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Abstract

In this paper, we propose a self-critical attention learn-

ing method for person re-identification. Unlike most ex-

isting methods which train the attention mechanism in a

weakly-supervised manner and ignore the attention con-

fidence level, we learn the attention with a critic which

measures the attention quality and provides a powerful su-

pervisory signal to guide the learning process. Moreover,

the critic model facilitates the interpretation of the effec-

tiveness of the attention mechanism during the learning

process, by estimating the quality of the attention maps.

Specifically, we jointly train our attention agent and critic

in a reinforcement learning manner, where the agent pro-

duces the visual attention while the critic analyzes the gain

from the attention and guides the agent to maximize this

gain. We design spatial- and channel-wise attention model-

s with our critic module and evaluate them on three popu-

lar benchmarks including Market-1501, DukeMTMC-ReID,

and CUHK03. The experimental results demonstrate the su-

periority of our method, which outperforms the state-of-the-

art methods by a large margin of 5.9%/2.1%, 6.3%/3.0%,

and 10.5%/9.5% on mAP/Rank-1, respectively.

1. Introduction

Person re-identification (ReID) aims to identify an indi-

vidual across multiple non-overlapping camera views de-

ployed at different locations, considering a large set of can-

didates. It plays an important role in various video surveil-

lance applications such as suspect tracking and missing el-

derly or children retrieval, and has attracted much attention

over the past few years [20, 46, 53, 38, 39, 19].

Despite the recent progress, ReID is still a challenging

problem due to the difficulty of visual features matching

with the illumination changes, pose variations, occlusion-

s, and cluttered backgrounds. Recently, several attention-
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Figure 1. The insight of the self-critical attention learning. Con-

volutional attention learning is guided by the weak supervisory

signal from the loss function. However, this learning manner is

not always ”transparent” and suffers from the problem of “van-

ishing” gradients. Differently, our SCAL method exploits a critic

module to evaluate the quality of the attention model and provide

the strong supervisory information by the predicted critic value.

based deep learning models for ReID have been proposed to

address these issues [48, 19, 41]. With the attention mecha-

nism, the model learns to focus on discriminative features of

the pedestrians and reduce the negative effects of different

variations and background interference. However, the atten-

tion mechanism is generally trained in a weakly-supervised

manner without a powerful supervisory signal to guide the

attention module during the training process. As shown in

Figure 1, the gradients from this weak supervisory signal

might be vanishing in the back propagation process [15].

The attention maps learned in such manner are not always

”transparent” in their meaning, and lack discrimination abil-

ity and robustness. The redundant and misleading attention

maps are hardly corrected without direct and appropriate

supervisory signal. Moreover, the quality of the attention

during training process can only be evaluated qualitatively

by the human end-users, examining the attention map one

by one, which is labor-intensive and inefficient.

To overcome the above issues, in this paper, we propose

a self-critical attention learning (SCAL) method for person

ReID. We simultaneously train an attention agent and a crit-

ic module to provide the self-critic and self-correctness ca-
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pability for the attention model. Specifically, the attention

agent produces the visual attention maps to focus the model

on discriminative features. The critic module examines the

attention and measures the gain on the performance. Based

on its observation, the critic provides a direct supervisory

signal to the attention agent in order to maximize the gain.

We illustrate the self-critical attention learning flowchart in

Figure 1. When the attention is incorrectly allocated, the

critic provides the feedback to the attention agent, so that

it can figure out the mistakes and adapts itself, which al-

leviates the “vanishing” gradients and ”transparent” learn-

ing of the weakly-supervised manner. Beyond powerful su-

pervision, the outputs of the critic permit to quantify the

quality of attention, which significantly facilitates the inter-

pretation of attention learning process. To train our crit-

ic module, we exploit several intuitive evaluation criteria

such as the effect of the attention on the final classifica-

tion results and the relative gain compared to original fea-

tures without attention. As these criteria are usually non-

differentiable, the conventional back-propagation is hardly

directly used for learning. This motivates us to formulate

our self-critical attention learning process in a reinforce-

ment learning framework, where the state is the input person

image, the action is the generated attention. In this frame-

work, the critic receives the state and action to evaluate the

quality of attention and is optimized by minimizing the dif-

ference between the predicted critic value and actual evalua-

tion criteria. Using our self-critical learning process to train

the spatial- and channel-wise attention models substantial-

ly outperforms the other state-of-the-art methods on three

popular benchmarks including Market-1501, DukeMTMC-

ReID, and CUHK03.

