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Abstract

Motivated by the conventional grouping techniques to

image segmentation, we develop their DNN counterpart to

tackle the referring variant. The proposed method is driven

by a convolutional-recurrent neural network (ConvRNN)

that iteratively carries out top-down processing of bottom-

up segmentation cues. Given a natural language referring

expression, our method learns to predict its relevance to

each pixel and derives a See-through-Text Embedding Pix-

elwise (STEP) heatmap, which reveals segmentation cues

of pixel level via the learned visual-textual co-embedding.

The ConvRNN performs a top-down approximation by con-

verting the STEP heatmap into a refined one, whereas the

improvement is expected from training the network with a

classification loss from the ground truth. With the refined

heatmap, we update the textual representation of the refer-

ring expression by re-evaluating its attention distribution

and then compute a new STEP heatmap as the next input

to the ConvRNN. Boosting by such collaborative learning,

the framework can progressively and simultaneously yield

the desired referring segmentation and reasonable atten-

tion distribution over the referring sentence. Our method

is general and does not rely on, say, the outcomes of object

detection from other DNN models, while achieving state-of-

the-art performance in all of the four datasets in the exper-

iments.

1. Introduction

The rapid development of deep neural networks (DNNs)

and the availability of large-scale image/video datasets have

prompted significant research progress on segmentation

problems such as semantic segmentation [4, 34], instance

segmentation [9, 21], and interactive segmentation [42].

However, while high accuracy on semantic labeling for

these tasks can be achieved by state-of-the-art methods, a

notable shortcoming of such applications is that the label se-

mantics are usually predefined by restricted object classes.

In practical scenarios, referring to an object or objects

of interest through natural language expressions instead of

the predefined class labels should be more attractive to

users. Since a natural language expression may comprise

attributes, actions, spatial relationship, and interaction for

characterizing the visual entities, the abundant expression

thus provides flexibility. The field of natural language pro-

cessing (NLP) has developed several useful language mod-

els for extracting language features [2, 30, 31, 32]. Bene-

fited from such convenience, language-based visual under-

standing also gains much attention and has been applied to

the tasks of visual question answering [1, 11, 27, 47], refer-

ring object localization [14, 20, 44], image captioning [15,

38], and referring image segmentation [12, 13, 19, 23, 29].

We aim to address the problem of referring image seg-

mentation, in which a natural language referring expression

is provided to guide pixel-level image segmentation. Refer-

ring image segmentation can be treated as richer-class se-

mantic segmentation. This kind of technique serves as a ver-

satile human-machine interaction mechanism for interactive

image segmentation. With the interaction mechanism, users

can provide natural language sentences as descriptions via

typing or speaking for guiding the machine to select the

region of interest [17]. However, the flexibility of natural

language expressions for referring rich object classes also

means that referring image segmentation is challenging—a

region (or regions) being referred to can be anywhere the

natural language expressions are able to describe.

Previous results [12, 13, 19, 23, 29] on referring image

segmentation often follow a “concatenation-convolution”

procedure. These methods mainly concatenate visual and

language features extracted from the given image and re-

ferring expression, respectively. The procedure is followed

by applying convolution operations to the concatenated fea-

tures. Such techniques essentially seek an optimal weighted

average, along the channel dimension of the concatenated

features, for yielding the segmentation. They do not jointly

consider how visual features of the pixels in a referred re-

gion correlate with the natural language expression, but still

achieve reasonable performance with powerful DNNs.
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Prior to the widespread use of deep learning, methods

to address image segmentation can be categorized into the

bottom-up approach, the top-down approach and the inte-

gration of the two, e.g., [3]. A bottom-up technique focuses

on grouping pixels into coherent regions, while a top-down

method explores prior information such as object represen-

tation to accomplish the task. Our method for referring im-

age segmentation is a DNN approach that realizes the fusion

of the bottom-up and the top-down viewpoints.

