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Abstract
The aim of crowd counting is to estimate the number

of people in images by leveraging the annotation of cen-

ter positions for pedestrians’ heads. Promising progresses

have been made with the prevalence of deep Convolutional

Neural Networks. Existing methods widely employ the Eu-

clidean distance (i.e., L2 loss) to optimize the model, which,

however, has two main drawbacks: (1) the loss has diffi-

culty in learning the spatial awareness (i.e., the position of

head) since it struggles to retain the high-frequency vari-

ation in the density map, and (2) the loss is highly sensi-

tive to various noises in crowd counting, such as the zero-

mean noise, head size changes, and occlusions. Although

the Maximum Excess over SubArrays (MESA) loss has been

previously proposed by [16] to address the above issues by

finding the rectangular subregion whose predicted density

map has the maximum difference from the ground truth, it

cannot be solved by gradient descent, thus can hardly be

integrated into the deep learning framework. In this pa-

per, we present a novel architecture called SPatial Aware-

ness Network (SPANet) to incorporate spatial context for

crowd counting. The Maximum Excess over Pixels (MEP)

loss is proposed to achieve this by finding the pixel-level

subregion with high discrepancy to the ground truth. To

this end, we devise a weakly supervised learning scheme to

generate such region with a multi-branch architecture. The

proposed framework can be integrated into existing deep

crowd counting methods and is end-to-end trainable. Ex-

tensive experiments on four challenging benchmarks show

that our method can significantly improve the performance

of baselines. More remarkably, our approach outperforms

the state-of-the-art methods on all benchmark datasets.

1. Introduction

The problem of crowd counting is described in [16]. Dif-

ferent from visual object detection, it is impossible to pro-

vide bounding boxes for all pedestrians due to the extremely

dense crowds. On the other side, when only the total crowd
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sponding author.

Figure 1: The L2 loss function has difficulty in learning the spatial

awareness and is sensitive to various noises in crowd counting, which will

lead to a lower estimation in high-density regions (the first row of each ex-

ample), and a higher estimation in low-density regions (the second row of

each example). Note that the corresponding improvements of our method

are shown in Figure 5.

counts of the images are provided, the training process will

become notably difficult since the spatial awareness is com-

pletely ignored. Therefore, to preserve as many spatial con-

straints as possible and reduce annotation cost, the previous

work [16] started to only provide center points of heads and

utilizes Gaussian distribution to generate ground truth den-

sity maps. It is worth noting that this annotation scheme is

widely adopted by subsequent studies.

Existing crowd counting approaches mainly focus on im-

proving the scale invariance of feature representation, in-

cluding the multi-column networks [13, 38, 39, 42, 52, 6],

scale aggregation modules [3, 47], and scale-invariant net-

works [9, 17, 20, 39, 45]. Despite the architectures of these

methods are different, the L2 loss function is employed by

most of them. As a result, the spatial awareness in crowd

image is largely ignored, though more scale information is

embedded into their features.

We have examined three state-of-the-art approaches

(i.e., MCNN [52], CSRNet [17], and SANet [3]) on

four crowd counting datasets (i.e., ShanghaiTech [52],

UCF CC 50 [11], WorldExpo’10 [48], and UCSD [4]).

Two examples are shown in Figure 1. Similar to [3, 19, 20],

we observe that dense-crowd regions are usually underesti-

mated, while sparse-crowd regions are overestimated. Such

phenomenon is due to two main factors. First, the pixel-

wise L2 loss struggles to retain the high-frequency variation
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in the density map: minimizing L2 loss encourages finding

pixel-wise averages of plausible solutions which are typi-

cally overly-smooth and thus have poor spatial awareness

[15]. Second, L2 loss is highly sensitive to typical noises in

crowd counting, including the zero-mean noise, head size

changes, and head occlusions. We take a simple statistics

and show that the co-occurrence of zero-mean noise and

overestimation could reach 96% (6,776 out of 7,044 testing

images). We further find that almost all estimated density

maps inaccurately predict the head positions or sizes when

occlusion occurs, which could result in underestimation in

high-density areas. Moreover, the generated ground truth

density could also be imprecise due to the annotation error

and the fixed variance in Gaussian kernel. It is noted that the

corresponding improvements of our method are illustrated

in Figure 5.