2. Related Work

Person Re-identification: Person ReID systems rough-

ly consist of two major components: representation learn-

ing and metric learning. Some conventional methods pri-

marily employ handcrafted features such as color and tex-

ture histograms. Liao et al. [20] propose a Local Maximal

Occurrence (LOMO) method to handle viewpoint changes

by maximizing the horizontal occurrence of local features.

Matsukawa et al. [27] propose a hierarchical Gaussian fea-

ture, which models the color and texture cues of each re-

gion by multiple Gaussian distributions. Metric learning al-

so has been widely applied for person ReID. LMNN [45]

attempts to ensure that for each person its neighbors al-

ways belong to the same class while examples from dif-

ferent classes are separated by a large margin. To learn

the nonlinear relation of persons, the kernel-based metric

learning methods are proposed [47, 21]. Recently, deep

learning based person ReID approaches have achieved great

success [18, 1, 33, 23, 39] through simultaneously learning

the person representation and similarity within one network.

Some methods [51, 46] usually learn the representation fea-

ture via training a deep classification network. In addition,

some works employ deep metric learning method for person

ReID such as: pair-wise contrastive loss [7], triplet ranking

loss [56] and quadruplet loss [5]. To avoid the effect of

the background clutters and pose variations, several body-

structural or part-based methods [39, 49, 16, 12, 6, 36] are

proposed. These methods leverage the prior human-body

information or learning-based pose information to locate

salient parts and learn structural representation.

Attention Model: Recently, attention models [28, 42,

22] have gained great success in various fields, such as nat-

ural language processing (NLP), image understanding, and

video analysis. It is also efficient and effective for person

ReID to handle the matching misalignment challenge and

enhance the feature representation [24, 19, 35, 17, 14, 50,

48, 34, 19, 11, 42, 13]. For example, Liu et al. [24] and

Lan et al. [14] directly learn attention regions to locate the

salient image regions. Xu et al. [48] and Zhao et al. [50] in-

troduce a body part detector to consider the body structure

in the attention model. Some works [26, 34, 17, 4] employ

the attention model on the frame or feature sequences to

select key parts of sequences. In addition, channel-based

attention methods [19, 11, 48] are proposed to refine fea-

ture representations. However, the training process of these

attention methods is only sustained by a weak supervision

signal and the effect of the attention model is invisible for

the overall model. We propose therefore the self-critical at-

tention learning method to address these issues. In particu-

lar, we develop a critic module to evaluate the quality of the

attention model, which provides powerful supervision sig-

nal for attention learning and quantificationally measures

the effectiveness of the attention model.

3. Approach

In this section, we first present our self-critical attention

learning method and then employ it on both spatial- and

channel-wise attention models. Finally, we explain the op-

timization procedure and implementation details.

3.1. Self-critical Attention Learning

The attention module is an important component for per-

son ReID systems to guide the network to find the most dis-

criminative features of an individual. Most attention mod-

ules are usually trained in a weakly-supervised manner with

the final objective, for example, the supervision from the

triple loss or classification loss in the person ReID task.

However, as the supervision is not specifically designed for

the attention module, it may lead to the sub-optimal benefit

of attention. To overcome this issue, we propose the self-

critical attention module to improve the learning process,

permitting to fully exploit the effectiveness of attention. In-

stead of the weakly-supervised manner, we let the attention
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Figure 2. Illustration of the self-critical attention learning method. It is mainly composed of a convolutional backbone network, an attention

agent, and a critic module. The backbone consists of a series of convolutional blocks, where we encode the attention maps on top of each

block. The critic as an important component of the attention model, takes the feature maps X and the attention map A as input, and outputs

the critic value V as the additional supervisory signal of attention learning.

model evaluate itself and guide the optimization with evalu-

ation performance. At each training step, a critic inside the

attention module will examine the visual attention map and

then transmit a supervisory signal to the attention. With this

self-critical supervision, the attention can efficiently figure

out whether it is correctly learned and adapt itself.