Intuitively, given a training dataset for referring image

segmentation, it is feasible to learn a compatibility mea-

sure such that pixels within a referred region yield high

compatibility scores to the referring expression, while the

opposite have low compatibility scores. As illustrated in

Figure 1, the proposed model includes a component to col-

lect bottom-up segmentation cues of pixel level by lever-

aging the compatibility measure from the visual-textual co-

embedding, which is named as See-through-Text Embed-

ding Pixelwise (STEP). On the other hand, the ground-truth

information in computing the classification loss can teach

the model to refine each STEP heatmap into a top-down ap-

proximation. Observe that a proper textual representation

would benefit the prediction of a segmentation heatmap, and

analogously a revealing segmentation heatmap can help re-

vise the textual representation. Therefore, we design a Con-

vRNN model [36] to iterate the steps of combining bottom-

up and top-down information so that the bilateral improve-

ments just described can be further explored to yield satis-

factory results of referring image segmentation. We charac-

terize the main advantages of our method as follows:

• Different from the “concatenation-convolution” proce-

dure, our method explicitly learns a visual-textual co-

embedding, termed as See-through-Text Embedding

Pixelwise (STEP) to align the two modalities.

• The proposed STEP yields a compatibility measure to

the given referring natural language expression, and in

turn enables associating relevant pixels into coherent

regions. The grouping principle resembles the conven-

tional bottom-up approach for image segmentation.

• The more precise the textual representation is, the bet-

ter the result of referring segmentation is. The design

principle of the architecture includes a ConvRNN and

proper weighting/attention schemes to ensure the iter-

ative fusion process alternately improves the two as-

pects and boosts the final segmentation result.

• The proposed method is a stand-alone DNN approach

whose architecture elegantly realizes the fusion of

bottom-up and top-down reasonings for the segmen-

tation task. Furthermore, it achieves state-of-the-art

performance in all our experiments without leveraging

additional training data as well as other DNN models.
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Figure 1. See-through-Text Grouping: At each time step, bottom-

up grouping of pixelwise visual-textual co-embedding yields a

See-through-Text Embedding Pixelwise (STEP) heatmap. Then

the top-down process by ConvRNN converts the input STEP into

a refined one, which is used to update the textual representation of

the referring expression for the ensuing time step of ConvRNN.

2. Related Work

We give a concise overview about recent research efforts

relevant to the problem of referring image segmentation.

2.1. Semantic Segmentation and Embeddings

Many recent semantic segmentation models are built on

the idea of Fully Convolutional Network (FCN) [26]. FCN

replaces the fully connected layers with convolutional lay-

ers and uses skip-connection for generating dense pixel-

level labeling. DeepLab [4] presents atrous convolution to

preserve the spatial resolution for keeping the receptive field

during convolution. In the visual-textual co-embedding step

of our approach, we use the atrous convolution to make

each pixel combine multi-context visual representations

with various sizes of the receptive field. DeViSE [7] is one

of the representative approaches to visual-semantic embed-

ding. Later, Wang et al. consider the structure-preserving

constraints in learning a joint embedding for image-to-text

and text-to-image retrieval [39]. Rohrbach et al. propose to

ground a phrase by soft attentions over bounding box pro-

posals [33]. Our method also computes attention, but ours

is at pixel-level instead of box-level.

2.2. Referring Expression Comprehension

Integrating computer vision and natural language is an

active research area. Instead of using an object detector,

the methods for object localization [14] and object tracking

[20] are able to localize the object regions that are specified

by natural language expressions. In [28, 45], both meth-

ods simultaneously localize the object specified by the lan-

guage and generate the description per object. Liu et al.

[25] present an attribute learning and embedding method to

show the usefulness of visual attributes in referring expres-

sion comprehension. Neighbourhood Watch [40] uses self-
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attention to decompose expression into three components.

It achieves state-of-the-art performance on referring expres-

sion comprehension. The task of referring image segmen-

tation is also related to visual question answering (VQA)

[1, 11, 27, 47], which usually fuses multi-modal features in

their models. Methods for VQA usually use a Recurrent

Neural Network (RNN) to encode or generate sequences.

