per predicate, reported as recall@K. A state-of-the-art scene

graph model trained on labels from our method outperforms those trained with labels generated by other baselines, like transfer learning.
Scene Graph Detection Scene Graph Classification Predicate Classification

Model R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

B
as

el
in

es

BASELINE [n = 10] 0.00 0.00 0.00 0.04 0.04 0.04 3.17 5.30 6.61

FREQ 9.01 11.01 11.64 11.10 11.08 10.92 20.98 20.98 20.80

FREQ+OVERLAP 10.16 10.84 10.86 9.90 9.91 9.91 20.39 20.90 22.21

TRANSFER LEARNING 11.99 14.40 16.48 17.10 17.91 18.16 39.69 41.65 42.37

DECISION TREE [38] 11.11 12.58 13.23 14.02 14.51 14.57 31.75 33.02 33.35

LABEL PROPAGATION [57] 6.48 6.74 6.83 9.67 9.91 9.97 24.28 25.17 25.41

A
b

la
ti

o
n

s

OURS (DEEP) 2.97 3.20 3.33 10.44 10.77 10.84 23.16 23.93 24.17

OURS (SPAT.) 3.26 3.20 2.91 10.98 11.28 11.37 26.23 27.10 27.26

OURS (CATEG.) 7.57 7.92 8.04 20.83 21.44 21.57 43.49 44.93 45.50

OURS (CATEG. + SPAT. + DEEP) 7.33 7.70 7.79 17.03 17.35 17.39 38.90 39.87 40.02

OURS (CATEG. + SPAT. + WORDVEC) 8.43 9.04 9.27 20.39 20.90 21.21 45.15 46.82 47.32

OURS (MAJORITY VOTE) 16.86 18.31 18.57 18.96 19.57 19.66 44.18 45.99 46.63

OURS (CATEG. + SPAT.) 17.67 18.69 19.28 20.91 21.34 21.44 45.49 47.04 47.53

ORACLE [nORACLE = 108n] 24.42 29.67 30.15 30.15 30.89 31.09 69.23 71.40 72.15

Effects of increasing labeled data Effects of increasing unlabeled data

Figure 8. A scene graph model [54] trained using our labels outperforms both using TRANSFER LEARNING labels and using only the

BASELINE labeled examples consistently across scene graph classification and predicate classification for different amounts of available

labeled relationship instances. We also compare to ORACLE, which is trained with 108× more labeled data.

spatial features, (CATEG. + SPAT. + DEEP) combines com-

bines all three, and OURS (CATEG. + SPAT. + WORDVEC)

includes word vectors as richer representations of the cate-

gorical features. (MAJORITY VOTE) uses the categorical

and spatial features but replaces our generative model with a

simple majority voting scheme to aggregate heuristic func-

tion outputs.

5.1. Labeling missing relationships

We evaluate our performance in annotating missing re-

lationships in DU . Before we use these labels to train

scene graph prediction models, we report results compar-

ing our method to baselines in Table 1. On the fully anno-

tated VRD dataset [31], OURS (CATEG. + SPAT.) achieves

57.66 F1 given only 10 labeled examples, which is 17.41,

13.88, and 1.55 points better than LABEL PROPAGATION,

DECISION TREE and MAJORITY VOTE, respectively.

Qualitative error analysis. We visualize labels assigned by

OURS in Figure 7 and find that they correspond to image-

agnostic rules explored in Figure 3. In Figure 7(a), OURS

predicts fly because it learns that fly typically involves

objects that have a large difference in y-coordinate. In

Figure 7(b), we correctly label look because phone is

an important categorical feature. In some difficult cases,

our semi-supervised model fails to generalize beyond the

image-agnostic features. In Figure 7(c), we mislabel hang

as sit by incorrectly relying on the categorical feature

chair, which is one of sit’s important features. In Fig-

ure 7(d), ride typically occurs directly above another ob-

ject that is slightly larger and assumes <book - ride -

shelf> instead of <book - sitting on - shelf>.