Since most effective evaluation indicators are usually

non-differentiable, e.g. the gain of attention model over the

basic network, we optimize our self-critical attention mod-

el by reinforcement learning algorithms. Specifically, the

state is the input image, and the agent is our attention mod-

el which predicts attention maps based on the current state.

The critic takes the state and attention as input and evaluates

the quality of the attention model.

In each step, given the input image I as the state, we first

extract the feature maps by the basic network F , which is

formulated as

X = F(I|ψ), (1)

where ψ denotes the parameters of the basic network. Then

the attention agent A with parameters θ predicts the atten-

tion maps A based on these feature maps X .

A = A(X|θ). (2)

To evaluate the attention model and guide the agent to pre-

dict more accurate attention, we design a critic module,

which is formulated as :

V = C(X,A|φ), (3)

where, V is the predicted evaluation value and φ defines

the parameters of the critic network. As our critic mod-

ule is general for different attention agents, we focus on

the description of the critic in this section and let the de-

tails of the attention agent architecture in the next section.

The architecture of the proposed critic module is illustrat-

ed in Figure 2. Specifically, it consists of two branches:

the state branch employs a convolution layer followed by a

fully-connected (FC) layer to extract the state information;

while the attention branch applies a single FC layer. Then,

the state and attention branches are concatenated and fed in

a value-predicted FC layer to output the critic value.

To guide the critic network to predict the actual value

of the attention model, we design a reward signal R which

reflects our task objective. Specifically, the reward in our

experiments includes two parts, the first is the classification

criterion Rc denoting whether the attention maps lead to

a correct classification, and the second is the amelioration

part Ra indicating whether the attention model brings the

positive effects. The detail definitions of the classification

reward are as follows:

Rc =

{

1 yci = ypi
0 yci �= ypi

, (4)

where ypi denotes the prediction label by the attention-based

features about person i and the yci is the ground-truth classi-

fication label. While the amelioration reward Ra is formu-

lated as:

Ra =

{

1 pk(Ai, Xi) > pk(Xi)

0 pk(Ai, Xi) ≤ pk(Xi)
, (5)

where pk indicates the predicted probability of the true clas-

sification. The final reward of the attention model is denoted

as R = Rc +Ra.
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3.2. Attention Agent

In this work, we exploit two types of attention model

as our attention agent: channel-wise attention and spatial

attention.

Spatial Attention: The spatial attention aims to guide

the network to focus on most salient regions of the given

image. Instead of exploiting all spatial features equally, we

discard the irrelevant information and highlight important

areas. The proposed spatial attention agent consists of two

FC layers, a ReLU layer, and a Sigmod layer. Given the

feature maps X ∈ R
C×H×W from the convolutional block,

where C is the channels and H×W denotes the spatial size,

the spatial attention agent produces the spatial attention map

As as:

As = σ
(

W s
2 max(0,W s

1 X̄)
)

, (6)

where W s
1 ∈ R

H×W

r
×(H×W ) and W s

2 ∈ R
(H×W )×H×W

r

correspond to the parameters of two FC layers of the atten-

tion agent, respectively. X̄ denotes the average across the

channel domain of the feature maps, following by a flat-

tening operation. To limit model complexity and improve

generalization, we employ a bottleneck structure for our at-

tention agent, where the first FC layer reduces the input di-

mension C by a ratio r, while the second FC layer restores

the dimension. The outputs are then reshaped and expand-

ed to match the shape of the feature maps. Once obtaining

the attention maps, we encode the attention information in-

to the feature maps via element-wise production to get the

spatially guided feature maps G = X ∗As. For more clari-

ty, a detailed architecture of the attention agent is illustrated

in Figure 3 (a).

Channel-wise Attention: The different channels of

feature maps have specific activation for specific objects.