We also use regular RNN to encode sentence. However, our

approach additionally introduces a way to apply a convolu-

tional RNN for fusing multiple heatmaps. Besides, the ideas

of joint embedding and learning the relatedness of differ-

ent representations have been adopted in VQA [41]. How-

ever, instead of using average pooling to transform each

image region into a vector for the subsequent embedding,

we densely embed the per-pixel visual representation into

a common space. The proposed See-through-Text Embed-

ding Pixelwise (STEP) provides contextual information for

subsequent top-down grouping.

2.3. Referring Image Segmentation

This section reviews several state-of-the-art methods on

the task of referring image segmentation, and then indicates

the differences from our approach.

Hu et al. [12] first propose to solve the task of refer-

ring image segmentation. They present the “concatenation-

convolution” model which concatenates the language and

image features and then performs convolution on the con-

catenated features to generate the segmentation. The

language representation is obtained via Long Short-Term

Memory networks (LSTM) [10]; the visual representation

is obtained via the VGG-16 network [37]. They then further

improve their model using extra vision-only and image-only

training data [13]. Liu et al. [23] suggest using the sequen-

tial nature of language. Their method concatenates multi-

modal features during processing every new word. These

concatenated features are then fused via multi-modal LSTM

(mLSTM) as a joint representation for feeding to the final

convolution. They also use LSTM to encode the language

representation but use DeepLab ResNet-101 [4] to encode

the visual representation. Li et al. [19] improve the model

of [12] by considering the multi-scale semantics possessed

in the visual representation encoding step. Their feature

fusion step employs convolutional LSTM [36]. Margffoy-

Tuay et al. [29] concatenate richer visual and language fea-

tures, which comprise word embeddings, per-word hidden

state (via simple recurrent units [18]), response to dynamic

filters [20], and visual features (via DPN92 [5]).

MAttNet [44] achieves state-of-the-art performance on

both bounding-box-level and pixel-level comprehension

tasks. Neural Module Tree network (NMTree) [24] also

shows similar performance as MAttNet. However, both

of them rely on an additional detector, e.g. Faster-RCNN,

for pre-processing to extract ROI features, and then need
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Figure 2. The proposed DNN architecture to referring image

segmentation, with K-fold see-through-text grouping. The green

lines indicate the language representation flow. The blue lines in-

dicate the visual representation flow. The five sets of feature maps

(from five conv layers) implies ConvRNN has 5×K time steps.

an additional pixel annotator, e.g. Mask-RCNN, for post-

processing to obtain segmentation.

To sum up: Most of the previous methods [12, 13,

19, 23, 29] of referring image segmentation follow the

“concatenation-convolution” notion as [12, 13]. With the

concatenated multi-modal features, these methods may fo-

cus on the sequential nature of language [23, 29] or richer

visual representations [29], with the consideration of the

multi-resolution visual features [19, 29] for raising the seg-

mentation accuracy. Finally, convolution layers are used to

fuse the concatenated multi-modal features for generating

the final segmentation. In contrast, our approach explicitly

learns a co-embedding for measuring the compatibility of

multi-modal features, naturally leading to bottom-up group-

ings for image segmentation. We further use a ConvRNN to

enable the top-down integration of the bottom-up segmen-

tation cues. Our motivations and the network architecture

significantly differ from the aforementioned techniques.

3. Our Method

Figure 2 shows an overview of our approach to referring

image segmentation. Given an input image I and a natu-

ral language expression S as the referring hint, the task is

to localize the foreground regions specified by S. The pro-

posed see-through-text grouping is driven by a ConvRNN.

At each time step t, it first decides the visual representa-

tion of I from the respective feature maps of the adopted

feature extraction model, and encodes S into a proper tex-

tual representation, which is computed by taking account
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of the segmentation prediction from the previous time step.

The bottom-up grouping jointly embeds the two representa-

tions into a common feature space for pixelwise measur-

ing their multi-modal compatibility and yields the STEP

heatmap Qt, indicating the foreground probability of each

pixel. Taking Qt as the input, the ConvRNN refines it into

Pt, the probability heatmap for the referring segmentation

at time t. Upon completing the iterative process, our method

arrives at the final segmentation result, say, PT .