To fully utilize the spatial awareness, previous work [16]

proposes a loss named Maximum Excess over SubArrays

(MESA) to handle the above problems. Generally speak-

ing, MESA loss attempts to find the rectangular subregion

whose predicted density map has the maximum difference

from the ground truth. It directly optimizes the counts of

this subregion instead of the pixel-level density. Since the

set of subregions could include the full image, MESA loss

is an upper bound for the count estimation of the entire im-

age. Besides, this loss is only sensitive to the spatial lay-

out of pedestrians and is robust to various noises. How-

ever, the complexity of MESA loss function is extremely

high. [16] utilizes Cutting-Plane optimization to obtain an

approximate solution. Since this method cannot be solved

by the conventional gradient descent, MESA loss has not

been employed in any existing CNN-based approach.

Motivated by the MESA loss, in this paper we present

a novel deep architecture called SPatial Awareness Net-

work (SPANet) to retain the high-frequency spatial varia-

tions of density. Instead of finding the mismatched rect-

angular subregion as in MESA, the Maximum Excess over

Pixels (MEP) loss is proposed to optimize the pixel-level

subregion which has high discrepancy to the ground truth

density map. To obtain such pixel-level subregion, the

weakly-supervised ranking information [23] is exploited to

generate a mask indicating the pixels with high discrepan-

cies. We further devise a multi-branch architecture to lever-

age the full image for discrepancy detection by imitating the

salience region detection [33, 50, 54], where patches with

increasing areas are used for ranking. The proposed frame-

work could be easily integrated into existing CNN-based

methods and is end-to-end trainable.

The main contribution of this work is the proposed Spa-

tial Awareness Network and Maximum Excess over Pixels

loss for addressing the issue of crowd counting. The solu-

tion also provides the elegant views of what kind of spatial

context should be exploited and how to effectively utilize

such spatial awareness in crowd images, which are prob-

lems not yet fully understood in the literature.

2. Related Work

2.1. Detection­based Methods

The methods in this category use object detector to lo-

cate people in images. Given the individual localization of

each people, crowd counting becomes trivial. There are two

directions in this line, i.e., detection on 1) whole pedestri-

ans [2, 7, 53] and 2) parts of pedestrians [8, 12, 18, 43].

Typically, local features [7, 18] are first extracted and then

are exploited to train various detectors (e.g., SVM [18] and

AdaBoost [41]). Though spatial information is well learned

in these methods, they are not applicable in challenging sit-

uations, such as the high-density clogging crowds.

2.2. Regression­based Methods

Different from detection-based methods, regression-

based approaches avoid the hard detection problem and es-

timate crowd counts from image features. Earlier methods

[4, 5, 11, 28] usually predict the counts directly from the

features, which will lead to poor performance as the spa-

tial awareness is completely ignored. Later methods try to

estimate the density map for counting [16, 26, 29], where

the crowd count is obtained by integrating all pixel values

over the density map. Though learning the density map

somewhat provides the spatial information, their models

still have difficulties in preserving the high-frequency vari-

ation in the density map.

2.3. CNN­based Methods

Deep CNN based crowd counting methods have shown

very strong performance improvements over the shallow

learning counterparts. Existing methods mainly focus on

coping with the large variation in pedestrian scales, where

many multi-column networks are extensively studied. A

dual-column network is proposed by [1] to combine shallow

and deep layers for estimating the count. Inspired by this

work, a famous three-column network MCNN is proposed

by [52], which employs different filters on separate columns

to obtain features with various scales. Many works have im-

proved MCNN [13, 38, 39, 42] to further enhance the scale

adaptation. Sam et al. [32] introduce a switching structure,

which uses a classifier to assign input image patches to ap-

propriate columns. Recently, Liu et al. [19] propose a multi-

column network to simultaneously estimate crowd density

by detection and regression based models. Ranjan et al. [27]

utilize a two-column network to iteratively train their model

with images of different resolution.

There are a lot of other attempts to further improve the

scale invariance, including 1) study on the fusion of vari-

ous scale information [22, 40, 45, 46], 2) study on multi-

blob based scale aggregation networks [3, 47], 3) design of

6153



scale-invariant convolutional or pooling layers [9, 17, 20,

39, 45], and 4) study on the automated scale adaptive net-

works [30, 31, 49]. Typically, Li et al. [17] propose CSRNet

that exploits dilated convolutional layers to enlarge recep-

tive fields for boosting performance. Cao et al. [3] propose

SANet to aggregate multi-scale features for more accurate

crowd count. These two approaches have achieved state-of-

the-art performance. Additionally, there also exist studies

devoted to utilization of perspective maps [35], geometric

constraints [21, 51], and region-of-interest (ROI) [20] to im-

prove the counting accuracy.