The channel-wise attention aims to enhance the represen-

tational ability for various samples by modeling the inter-

dependencies between the convolutional channels. The

channel-wise attention agent exploits the ”Squeeze-and-

Excitation” (SE) block to re-weight the channels of feature

maps, by selecting more informative ones and suppressing

less useful ones. Specifically, it is composed of a global

average pooling layer and two consecutive fully-connected

layers. A detail architecture of the attention agent is illus-

trated in Figure 3 (b). Given the feature maps X , the atten-

tion agent produces the channel-wise attention Ac as

Ac = σ (W c
2 max(0,W c

1Xpool)) , (7)

where W c
1 and W c

2 are the parameters of bottleneck FC lay-

ers which are similar with spatial ones, and Xpool denotes

the average pooling on the spatial domain of feature maps

X . Differently, the channel-wise attention Ac are applied on

the original feature maps via channel-wise multiplication.

Stacked Attention Model: Since it is not trivial to re-

trieve the most salient features at a single step, we propose

to stack multiple attention models at different convolution

stages of the backbone network. The model can gradual-

ly filter out noises and concentrate on the regions that are

highly specific to the identity. The architecture of the s-

tacked attention model is illustrated in Figure 2. Taking the

Resnet [10] as an example of the backbone network, we ad-

d an attention model on top of each residual block. With

the stacked attention structure, the network is progressively

guided to focus on the significant features.

3.3. Optimization

The parameters of our network consist of three parts: the

backbone network ψ, the attention agent θ, and the critic

module φ. We design two loss functions to train the back-

bone network Fψ and the attention model Aθ, including

triplet loss and classification loss. The triplet loss function

aims to preserve the rank relationship among a triplet of

samples with a large margin, which increases the inter-class

distance and reduces the intra-class one. It is formulated as:

Jtri(ψ, θ) =
1

N

N
∑

i=1

[

||fi − f+
i ||22 − ||fi − f−

i ||22 +m
]

+
,

(8)

where [·]+ indicates the max function max(0, ·), and

fi, f
+
i , f−

i respectively denote as features of the anchor,

positive and negative sample in a triplet. m is a margin to

enhance the discriminative ability of learned features. The

classification loss focuses on the correctness of predicted

identity, which is defined with the cross-entropy:

Jcls(ψ, θ) = −
1

N

N
∑

i=1

K
∑

k=1

yki log(p
k
i ), (9)
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Algorithm 1: Self-critical attention learning

Input: Training image data: I = {I}, maximal iterative

number T , smoothing parameter ǫ, margin m.

Output: The parameters of backbone network ψ, attention

model θ ,critic module φ
1: Initialize ψ,θ, and φ;

2: for t = 1, 2, . . . , T do

3: Randomly select a batch of images Ii=1:N from I;

4: Obtain feature map Xi with (1)

5: Generate attention Ai with (2)

6: Predict critic value Vi with (3)

7: Update ψ ← ∂
∂ψ

(Jcls + Jtri)

8: Update θ ← ∂
∂θ
(Jcls + Jtri + Jcri)

9: Update φ ← ∂
∂φ

Jmse

10: end for

11: return ψ,θ, and φ

where yki is the ground truth identity of ith person on the

kth class and pki indicates the predicted probability. In ad-

dition, to regularize the model for better generalization abil-

ity, we employ the label smooth regularization [40] in our

classification loss function. Specifically, we take a unifor-

m distribution µ(k) = 1/K as the regularization term and

reformulate (9) loss as:

Jcls(ψ, θ) = −
1

N

N
∑

i=1

K
∑

k=1

log(pki )
(

(1− ǫ)yki +
ǫ

K

)

,

(10)

where the ǫ ∈ (0, 1) is a smoothing parameter. Since the

classification loss is sensitive to the scales of features, we

add a batch-norm (BN) layer before classification loss to

normalize the scales, as shown in Fig 2. For attention model

Aθ, we introduce an additional powerful supervisory signal

predicted by the critic module, which is defined as the critic

loss:

Jcri(θ) = −VAθ

φ (X,A). (11)

With this critic-based objective function, we update the at-

tention agent to obtain the higher critic value. Finally, we

employ the Mean Square Error (MSE) to optimize the critic

network Cφ by minimizing the gap between the estimated

critic value and the real reward. The MSE loss is written as:

Jmse(φ) = (VAθ

φ (X,A)−R)2. (12)

It is worth noting that when we optimize the critic network,

the attention network is frozen and vice versa. To explain

the optimization more clearly, we provide Algorithm 1 to

detail the learning process of SCAL.