3.1. Visual Representation

Following [23], we use DeepLab ResNet-101v2 [4] pre-

trained on Pascal VOC [6] to generate the visual represen-

tation. All input images are re-sized to W × H with zero-

padding. Within the model, we focus on the five convolu-

tional layers and use the notations Fℓ, ℓ ∈ {1, 2, 3, 4, 5} to

denote the feature maps generated from the corresponding

convolutional layer ℓ. To enrich the visual representation,

we also encode the spatial relationships by directly concate-

nating an 8-dimensional spatial coordinate representation

[14, 23] to each Fℓ. Note that the ConvRNN is performed

from t = 1, . . . , T where T = 5 × K indicates a K-fold

implementation of our method. At time step t, the visual

representation is determined by Fℓt with ℓt = t mod 5.

Specifically, we set the input size W = H = 320 and

hence the resolution is 80×80 for each feature map from F1

and F2, and 40× 40 for each from F3, F4, and F5. Further,

the number of channels of F1, F2, F3, F4, and F5 are 64,

256, 512, 1024, and 2048, respectively. The complete visual

representations (for each pixel) with respect to F1, F2, F3,

F4, and F5 are of sizes 72, 264, 520, 1032, and 2056, after

adding the 8-dimensional spatial coordinate representation.

3.2. Textual Representation

We use S = {w1, w2, . . . , wn} to denote the given natu-

ral language expression. To derive the textual representation

at time t, denoted as st, we consider the pre-trained GloVe

model [32] and encode each word wi ∈ S into a 300-D

GloVe word embedding wi ∈ R
300. The input sentence S is

then expressed by a concatenation of each GloVe word em-

bedding. Notice that the textual representation of S will be

gradually improved if the referred region in I could become

more evident. To this end, we concatenate the n word em-

beddings of S and feed them into a one-layer bi-directional

LSTM (biLSTM). Let hj be the hidden-state output after

running the biLSTM through the first j words of S. Also let

vi be the visual feature vector of pixel i in I . The dimension

of vi varies with respect to Fℓt . However we respectively

attach 1 × 1 convolution to each hidden state of biLSTM

and each visual feature vi such that hj 7→ h̃j ∈ R
400 and

vi 7→ ṽi ∈ R
400. Then the textual representation of S at

time t of running the pixelwise co-embedding is

st =
∑

i∈I

π{Pt−1(i)} ×

n∑

j=1

π{〈ṽi, h̃j〉}hj (1)

where π{·} denotes the Softmax function and Pt−1(i) is

the probability of pixel i being the referring foreground,

according to the segmentation heatmap from the previous

step. The representation st is visual-attended and its good-

ness is linked to the predicted segmentation map Pt−1.

The GloVe model in our implementation is pre-trained

on Common Crawl in 840B tokens. Following [19, 23], we

keep only the first 20 words per sentence. In addition, we

set the cell size of the biLSTM module as 1000.

3.3. SeethroughText Embedding

To compute STEP for each time step t of ConvRNN, we

first denote the per-pixel visual representation as v. Con-

sider now an arbitrary pair of visual-textual representations

v and s. (For simplicity, we omit the subscript t in st as

the following discussion is valid for all t.) We learn the re-

spective joint embedding functions φ and ψ of each modal-

ity. The two mappings φ(v) and ψ(s) are expected to em-

bed related (v, s) pairs into nearby neighborhoods in the

space of visual-textual co-embedding. Hence, the task of

pixel association can be reduced to predicting the relation-

ship between these two different modal representations via

the learned corresponding embedding functions.

While the sequential nature of language data can be well

represented via a recurrent neural network, the spatial na-

ture of visual data can be distilled by enlarging the field of

view of filters to incorporate more context information. In

our formulation, besides using biLSTM to encode the lan-

guage hint, we consider atrous convolution [4] to gain con-

text (field-of-view) information. In particular, all feature

maps from Fℓ, ℓ ∈ {1, 2, 3, 4, 5} are generated with atrous

convolutions from kernel size of 3× 3 in rate r = 3.