The aforementioned methods utilize the Euclidean dis-

tance, i.e. L2 loss to optimize the model. Although these

methods can obtain scale-invariant features, their perfor-

mances are still unsatisfactory since the spatial awareness

is largely ignored. Note that, SANet [3] also tries to solve

the problem of L2 loss and adds local pattern consistency

(Lc loss) in the training phase. However, we find that Lc

still cannot learn the spatial context well. In our experi-

ment, when integrating our MEP loss (Lmep) into SANet,

we achieve significant performance improvement. Our pro-

posed MEP loss could fully utilize the spatial awareness,

which is a key factor for the task of crowd counting.

3. Our Method

In this section, we first review the problem of crowd

counting and two loss functions (i.e., MESA loss and L2

loss). Then we present the proposed SPANet and MEP loss

in details. It is worth noting that our method can be directly

applied to all CNN-based crowd counting networks.

3.1. Problem Formulation

Recent technologies define the crowd counting task as

a density regression problem [3, 16, 52]. Given N images

I = {I1, I2, · · · , IN} as the training set, each image Ii is

annotated with a total of ci center points of pedestrians’

heads P
gt
i = {P1, P2, · · · , Pci}. Typically, the ground truth

density map for each pixel p in image Ii is defined as Dgt,i,

∀p ∈ Ii, D
gt,i(p) =

∑

P∈Pgt
i

N gt(p;µ = P, σ2), (1)

where N gt is a Gaussian distribution. The number of peo-

ple ci in image Ii is equal to the sum of density values over

all pixels as
∑

p∈Ii
Dgt,i(p) = ci. With these training data,

the aim of crowd counting task is to learn the predicted den-

sity map Dpr towards the ground truth density map Dgt.

MESA loss. To make use of the spatial awareness in

annotations (i.e., center head positions Pgt), the previous

work [16] has proposed the Maximum Excess over SubAr-

rays (MESA) loss Lmesa as follows,

Lmesa

(

Dpr, Dgt
)

=
1

N

N
∑

i=1

max
B∈B

∣

∣

∣

∣

∣

∣

∑

p∈B

Dpr,i (p)−
∑

p∈B

Dgt,i (p)

∣

∣

∣

∣

∣

∣

,

(2)

Figure 2: Computation process of MESA loss. It is required to tra-

verse all possible subregions and calculate the differences between their

predicted density maps and the ground truth. Then the subregion with

maximum difference is selected for optimization.

where B is the set of all potential rectangular subregions

in image. As illustrated in Figure 2, MESA loss tries to

find the box subregion whose predicted density map has the

maximum difference from the ground truth. It can be treated

as an upper bound for the count estimation of the entire im-

age, as B could include the full image. Besides, this loss

is directly related to the counting objective instead of the

pixel-level density, and is only sensitive to the spatial lay-

out of pedestrians. In the 1D case, Kolmogorov-Smirnov

distance [24] can be seen as a special case of Lmesa.

Despite the above merits, it is difficult to optimize the

MESA loss due to the hard process of finding such subre-

gion. One has to traverse all potential subregions to achieve

this, which is obviously an impossible task in practical ap-

plication. To solve it, previous approach [16] converts the

optimization of MESA loss to a convex quadratic program

problem with limited constraints and utilizes Cutting-Plane

optimization to obtain an approximate solution. However,

since this method cannot be solved by the traditional gradi-

ent descent, MESA loss has not been exploited in any exist-

ing CNN-based crowd counting methods.

L2 loss. To facilitate the computation in deep frame-

works, existing CNN-based methods [17, 27, 52] all di-

rectly use L2 loss to minimize the difference between the

estimated and ground truth density maps,

L2

(

Dpr, Dgt
)

=
1

2N

N
∑

i=1

∑

p∈Dpr,i

∣

∣

∣

∣Dpr,i (p)−Dgt,i (p)
∣

∣

∣

∣

2

2
. (3)

However, as discussed in Sec. 1, we reveal that L2 loss

can hardly retain the high-frequency variation in the density

map, leading to the poor spatial awareness. Furthermore, it

is also highly sensitive to typical noises in crowd counting,

including the zero-mean noise, head size changes, and head

occlusions. For example, existing methods always overes-

timate the density value in low-density areas and underesti-

mate it in high-density regions.