3.4. Implementation Details

We employed the ResNet-50 [42] as the basic backbone

network for our SCAL method in the experiments, and ini-

tialized them with the ImageNet pre-trained parameters. In

Table 1. The basic statistics of all datasets in the experiments.

Datasets Market-1501 DukeMTMC-ReID CUHK03

Identities 1501 1402 1467

Images 32668 36411 14097

Cameras 6 8 10

Train IDS 751 702 767

Test IDS 750 702 700

Test Setting SS SQ SQ

Labeling Hand/DPM Hand Hand/DPM

order to preserve the resolution of the image, we applied

a convolution layer with stride = 1, instead of original

stride = 2 convolution layer in the last block of ResNet-50.

We stacked five attention models on the ResNet-50 network,

which are placed on top of the first convolution layer of the

network and the output layer of each residual block. Dur-

ing training, we employed three data augmentation meth-

ods, including random cropping, horizontal flipping, and

erasing. Each mini-batch consists of randomly selected P
identities and randomly sampled K images for each iden-

tity from the training set to cooperate the requirement of

triplet loss. Here we set P = 24 and K = 4 to train our

proposed model. Each input image is resized as 384 × 192
for exploiting fine-grained information. The margin param-

eters of triplet loss and the label smoothing regularization

rate were set as 0.3 and 0.1 respectively. The weighting co-

efficients about loss functions {Jcls, Jtri, Jcri, Jmse} were

set as {1.0, 1.0, 0.3, 1.0} respectively in the all experiments.

We trained our model for 160 epochs in total by the Adam

optimizer. The initial learning rate was 0.0004 and was di-

vided by 10 every 40 epochs. The weight decay factor for

L2 regularization was set to 0.001. During evaluation, we

extracted the features with original images and the horizon-

tally flipped ones and averaged them as the final features.

We employed the cosine distance as the metric to measure

the similarity of two features. All experiments were imple-

mented with PyTorch 1.0 on 2 Nvidia GTX 1080Ti GPUs.

It took about 3 hours with data-parallel acceleration to train

the models on the Market-1051 dataset. The above param-

eter settings were applicable for all three datasets in our ex-

periments.

4. Experiments

We evaluated our method on three public person ReID

benchmarks. In the experiments, we compared the proposed

method with other state-of-the-art approaches and conduct-

ed ablation studies to analyze our attention model. In addi-

tion, we conducted the transfer testing on the cross-dataset

to investigate the generalization ability of the SCAL model.

4.1. Experimental Settings

We conducted the experiments on three large-scale

datasets including Market-1501 [52], DukeMTMC-

ReID [29] and CUHK03 [18]. The detailed statistics and
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Table 2. Comparison with state-of-the-art person ReID methods

on the Market-1051 dataset.