Therefore, given the pair representations v and s, STEP

generates their embeddings φ(v) and ψ(s) via a normalized

single layer fully-connected (fc) network by

φ(v) = NL2(tanh(Wv · v + bv)) , (2)

ψ(s) = NL2(tanh(Ws · s+ bs)) , (3)

where W and b are weights and bias of the fc networks and

NL2(·) denotes the L2-normalization. The output dimen-

sions of both networks in (2) and (3) are set as 1000.

3.4. Bottomup STEP Heatmaps

We can now readily use the cosine similarity to measure

the compatibility of each visual-textual pair (v, s) in the

space of co-embedding in that L2-normalization has been

applied to both embedding features by φ in (2) and ψ in

7457



STEP HeatmapSegmentation Heatmap

(i)P

t−1

Visual Features
biLSTM  

Hidden States HeapmapWeighted
Sentence Representation

VisualAttended 
Sentence Representation

v

̃ 

i

R
ep
ea
t 

h

̃ 

j

s

t

P

t−1

Q

t

Figure 3. Our method first computes per-pixel textual representations and then yields their weighted combination by referencing the

segmentation hint form Pt−1. Once the textual representation st is updated by (1), the STEP heatmap Qt can be obtained from (4).

(3). That is, the STEP compatibility at pixel i with visual

features vi can be obtained via inner product:

Q(i) = max{0, 〈φ(vi), ψ(s)〉} . (4)

The core idea of the bottom-up grouping process is assum-

ing that the per-pixel compatibility of a visual-textual pair

measured in the space of co-embedding is proportional to

the correlation of the pair. Namely, a visual-textual pair

(vi, s) of high compatibility means the visual representa-

tion at pixel i has a high probability of being referred by

the natural language representation s. We illustrate the key

operations for predicting the STEP heatmap in Figure 3.

3.5. Topdown Heatmap Refinement

The STEP heatmapQt derived at time step t results from

a bottom-up grouping process, where pixel association is

achieved by a compatibility measure to a given textual rep-

resentation st. Such a grouping process heavily relies on

local correlations and thus lacks a global view of the de-

sired referring segmentation. Motivated by the success of

combining bottom-up and top-down processing for image

segmentation, we learn a top-down process driven by the

already-mentioned ConvRNN to refine Qt with the guid-

ance from the ground truth of referring segmentation.

In our method we choose to implement the top-down

heatmap refinement with the ConvRNN as in our pilot test-

ing, heatmap refinement with the convolutional gated recur-

rent units yields satisfactory results. Specifically, we adopt

the convolutional GRU as the base model in the experi-

ments. The convolutional GRU with input {xt} is repre-

sented with the following equations.

ft = σ(Rf ∗ ht−1 +W f ∗ xt + bf ) , (5)

zt = σ(Rz ∗ ht−1 +W z ∗ xt + bz) , (6)

ĥt = tanh(Rh ∗ (ft ⊙ ht−1) +Wh ∗ xt + bh) , (7)

ht = zt ⊙ ht−1 + (1− zt)⊙ ĥt , (8)

where ft, zt, and ht are reset gate values, update gate val-

ues, and hidden activations at frame t, respectively. The

weights of the input and recurrent hidden units are W ∗ and

R∗. The biases are b. σ denotes the sigmoid function and ⊙
denotes the element-wise multiplication product. The GRU

combines the input and forget gates into an update gate zt
for balancing the previous activation ht1 and the update ac-

tivation ĥt. The reset gate ft decides whether or not to for-

get the previous activation.

The final hidden state hT from the ConvGRU comprises

the multi-resolution information for predicting the referring

foreground probability. We then use a 1 × 1 convolutional

layer to obtain the final probability heatmap

PT = σ(WP ∗ hT + bP ) . (9)

Details The weights of the convolutional GRU are of size

h × w × c × f , where h, w, c, and f respectively denote

the kernel’s height, width, number of input channels, and

number of filters. In all our experiments, we set h = w =
c = 3 and f = 32. Also note that, as illustrated in Figure 2,

theK-fold implementation of our method implies that there

are totally 5 ×K STEP heatmaps {Qt} as the input to the

convolutional GRU to yield the final referring segmentation.