3.2. Spatial Awareness Network

The proposed Spatial Awareness Network (SPANet)

aims to leverage the spatial context for accurately predict-

ing the density values. Instead of searching the mismatched
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Figure 3: The framework of our proposed SPatial Awareness Network (SPANet). The input images are first fed into the backbone network to extract

feature representations and output the estimated density maps Dpr . A K-branch architecture is devised. In each branch k, the network is optimized with

the ranking objective by sampling two patches (one is sub-patch of the other) and outputs a new density map D̂
pr
k

. Then the two density maps are utilized to

produce the subregion Sk which has high discrepancy to the ground truth. The density values within the generated Sk is erased in next branch to facilitate

the latter optimization. In the end, K subregions from K branches are fused to form the final pixel-level subregion S, which is exploited to calculate the

Maximum Excess over Pixels (MEP) loss.

rectangular subregion as in MESA loss, which is the main

obstacle for optimization, we try to find the pixel-level sub-

region S which has high discrepancy to the ground truth

density map. Since there is not any annotation of such

region, this problem is unsupervised and will still be sig-

nificantly difficult to solve. Inspired by the recent weakly-

supervised method [23], we exploit an obvious ranking re-

lation to achieve this, i.e., one patch of a crowded scene im-

age is guaranteed to contain the same number or fewer per-

sons than the original image. By sampling a pair of patches

(where one is the sub-patch of the other), the network is op-

timized with the ranking objective and outputs a new den-

sity map, which is in turn utilized to produce the subregion

with high discrepancy, together with the previous one. We

further devise a multi-branch architecture to leverage the

full image by sampling multiple pairs of patches. Note that

the whole SPANet could be end-to-end trained.

Figure 3 illustrates the framework of our proposed

SPANet. Input images I are first fed into the backbone

network to generate the predicted density maps Dpr. The

desired pixel-level subregion generation, i.e., Sk, is con-

ducted by branch k using a pair of patches sampled from

density maps Dpr. To leverage the full image for dis-

crepancy detection, a multi-branch architecture with K
branches is devised to produce multiple subregions by imi-

tating the salience region detection [50, 54]. Finally, K sub-

regions (S1, S2, ..., SK) are combined to produce the final

S, which is then exploited to compute our proposed Maxi-

mum Excess over Pixels (MEP) loss. We will present these

three sub-modules in details below.

Pixel-level Subregion Generation. The subregion S in-

dicates the area with high density discrepancy to the ground

truth. Unfortunately, directly subtracting the predicted Dpr

from the ground truth Dgt would make the problem go

round in circles – the bias is usually large enough to prevent

it from providing accurate region. Consequently, we turn to

find the region with high changes along with the network

training. It is natural that one can pick two density maps of

the same image from different iterations. However, the ob-

tained area only reflects the region that is already “revised”,

which still seriously suffers from the poor spatial perception

of the original L2 loss. To this end, we exploit the weakly

supervised ranking clues to produce the subregion. Instead

of considering the pixel-level density, the ranking clue is

directly related to the comparison of crowd counts.

In each branch k, two parallel image patches are first

sampled. As the feature maps of deep convolutional layers

already contain rich location information, we treat the sam-

pling process as the mask pooling operation on the density

map. The strategy of selecting patches will be described

later. Without loss of generality, suppose the two masks

M1

k and M2

k are the 2-dimensional matrix with 0 or 1 (1 in-

dicates the patch area), and M1

k is the sub-patch of M2

k . The

crowd counts C(M1

k ) and C(M2

k ) under the masks M1

k and

M2

k could be obtained by integrating the values of density

map over individual mask, which could be implemented as

the mask pooling as follows,

C
(

M1
k

)

=
∑

p∈D
pr
k

(

D
pr
k

⊙M1
k

)

,

C
(

M2
k

)

=
∑

p∈D
pr
k

(

D
pr
k

⊙M2
k

)

,
(4)

where ⊙ is the element-wise product, and p indicates the

pixel on density map Dpr
k . It is worth noting that we uti-

lize the same predicted density map Dpr
k when calculating

the counts for two masks, rather than generating individual

maps at two consecutive iterations. The reason is that the

density map Dpr
k is not restricted to be positive, thus pool-

ing on the pair of patches could also provide the ranking

information. We have conducted an experiment showing
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that the two schemes have similar results. Besides, directly

pooling on the same map is more efficient than the other.

With the assumption that M1

k is the sub-patch of M2

k ,

the explicit constraint is that the number of people in M1

k

is fewer than that in M2

k . Therefore, we employ a pairwise

ranking hinge loss Lr to model such relationship, which is

formulated as

Lr

(

C(M1
k ), C(M2

k )
)

= max
(

0, C(M1
k )− C(M2

k ) + ξ
)

,

(5)

where ξ is a margin value that is set to the upper bound of

the difference in the ground truth. The gradient of Lr loss

is calculated as

▽θLr =







0, if C
(

M1
k

)

− C
(

M2
k

)

+ ξ 6 0,

▽θC
(

M1
k

)

− ▽θC
(

M2
k

)

, otherwise.