Market-1051

Method Model mAP R=1 R=5

SVDNet [38] ResNet-50 62.1 82.3 92.3

CamStyle [55] ResNet-50 68.7 88.1 -

Pose-transfer [25] DenseNet-169 68.9 87.7 -

DaRe [43] ResNet-50 74.2 88.5 -

MLFN [2] MLFN* 74.3 90.0 -

DKPM [32] ResNet-50 75.3 90.1 96.7

Group-shuffling [30] ResNet-50 82.5 92.7 96.9

DCRF [3] ResNet-50 81.6 93.5 97.7

SPReID [12] ResNet-152 83.4 93.7 97.6

FD-GAN [9] ResNet-50 77.7 90.5 -

Part-aligned [37] GoogleNet 79.6 91.7 96.9

SGGNN [31] ResNet-50 82.8 92.3 96.1

PCB+RPP [39] ResNet-50 81.6 93.8 97.5

CAN [24] VGG-16 35.9 60.3 -

DLPAR [50] GoogLeNet 63.4 81.0 92.0

PDCNN [36] GoogleNet 63.4 84.1 -

IDEAL [14] GoogleNet 67.5 86.7 -

MGCAM [35] ResNet-50 74.3 83.8 -

AACN [48] GoogleNet 66.9 85.9 -

DuATM [34] DenseNet-121 76.6 91.4 97.1

HA-CNN [19] HA-CNN* 75.7 91.2 -

Mancs [41] ResNet-50 82.3 93.1 -

SCAL (spatial) ResNet-50 88.9 95.4 98.5

SCAL (channel) ResNet-50 89.3 95.8 98.7

evaluation protocols of all datasets are summarized in

Table 1. All the three datasets are collected in a natural

real-world scene which is close to the practical application.

As shown in Table 1, we followed the standard person

ReID experimental setups in [19]. Specifically, we adopted

single-query evaluation mode on the Market-1501 dataset

in our experiments. For CUHK03 dataset, we applied the

CUHK03-NP splits in [54], which selected 767 identities

for training and the other 700 ones for testing. For all the

datasets, we applied the cumulative matching characteristic

(CMC) curve and mean Average Precision (mAP) as the

evaluation metric. CMC curves record the true matching

within the top n ranks, while mAP considers precision

and recall to evaluate the overall performance of methods.

To preserve the simplicity and efficiency of the model,

we evaluate our method without post-processings which

are orthogonal to our method and could be integrated

in a straightforward manner, such as various re-ranking

schemes and metric learning [54, 20].

4.2. Comparison with the State-of-the-Art Methods

In the top groups of Table 2, Table 3, and Table 4, we

respectively compared our approach against the state-of-

the-art methods on the Market-1501, DukeMTMC-ReID,

Table 3. Comparison with state-of-the-art person ReID methods

on the DukeMTMC-ReID dataset.

DukeMTMC-ReID

Method Model mAP R=1 R=5

SVDNet [38] ResNet-50 56.8 76.7 86.4

CamStyle [55] ResNet-50 57.6 78.3 -

Pose-transfer [25] DenseNet-169 56.9 78.5 -

DaRe [43] ResNet-50 63.0 79.1 -

MLFN [2] MLFN* 62.8 81.2 -

DKPM [32] ResNet-50 63.2 80.3 89.5

Group-shuffling [30] ResNet-50 66.4 80.7 88.5

DCRF [3] ResNet-50 69.5 84.9 92.3

SPReID [12] ResNet-152 73.3 86.0 93.0

FD-GAN [9] ResNet-50 64.5 80.0 -

Part-aligned [37] GoogleNet 69.3 84.4 92.2

SGGNN [31] ResNet-50 68.2 81.1 88.4

PCB+RPP [39] ResNet-50 69.2 83.3 -

AACN [48] GoogleNet 59.3 76.8 -

DuATM [34] DenseNet-121 64.6 81.8 90.2

HA-CNN [19] HA-CNN* 63.8 80.5 -

Mancs [41] ResNet-50 71.8 84.9 -

SCAL (spatial) ResNet-50 79.6 89.0 95.1

SCAL (channel) ResNet-50 79.1 88.9 95.2

and CUHK03 datasets. While the bottom group summa-

rizes the performance of deep learning methods with atten-

tion model. We observe that the proposed SCAL methods

on both spatial and channel domain achieve superior per-

formance over all comparing methods substantially on the

three benchmarks. It confirms the effectiveness of the atten-

tion evaluator and the self-critical supervisory signal.

For Market-1051 dataset, we selected the single query

mode in our experiment and compared with other methods

without re-ranking. As shown in Table 2, we evaluated the

SCAL method against 13 conventional deep learning meth-

ods and 9 attention-based methods. SPReID [12] integrates

human semantic parsing in the ReID problem and achieved

the best-published result. Our channel-based SCAL with

ResNet-50 achieved state-of-the-art results of mAP/Rank-1

= 89.3%/95.8%, outperforming SPReID by +5.9% on mAP

and +2.1% on Rank-1. Although the attention-based meth-

ods have achieved great performance recently, the proposed

attention model with self-critical outperforms them by a

large margin, 7% on mAP and 2.7% on Rank-1. This sug-

gests the importance of the proposed critic module in the

attention learning process.