3.6. Training

The complete DNN model elegantly connects the two

coupled bottom-up and top-down processes. To make the

network end-to-end trainable, we use bi-linear interpolation

to upsample the probability heatmap derived in (9) by

PT
upsample
−−−−−→ P ∈ R

W×H . (10)

It follows that given the binary ground-truth mask G of an

input image I for referring image segmentation, we define

the binary cross-entropy loss function of our model as

L =
−1

HW

∑

i

{G logP + (1−G) log(1− P )}(i) . (11)

With (11), our network is learned using Adam optimizer

and stop training after 700K iterations. The weight decay

and the initial learning rate are 0.0005 and 0.00025. We use

a polynomial decay with power of 0.9.

4. Experiments

We evaluate our model in two metrics on four datasets as

[19, 23, 29]. The first experiment compares multiple vari-

ants of the proposed model. We then evaluate the segmen-

tation accuracy of our model against state-of-the-arts.
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VARIANTS
UNC

val testA testB

Ours (1-fold) 56.68 58.70 55.39

no GloVe-biLSTM 55.11 56.87 53.55

no LTR 54.40 56.09 52.59

1x1-conv 48.71 48.35 48.43

convGRU 55.97 58.16 54.73

concate-conv 48.08 49.07 47.35

ini-LTR-uniform 56.74 58.53 55.30

reverse STEP 57.01 58.50 55.25

Table 1. Comparison of the UNC dataset using the first metric, i.e.,

mIoU, against downgraded versions, each of which results from

considering the listed component rather than our implementation.

ReferItGame (ReferIt) [16]: ReferIt comprises 130,525
language expressions referring to 96,654 object regions in

19,894 natural images. The segmentation targets in this

dataset consists of object and stuff (e.g., water and sky).

The language expressions in ReferIt are usually shorter and

more concise [23]. We use the same split as [12].

UNC & UNC+ [45]: Both UNC and UNC+ are col-

lected from MS COCO images. UNC contains 142,209 lan-

guage expressions for 50,000 objects in 19,994 images, and

UNC+ consists of 141,564 expressions referring to 49,856
objects in 19,992 images. The dataset UNC has no restric-

tions on the referring expressions, while the dataset UNC+

does not allow location-describing words in the expressions.

Namely, an expression annotator has to describe the object

purely by its appearance. We use the same split as [45].

Google-Ref (GRef) [28]: GRef contains 104,560 refer-

ring expressions for 54,822 objects in 26,711 images se-

lected from MS COCO dataset [22]. The images contain 2

to 4 objects of the same type. The language expressions are

longer and with richer descriptions [23]. We use the same

data split as [28].

Metrics: As [8, 12, 23], the first metric is mean

intersection-over-union metric (mIoU), which collects to-

tal interaction regions over the total union regions of

all the test images. The second metric is the precision

evaluated from 0.5 to 0.9, i.e., Prec@X , where X ∈
{0.5, 0.6, 0.7, 0.8, 0.9}.

4.1. Ablation Study

This experiment compares several variants of the pro-

posed model for assessing the relative importance of each

METHODS Prec@0.5 Prec@0.6 Prec@0.7 Prec@0.8 Prec@0.9 mIoU

RMI [23] 41.27 29.71 18.41 7.37 0.76 44.33

RMI+DCRF [23] 42.99 33.24 22.75 12.11 2.23 45.18

RRN [19] 60.19 50.19 38.32 23.87 5.66 54.26

RRN+DCRF [19] 61.66 52.50 42.40 28.13 8.51 55.33

Ours (1-fold) 66.03 55.91 44.35 27.65 7.43 56.68

Ours (2-fold) 67.72 58.70 47.03 30.86 8.13 57.23

Ours (4-fold) 70.15 63.37 53.15 36.53 10.45 59.13

Table 2. Comparison based on the second metric, i.e., Prec@X ,

on the UNC val split.

configuration, and the results on the UNC dataset are shown

in Table 1 and Table 2.