(6)

Once the network parameters θ are updated with Lr by

back-propagation, the renewed density map D̂pr
k estimated

by the network is computed by

D̂
pr

k = Conv (I, θ) , (7)

where I is the input image, and Conv(·) refers to a forward

pass of the network. Given the updated density map D̂pr
k

and the old one Dpr
k , the desired subregion Sk is obtained

by thresholding the difference ▽Dpr
k between them, where

▽Dpr
k = |D̂pr

k −Dpr
k |. To make it differentiable, we utilize

a Sigmoid thresholding function, and Sk is given by

Sk =
1

1 + exp (−δ (▽Dpr

k −Σ))
, (8)

where Σ is a threshold matrix with all elements being σ. δ
is the parameter to ensure that the value of Sk is approxi-

mately equal to 1 when ▽Dpr
k (p) > σ, otherwise 0.

Multi-branch Architecture. Note that in above sec-

tion, only a pair of patches are sampled for generating the

subregion. In principle, we hope that the full density map

could be leveraged to provide more information. Instead of

only sampling a small-large pair of patches, which may in-

volve large bias error due to the large difference between

two patches, we adopt a multi-branch architecture as shown

in Figure 3. The bottom right corners of all patches are lo-

cated at the same position, i.e., the bottom right corner of

the density map. The area of patch is gradually enlarged

along with the branches, until it reaches the size of full den-

sity map. Such design guarantees both the small bias error

in each branch and the full utilization of training images.

To eliminate the influence of the detected subregion Sk

for better optimization in latter branches, we imitate the

salience region detection [50] to erase the density values

within Sk in next branch, which is formulated as

D
pr

k+1
= D

pr

k+1
⊙ (1− Sk), (9)

where 1 is the matrix with all elements being 1, and ⊙ is

the element-wise product.

Maximum Excess over Pixels (MEP) loss. In the end,

K subregions (S1, S2, ..., SK) are generated by the K
branches. The final desired pixel-level subregion S is com-

puted by simply combining them together as

S =

K
∑

k=1

{Sk} , (10)

where
∑

indicates merging pixels with values close to 1

in all subregion masks {Sk}, rather than the direct summa-

tion. In practice, we take the maximum value at each pixel

position from all masks. The final output S is the mask that

indicates the pixels which should be optimized. Based on

that, our proposed MEP loss is then given by

Lmep

(

Dpr, Dgt
)

=
1

N

N
∑

i=1

∣

∣

∣

∣

∣

∣

∑

p∈S

Dpr,i(p)−
∑

p∈S

Dgt,i(p)

∣

∣

∣

∣

∣

∣

. (11)

3.3. Model Learning

Our SPANet could be easily integrated into existing

crowd counting methods, which is equivalent to adding a

pooling layer with different masks on the final convolu-

tional layer. It is trained by sequentially optimizing the K
times ranking loss, MEP loss, and the original loss of exist-

ing methods. When calculating the original loss, the mask

pooling layer is removed. The overall training objective is

formulated as

Lglobal =
K
∑

k=1

Lr + Lmep + Lvanilla, (12)

where Lvanilla refers to the original loss of existing ap-

proach. In most cases, Lvanilla is the L2 loss. More details

of the ground truth generation and data augmentation are

described in supplementary material.

4. Experiment

4.1. Experiment Settings

Networks. We evaluate our method by combining it

with three networks, i.e., MCNN [52], CSRNet [17], and

SANet [3]. The implementations of MCNN1 and CSR-

Net2 are from others, while SANet is implemented by

us. In general, there are four main differences between

them: (1) Different size of networks. Specifically, MCNN,

SANet, and CSRNet are corresponding to small, medium,

and large crowd counting networks. (2) Different architec-

tures. MCNN and SANet are multi-column/multi-blob net-

works, while CSRNet is a single column network. In ad-

dition, SANet uses the Instance Normalization (IN) layer

and the deconvolutional layer, while CSRNet utilizes the

dilated convolutional layer. (3) Different size of density

maps. Density maps of MCNN and CSRNet are 1/4 and

1https://github.com/svishwa/crowdcount-mcnn
2https://github.com/leeyeehoo/CSRNet-pytorch/tree/master
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Table 1: Performance comparison with the state-of-the-art methods on ShanghaiTech [52], UCF CC 50 [11], and UCSD [48] datasets.