DukeMTMC-ReID is a more challenging person ReID

benchmark than Market-1501, due to the more intra-class

variations under the wider camera views and more complex

background. The performance of the proposed method and

other state-of-the-art approaches are summarized in the Ta-

ble 3. We outperformed the second best method SPReI-

D [12] substantially by 6.3% and 3.0% respectively on the
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Table 4. Comparison with state-of-the-art person ReID methods

on the CUHK03 dataset with the 767/700 split.

CUHK03 labeled detected

Method mAP R=1 mAP R=1

SVDNet [38] 37.8 40.9 37.3 41.5

Pose-transfer [25] 42.0 45.1 38.7 41.6

DaRe [43] 60.2 64.5 58.1 61.6

MLFN [2] 49.2 54.7 47.8 52.8

PCB+RPP [39] - - 57.5 63.7

AACN [48] 50.2 50.1 46.9 46.7

HA-CNN [19] 41.0 44.4 38.6 41.7

SCAL (spatial) 71.5 74.1 68.2 70.4

SCAL (channel) 72.3 74.8 68.6 71.1

mAP score and Rank-1 accuracy, which suggests the pro-

posed attention model is an effective manner for the salient

location with the cluttered background.

We conducted experiments on both versions of person

boxes of the CUHK03 benchmark: manually labeled and

auto-detected with a pedestrian detector. We chose the

767/700 identity split rather than 1367/100 since the for-

mer is more realistic and challenging. How to learn a robust

deep feature representation with limited samples is a com-

mon problem of the person ReID systems in the real world.

We reported the results of all previous results for both ver-

sions in Table 4. For both labeled and detected settings, the

proposed SCAL achieved the improvement by a large mar-

gin (12.1% on mAP and 10.3% on Rank-1 in the labeled

version; 10.5% on mAP and 9.5% on Rank-1 in the detect-

ed version) over the best alternative DaRe [43] method with

the same ResNet-50 base-model.

4.3. Ablation Study

To investigate the contribution of individual components

in the SCAL method, we conducted comprehensive ablation

evaluations on the Market-1051 dataset in the single query

mode. Table 5 shows the comparison results in differen-

t settings related to components of SCAL. We separately

analyzed each component as follows:

Effect of self-critical module: We compared our S-

CAL methods with two original attention models, includ-

ing stacked spatial attention and channel-wise attention. As

shown in Table 5, the SCAL methods achieve a significan-

t performance improvement for both spatial attention and

channel attention. The consistent improvement over two

different basic models demonstrates that the proposed self-

critical module is applicable for any attention module.

Spatial attention vs Channel-wise attention: In the ex-

periments, we designed two basic attention model to inves-

tigate the generality of the proposed self-critical module.

On the Market-1051 and CUHK03 dataset, the channel-

based attention usually obtains better performance than the

spatial-based one. While on the DukeMTMC-ReID dataset,

Table 5. Ablation studies of the SCAL method on the Market-1051

dataset with ResNet-50 baseline. Analysis shows the influences of

different components and design choices on Rank-1 and mAP (%).

Component Design Choice

Cross Entropy � � � � � � � �

Horizontal Flip � � � � � � �

Triplet Loss � � � � � �

Label Smooth � � � � �

Spatial Att � �

Channel Att � �

Self-critical � �

Rank-1 92.4 92.6 93.5 94.1 94.9 94.9 95.4 95.8

mAP 82.1 82.2 84.1 85.5 87.6 88.1 88.9 89.3

Table 6. Cross-domain evaluation about Market-1051 and

DukeMTMC-ReID datasets. M→D indicates that the model is

trained on the Market-1501 dataset and tested on the DukeMTMC-

ReID dataset, and vice versa.

M → D D → M

Method mAP R=1 mAP R=1

PTGAN [44] - 27.4 - 38.6

SPGAN [8] 22.3 41.1 22.8 51.5

Baseline 13.1 25.9 18.8 38.4

SCAN(spatial) 17 30.4 23.1 49

SCAN(channel) 16.4 28.6 23.8 51.7

SCAN(channel)+ SPGAN 28.4 48.4 30.4 61.0

the spatial-based attention model is superior. We argue that

it reflects the images in the DukeMTMC-ReID dataset have

lager intra-class spatial variance due to the wider camera

views and more cluttered background.