In Table 1, each row shows one of the following

settings respectively: our full method in 1-fold (Ours),

without using the pre-trained GloVe embedding and the

bi-directional LSTM (no GloVe-biLSTM), without learn-

ing the textual representation with (1) (no LTR1), re-

placing convLSTM with convGRU (convGRU), replac-

ing ConvRNN with 1x1 convolution (1x1-conv), replacing

STEP with concatenation-convolution procedure (concate-

conv), learning the first textual representation with uniform

heatmap (ini-LTR-uniform), generating the STEP heatmaps

from high-level visual feature to low-level visual feature

(reverse STEP).

For the case of learning textual representation, with-

out using the pre-trained GloVe embedding and the bi-

directional LSTM (no GloVe-biLSTM), the performance

decreases from 1.5% to 1.8%. Without using the proposed

textual representation learning (no TRL), the accuracy de-

creases more from 1.8% to 2.7%. According to the com-

parison between the two textual-representation-related fac-

tors, the gain of using our textual representation learning ap-

proach, i.e. (1), is clear. This experiment demonstrates that

using the hidden state of ConvRNN to guide the learning of

textual representation is beneficial to the segmentation task.

Considering the strategies for top-down heatmap refine-

ment, using the 1x1 convolution to integrate the STEP

heatmaps causes obvious performance drop from 6.9% to

10.4%. Replacing the convolutional LSTM with a convo-

lutional GRU slightly decreases the accuracy from 0.5%
to 0.7%. This comparison shows that integrating multiple

heatmaps via ConvRNN is beneficial to the segmentation

performance. For training our model in multiple folds, we

use the ConvGRU to save more computational cost.

We also try to learn the first textual representation with a

uniform heatmap instead of directly using the final hidden

state from biLSTM (ini-LTR-uniform) and try to reverse the

order to generate the STEP heatmap from high-level to low-

level visual features (reverse STEP). These two results show

that our model is not sensitive to these two factors.

Besides, we additionally replace the embedding scheme

in STEP procedure with a concatenation-convolution

1We merely use the final hidden-state of biLSTM in STEP procedure.
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TYPE METHOD
ReferIt UNC UNC+ GRef

test val testA testB val testA testB val

RIS

LSTM-CNN [12] 48.03 - - - - - - 28.14

LSTM-CNN+ [13] 49.91 - - - - - - 34.06

RMI+DCRF [23] 58.73 45.18 45.69 45.57 29.86 30.48 29.50 34.52

RRN+DCRF [19] 63.63 55.33 57.26 53.95 39.75 42.15 36.11 36.45

DMN [29] 52.81 49.78 54.83 45.13 38.88 44.22 32.29 36.76

KWAN [35] 59.19 - - - - - - 36.92

Ours (5-fold) 64.13 60.04 63.46 57.97 48.19 52.33 40.41 46.40

RIL
MAttNet [44] - 56.51 62.37 51.70 46.67 52.39 40.08 n/a

SLR [46] not evaluated on pixelwise segmentation

Table 3. Experimental results of mIoU metric on four datasets. “-” indicates no available results. “n/a” denotes the method does not use the

same split as the RIS ones. Note that our method does not rely on either detectors as pre-processing or segmentation for post-processing.

scheme. Precisely, we concatenate the visual representa-

tion and textual representation followed by an MLP for ob-

taining a one-channel image. The replacement shows the

substantial degradation and hence indicates that the one-

channel image obtained by the concatenation-convolution

scheme may not directly be used for guiding the textual rep-

resentation learning.

Table 2 compares our model against two referring image

segmentation methods. This comparison demonstrates that

our basic model in one round has better performance than

other methods before using dense CRF (DCRF) as post-

processing. Instead of using disposable post-processing,

our method shows the ability to increase the performance

in multiple folds. The significant gain shows that our model

performs well for the referring image segmentation task.