In Figure 7(e), our model reasonably classifies <glasses

- cover - face>. However, sit exhibits the same se-

mantic meaning as cover in this context, and our model

incorrectly classifies the example.

5.2. Training Scene graph prediction models

We compare our method’s labels to those generated by

the baselines described earlier by using them to train three

scene graph specific tasks and report results in Table 2. We

improve over all baselines, including our primary baseline,

TRANSFER LEARNING, by 5.16 recall@100 for PREDCLS.
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Figure 9. Our method’s improvement over transfer learning (in terms of R@100 for predicate classification) is correlated to the number of

subtypes in the train set (left), the number of subtypes in the unlabeled set (middle), and the proportion of subtypes in the labeled set (right).

We also achieve within 8.65 recall@100 of ORACLE for

SGDET. We generate higher quality training labels than

DECISION TREE and LABEL PROPAGATION, leading to an

13.83 and 22.12 recall@100 increase for PREDCLS.

Effect of labeled and unlabeled data. In Figure 8 (left

two graphs), we visualize how SGCLS and PREDCLS per-

formance varies as we reduce the number of labeled exam-

ples from n = 250 to n = 100, 50, 25, 10. We observe

greater advantages over TRANSFER LEARNING as n de-

creases, with an increase of 5.16 recall@100 PREDCLS

when n = 10. This result matches our observations from

Section 3 because a larger set of labeled examples gives

TRANSFER LEARNING information about a larger propor-

tion of subtypes for each relationship. In Figure 8 (right

two graphs), we visualize our performance as the number

of unlabeled data points increase, finding that we approach

ORACLE performance with more unlabeled examples.

Ablations. OURS (CATEG. + SPAT. + DEEP.) hurts perfor-

mance by up to 7.51 recall@100 for PREDCLS because it

overfits to image features while OURS (CATEG. + SPAT.)

performs the best. We show improvements of 0.71 re-

call@100 for SGDET over OURS (MAJORITYVOTE), indi-

cating that the generated heuristics indeed have different

accuracies and should be weighted differently.

5.3. Transfer learning vs. semisupervised learning

Inspired by the recent work comparing transfer learn-

ing and semi-supervised learning [36], we characterize

when our method is preferred over transfer learning. Us-

ing the relationship complexity metric based on spatial

and categorical subtypes of each predicate (Section 3),

we show this trend in Figure 9. When the predicate

has a high complexity (as measured by a high num-

ber of subtypes), OURS (CATEG. + SPAT.) outperforms

TRANSFER LEARNING (Figure 9, left), with correlation co-

efficient R2 = 0.778. We also evaluate how the number of

subtypes in the unlabeled set (DU ) affects the performance

of our model (Figure 9, center). We find a strong correlation

(R2 = 0.745); our method can effectively assign labels to

unlabeled relationships with a large number of subtypes. We

also compare the difference in performance to the proportion

of subtypes captured in the labeled set (Figure 9, right). As

we hypothesized earlier, TRANSFER LEARNING suffers in

cases when the labeled set only captures a small portion of

the relationship’s subtypes. This trend (R2 = 0.701) ex-

plains how OURS (CATEG. + SPAT.) performs better when

given a small portion of labeled subtypes.

6. Conclusion

We introduce the first method that completes visual

knowledge bases like Visual Genome by finding missing

visual relationships. We define categorical and spatial fea-

tures as image-agnostic features and introduce a factor-graph

based generative model that uses these features to assign

probabilistic labels to unlabeled images. Our method out-

performs baselines in F1 score when finding missing rela-

tionships in the complete VRD dataset. Our labels can also

be used to train scene graph prediction models with minor

modifications to their loss function to accept probabilistic

labels. We outperform transfer learning and other baselines

and come close to oracle performance of the same model

trained on a fraction of labeled data. Finally, we introduce a

metric to characterize the complexity of visual relationships

and show it is a strong indicator of how our semi-supervised

method performs compared to such baselines.
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generative model structure with static analysis. In Advances

in Neural Information Processing Systems, pages 239–249,

2017. 2
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