ShanghaiTech A ShanghaiTech B UCF CC 50 UCSD

Method Venue & Year MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓

Idrees et al. [11] CVPR 2013 - - - - 419.5 541.6 - -

Zhang et al. [48] CVPR 2015 181.8 277.7 32.0 49.8 467.0 498.5 1.60 3.31

CCNN [25] ECCV 2016 - - - - - - 1.51 -

Hydra-2s [25] ECCV 2016 - - - - 333.7 425.3 - -

C-MTL [38] AVSS 2017 101.3 152.4 20.0 31.1 322.8 397.9 - -

SwitchCNN [32] CVPR 2017 90.4 135.0 21.6 33.4 318.1 439.2 1.62 2.10

CP-CNN [39] ICCV 2017 73.6 106.4 20.1 30.1 295.8 320.9 - -

Huang at al. [10] TIP 2018 - - 20.2 35.6 409.5 563.7 1.00 1.40

SaCNN [49] WACV 2018 86.8 139.2 16.2 25.8 314.9 424.8 - -

ACSCP [34] CVPR 2018 75.7 102.7 17.2 27.4 291.0 404.6 - -

IG-CNN [31] CVPR 2018 72.5 118.2 13.6 21.1 291.4 349.4 - -

Deep-NCL [36] CVPR 2018 73.5 112.3 18.7 26.0 288.4 404.7 - -

MCNN [52] CVPR 2016 110.2 173.2 26.4 41.3 377.6 509.1 1.07 1.35

CSRNet [17] CVPR 2018 68.2 115.0 10.6 16.0 266.1 397.5 1.16 1.47

SANet [3] ECCV 2018 67.0 104.5 8.4 13.6 258.4 334.9 1.02 1.29

MCNN+SPANet - - 99.7 146.3 19.1 28.7 292.5 401.3 1.00 1.33

CSRNet+SPANet - - 62.4 99.5 8.4 13.2 245.8 333.1 1.12 1.42

SANet+SPANet - - 59.4 92.5 6.5 9.9 232.6 311.7 1.00 1.28

1/8 of original images, while SANet produces density maps

with the same size as input images. (4) Different testing

scheme. SANet is tested on image patches, while CSRNet

and MCNN are tested on the whole images.

Learning settings. For MCNN and SANet, the param-

eters are randomly initialized by a Gaussian distribution

with mean of 0 and standard deviation of 0.01. Adam opti-

mizer [14] with a learning rate of 1e−5 is used to train the

model. For CSRNet, the first ten convolutional layers are

from pre-trained VGG-16 [37]. The other layers are initial-

ized in the same way as MCNN. Stochastic gradient descent

(SGD) with a fixed learning rate of 1e−6 is applied during

the training.

Datasets. We evaluate our method on four datasets,

including ShanghaiTech [52], UCF CC 50 [11], World-

Expo’10 [48], and UCSD [4]. Typically, ShanghaiTech Part

A is congested and noisy, while ShanghaiTech Part B is

noisy but not highly congested. UCF CC 50 consists of

extremely congested scenes with heavy background noises.

WorldExpo’10 and UCSD contain sparse crowd scenes.

The scenes in WorldExpo’10 are noisier than UCSD.

Evaluation details. MCNN and CSRNet are tested on

the whole images, while SANet is tested on image patches.

Following previous works [17, 27, 52], Mean Absolute Er-

ror (MAE) and Mean Square Error (MSE) are used to eval-

uate the performance by

MAE =
1

N

N
∑

i=1

∣

∣

∣
Ci − C

gt
i

∣

∣

∣
, MSE =

√

√

√

√

1

N

N
∑

i=1

(

Ci − C
gt
i

)2

,

(13)

where Ci is the estimated crowd count and Cgt
i is the

ground truth count of the i-th image. N is the number of

test images. Additionally, PSNR (Peak Signal-to-Noise Ra-

tio)3 and SSIM (Structural Similarity)4 [44] are utilized to

3https://en.wikipedia.org/wiki/Peak signal-to-noise ratio
4https://en.wikipedia.org/wiki/Structural similarity

measure the quality of density maps. For fair comparison,

similar to [17], bilinear interpolation is employed to resize

estimated density maps to the same size as input images.

4.2. Comparisons with State­of­the­art

Table 1 and 2 report the results of four challenging

datasets. As a summary, our method significantly im-

proves all baselines and outperforms the other state-of-the-

art methods. This result fully demonstrates the effectiveness

of our SPANet, which could provide accurate density esti-

mation on both dense and sparse crowd scenes, and can be

applied to all CNN-based crowd counting networks.