The ablation study justifies that our approach mea-

sures the compatibility of multi-modal features via a

co-embedding rather than a concatenation-convolution

scheme, naturally leading to bottom-up groupings for im-

age segmentation. Further, applying ConvRNN is able to

boost the performance for the top-down integration of the

bottom-up segmentation cues.

4.2. Comparison with the Stateofthearts

This section compares the performance in mIoU of our

model against state-of-the-art techniques [12, 13, 19, 23, 29,

35] on the task of referring image segmentation (RIS) (in-

put: a sentence plus an entire image, output: image seg-

mentation). As mentioned earlier, there exists a related task

of referring image localization (RIL) [44, 46] (input: image

crops, e.g. RoIs/proposals, output: bounding boxes). Since

MAttNet [44] transforms their box-result to segmentation as

an extension, this experiment includes them for comparison.

However, please notice that, as the RIL models often rely

on other techniques for pre-processing and post-processing,

it may not be appropriate to directly compare their perfor-

mance with the RIS methods. Table 3 summaries the results

of the comparisons.

The performance of our method is significantly better

than all those for the task of referring image segmenta-

tion, and also outperforms MAttNet in five of the six test-

ing splits, despite that MAttNet relies on Mask R-CNN

for proposal generation and semantic segmentation. Note

that Mask R-CNN is trained with noticeable more COCO

images for detection and segmentation (RoI generator and

Mask branch). In addition, MAttNet needs to train an at-

tribute predictor with extra training data of attribute words.

In comparison, our method and most of the RIS approaches

train their model only with the split of each dataset, i.e.,

without accessing extra training data as well as the addi-

tional attribute words. The results indicate that our method

achieves satisfactory performance in learning the relation-

ship between the specific image region and the natural lan-

guage expression referring to it.

4.3. Qualitative Results

Figure 4 shows the learned word attention and the

learned segmentation heatmaps of ConvRNN. The similar-

ity [43] reflects the word attention of our model in each

time-step (row). The results show that our model is able

to pay attention to different words per time-step. Further,

the learned segmentation heatmaps show that our model can

progressively adjust the hidden states for sketching the pre-

ferred region.

In Figure 5, we provide other qualitative results of refer-

ring image segmentation task by our method. This figure

shows that a referring image segmentation algorithm can

be guided by different query expression for segmenting dif-

ferent regions of interest. (More experimental results are

provided in the supplementary material.)
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Figure 4. Qualitative segmentation results (ini-LTR-uniform). From left to right per row: the word attention, the input image, and the four

progressively learned segmentation heatmaps. Note that the segmentation heatmaps {Pt} are generated by 1x1 convolution. In the plot of

word attention, each row corresponds to one time step of ConvRNN, each column corresponds to one word as annotated below, and the

value of each block is defined as the similarity between the learned textual representation in that time step and the textual representation

(hidden state) of that word. We show only five time steps for the sake of clarity. The right images in four columns denote the segmentation

heatmaps learned in different time steps of ConvRNN.

Figure 5. Qualitative results of referring image segmentation by our method.

5. Conclusion

At the core of our method is a new DNN architecture

comprising two coupled modules to better solve the refer-

ring image segmentation. The first module tackles the prob-

lem from the viewpoint of bottom-up grouping, leading to

the formulation of the proposed See-through-Text Embed-

ding Pixelwise (STEP). Benefited from the powerful fea-

ture learning of a DNN, the per-pixel representation indeed

includes informative context from the underlying receptive

field. As a result, the resulting STEP heatmap predictions

include meaningful and constructive cues to the target seg-

mentation, owing to explicitly learning a compatibility mea-

sure via the visual-textual co-embedding. The advantage

is further justified in our promising experimental results.

The second module of our approach is the use of ConvRNN

as the top-down driving mechanism to refine the generated

STEP heatmaps. A notable novelty in our design is that the

reliability of the input to ConvRNN can be enhanced by ref-

erencing the outcome of the previous step. We have carried

out a detailed ablation study to verify that all components

used in our model positively contribute to the satisfactory

performance. Our future work would focus on generalizing

the proposed model to referring video segmentation.
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