Loss functions: We employed the cross-entropy loss as

the basic objective functions to optimize our models and

additionally improved the performance by introducing the

triplet loss as auxiliary rank-based supervisory signal and

applying label smoothing regularization (LSR) [40]. As

shown in Table 5, the triplet loss obtains the +1.9%/0.9 im-

provement about mAP/Rank-1 by preserving the rank rela-

tionship among a triplet to encourage the intra-class com-

pactness. While LSR further promotes the performance

with 1.4% on the mAP score and 0.6% on the Rank-1 accu-

racy by avoiding the over-fitting.

Horizontal flip: During inference, we average the fea-

tures from the original and horizontal flipped images, which

is a simple trick to reduce the viewpoint variance. As shown

in Table 5, it provides about 0.2% gain.

4.4. Cross-Domain Evaluation

In real surveillance systems, it requires intensive human

labor to label an overwhelming amount of data. An impor-

tant evaluation metric about the robustness of ReID system

is the generalization ability for unseen persons and scenes.
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Input image Baseline attention Our attention Input image Baseline attention Our attention Input image Baseline attention Our attention

Figure 4. Visualizations of the attention maps. We illustrate three pairs of images, where each pair corresponds to a same individual from

the query and gallery sets, respectively. For each sample, from left to right, we show the input image, baseline attention map, and our

attention map. We can see that the baseline attention fails to locate the same salient part of people, while our method successes. The

comparison results clearly show the effectiveness of our strong supervision for learning more accurate attention. Best viewed in color.

Therefore, we conducted a cross-domain evaluation to in-

vestigate the transferability of our SCAL model. Specifical-

ly, we trained the model with the data in the Market-1051

dataset and tested it with the samples in the DukeMTMC-

ReID dataset, and vice versa. We applied the ResNet-50

network and trained it with cross-entropy+triplet+LSR loss

functions as the baseline. As shown in Table 6, both spatial-

and channel-wise SCAL methods outperform the baseline

by a large margin, which demonstrates the generalization

ability of the SCAL methods. Compared with the state-

of-the-art transfer learning methods PTGAN [44] and SP-

GAN [8], we still achieve competitive performance. It is

worth pointing out that the person images of the test domain

are visible for PTGAN and SPGAN methods in the training

process. While in our experiments, both images and labels

in the test-domain are unseen to evaluate the generalization

ability of the proposed attention model. In addition, with

the same setting as SPGAN [8], by transferring the style of

source-domain into target-domain but replacing the feature

extraction part of SPGAN by our SCAL model, we further

improve the performance.

4.5. Qualitative Analysis

In order to validate the effectiveness of our self-critical

attention learning method, we qualitatively examined the at-

tention maps and the associated critic value. Some exam-

ples of visualization are illustrated in Figure 4. Specifically,

we chose two images of the same individual from query and

gallery sets, respectively. We expected to observe that the

attention helps to focus on the same discriminative parts of

the person. We can see that the salient features of the same

target are highlighted, such as the bag, T-shirt. These qual-

itative results demonstrate the effectiveness of our SCAL

model which guides the network to focus on highly relevant

regions. Besides, we also compare our attention maps with

the baseline attention map. As shwon in Figure 4 whose

middle column is baseline attention map and the right one is

our attention map, the proposed critic model provides strong

supervision for learning more accurate attention.

5. Conclusion

In this paper, we have proposed a simple yet effective

self-critical attention model for person re-identification. In-

stead of the weak supervision, we learn the attention with

a critic which examines the gain from the attention over

the backbone network and provides a strong supervisory

signal based on its observation. Moreover, the critic can

measure the quality of the attention maps which significant-

ly facilitates the interpretation of attention for human end-

users. Extensive experimental results show that the pro-

posed self-critical attention learning method outperforms

existing state-of-the-art methods by a large margin, which

validate the effectiveness of our approach.
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