On ShanghaiTech dataset, our SPANet boosts MCNN,

CSRNet, SANet with relative MAE improvements of 9.5%,

8.5%, 11.3% on Part A, and 27.7%, 20.8%, 22.7% on

Part B. Noted that Part A is collected from the internet

while Part B is from the busy streets and has more spa-

tial constraints. Since our SPANet can fully utilize spa-

tial awareness, it brings more improvements on Part B. On

UCF CC 50, SPANet provides the relative MAE improve-

ments of 22.5%, 7.6%, 10.0% for the three baselines. Noted

that the improved MCNN is even comparable with other

state-of-the-art methods. It clearly shows that SPANet can

handle the extremely dense-crowd scenes. Similar to the

above two datasets, SPANet also achieves significant im-

provements on UCSD and WorldExpo’10, verifying the ef-

fectiveness of our method on the sparse-crowd scenes.

4.3. Ablation Studies

Sampling positions. We first evaluate the impact of differ-

ent starting positions when sampling patches for mask pool-

ing. The results are listed in Table 3. We find that starting

at the bottom is always better than the top, and the right

is also better than the left. The possible reason is that it

may be closely related to camera calibration. The results en-
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Table 2: Comparison with the state-of-the-art methods on World-

Expo’10 [4] dataset. Only MAE is computed for each scene and then

averaged to evaluate the overall performance.

Method S1 S2 S3 S4 S5 Avg.

Zhang et al. [48] 9.8 14.1 14.3 22.2 3.7 12.9

Huang et al. [10] 4.1 21.7 11.9 11.0 3.5 10.5

Switch-CNN [32] 4.4 15.7 10.0 11.0 5.9 9.4

SaCNN [49] 2.6 13.5 10.6 12.5 3.3 8.5

CP-CNN [39] 2.9 14.7 10.5 10.4 5.8 8.9

MCNN [52] 3.4 20.6 12.9 13.0 8.1 11.6

CSRNet [17] 2.9 11.5 8.6 16.6 3.4 8.6

SANet [3] 2.6 13.2 9.0 13.3 3.0 8.2

MCNN+SPANet 3.4 14.9 15.1 12.8 4.5 10.1

CSRNet+SPANet 2.6 11.1 8.9 13.5 3.3 7.9

SANet+SPANet 2.3 12.3 7.9 12.9 3.2 7.7

1 H/16 H/8 H/4 H/2
The Number of Branches

60

70

80

90

100

110

120

M
A

E

CSRNet
MCNN

SANet

1/4 1/2 1
The Size of Estimated Density Maps

90
92
94
96
98

100
102

M
A

E

Figure 4: Ablation studies on ShanghaiTech Part A [52]. The left shows

the branch number K vs. MAE, and the right illustrates the size of esti-

mated density maps vs. MAE, performed with MCNN.

Table 3: Ablation studies of patch sampling strategy, mask pooling strat-

egy, and losses on ShanghaiTech Part A dataset [52].

Configurations MAE ↓ MSE ↓

Center point 101.2 153.3

Top left corner 101.5 153.7

Bottom left corner 100.7 149.2

Top right corner 100.5 149.4

Bottom right corner 99.7 146.3

Different density map 100.3 147.4

Same density map 99.7 146.3

L2 110.2 173.2

Lr+Lmep 99.3 145.3

L2 + Lr 107.2 164.5

L2 + Lr + Lmep 99.7 146.3

Random 105.4 162.2

Grid Search 98.3 142.5

courage us to sample patches from the bottom right corner.

Noted that the differences between these sampling schemes

are quite small, which demonstrates the robustness of our

method. Additionally, we also present the comparison of

performing mask pooling on the same or different density

maps in each branch, which is already discussed in Section

3.2 and Eq. (4). As shown in Table 3, the results of two

strategies are similar. Due to the efficiency problem, we

directly pool patches from the same density map.

Different losses/weights. We turn to evaluate the effect of

different losses and weight schemes. As shown in Table 3,

adding the ranking loss only provides slight improvement,

while the significant improvement comes from the MEP

loss. Besides, there is no significant difference whether L2

is used. It demonstrates that our MEP loss can effectively

learn spatial awareness to boost crowd counting. We further

conduct experiments on two weight schemes: the random

weight and the grid search with step 0.1. As shown in Table

3, our method is not sensitive to the weights. Even the grid

search brings a very slight improvement.

Number of branches. We measure the performance of

SPANet with different branch numbers K. As illustrated in

Figure 4, the performance first improves but then drops with

the increasing number of K. This observation is not surpris-

ing. On one side, small K (e.g., K = 1) would involve large

bias error due to the large difference between two patches.

On the other side, large K (e.g., K = H
2

, where H is the

height of estimated density map) implies that the difference

of two patches in each branch is very small, which cannot

provide enough discrepancy for subregion generation. In

experiments, K is set to H
8

for MCNN/SANet and H
16

for

CSRNet, which is determined via cross validation.

Size of estimated density maps. We further validate the

effect of the size of estimated density maps. We add decon-

volutional layers on top of the MCNN to increase the size

of the estimated density maps. Eventually, two variants of

MCNN are obtained, whose estimated density maps are of

1/2 and the same size as the input images, respectively. As

shown in Figure 4, the performance is improved along with

the size increase of density maps. The results indicate that

predicting high-resolution density maps could bring consid-

erable improvement.

4.4. Studies on Estimated Density Maps

We now evaluate the estimated density maps to verify

whether our method can fully utilize spatial awareness. Ta-

ble 4 summarizes the results. Our SPANet can significantly

improve PSNR and SSIM across all baselines and datasets,

which indicates that the quality of the generated density

maps are significantly improved. To further verify that our

method can indeed learn spatial awareness, we showcase

the generated density maps of four examples from different

methods in Figure 5. These four examples typically contain

different crowd densities, occlusions, and scale changes.

We can observe that the baseline models are always affected

by the zero-mean noise, which leads to overestimation in

low-density areas. In contrast, zero-mean noise is effec-

tively suppressed in our SPANet. Besides, baseline models

normally have an insufficient estimation for high-density ar-

eas, while ours can obtain a more accurate estimation for

them. Noted that the ground truth itself is also generated

with center points of pedestrians’ heads, which inherently

contains inaccurate information. It means that our method

is still unable to produce the same density map to the ground

truth.

4.5. Studies on Learning Curves

Finally, we study the learning curves to further evalu-

ate our method. Figure 6 shows the training and valida-
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Figure 5: Comparisons of estimated density maps between baselines and our SPANet. ‘+’ indicates combining SPANet with baselines.
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Figure 6: Learning Curves. Mean absolute error (MAE) on training and validation sets, vs. the number of training epochs of MCNN [52], CSRNet [17]

and SANet [3] on ShanghaiTech Part A dataset [52].

Table 4: Density map quality comparison. Values on the left of ‘|’ are from original baselines, while values on the right of ‘|’ are results when integrating

with the proposed SPANet.

MCNN CSRNet SANet

Dataset PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

ShanghaiTech-A [52] 21.42 | 22.18 0.52 | 0.66 23.79 | 24.88 0.76 | 0.85 23.36 | 25.33 0.78 | 0.85

ShanghaiTech-B [52] 23.43 | 26.19 0.78 | 0.85 27.02 | 29.50 0.89 | 0.92 27.44 | 29.17 0.89 | 0.91

UCF CC 50 [11] 14.44 | 18.25 0.37 | 0.51 18.76 | 20.17 0.52 | 0.78 18.35 | 20.01 0.51 | 0.76

UCSD [48] 17.43 | 18.52 0.75 | 0.83 20.02 | 21.80 0.86 | 0.89 21.33 | 22.20 0.84 | 0.90

WorldExpo’10 [4] 23.53 | 25.97 0.76 | 0.85 26.94 | 29.05 0.92 | 0.93 26.22 | 28.54 0.90 | 0.92

tion mean absolute error (MAE) at every epoch on Shang-

haiTech Part A dataset. For better viewing, we smooth the

learning curves by exponential moving average (EMA) with

a smoothing factor α = 0.1. Compared with original re-

sults, baselines integrated with our SPANet exhibit lower

MAE on both training and testing set. Since the perfor-

mance on the training and testing set generally denotes the

fitting and generalization degree, this result demonstrates

the promising capability on both sides. In addition, it also

means that our method can significantly improve the stabil-

ity during model training.

5. Conclusion

In this paper we present a novel deep architecture called

SPatial Awareness Network (SPANet) for crowd counting,

which is able to capture the spatial variations by finding the

pixel-level subregion with high discrepancy to the ground

truth. It could be integrated into all CNN-based methods

and is end-to-end trainable. Experiments on four datasets

and three various networks fully demonstrate that it can sig-

nificantly improve all baselines and outperforms the state-

of-the-art methods. It provides the elegant views of effec-

tively using spatial awareness to improve crowd counting.

In future work we will study how to preserve spatial aware-

ness as much as possible in the ground truth generation.
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