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Abstract

Multi-scale context module and single-stage encoder-

decoder structure are commonly employed for semantic seg-

mentation. Multi-scale context module aggregates feature

responses from a large spatial extent, while the single-stage

encoder-decoder structure encodes the high-level semantic

information in the encoder path and recovers the boundary

information in the decoder path. In contrast, multi-stage

encoder-decoder networks have been widely used in hu-

man pose estimation and shown superior performance than

their single-stage counterpart. However, few efforts have

been attempted to bring this effective design to semantic

segmentation. In this work, we propose a Semantic Predic-

tion Guidance (SPG) module which learns to re-weight the

local features through the guidance from pixel-wise seman-

tic prediction. We find that by carefully re-weighting fea-

tures across stages, a two-stage encoder-decoder network

coupled with our proposed SPG module can significantly

outperform its one-stage counterpart with similar parame-

ters and computations. Finally, we report experimental re-

sults on the semantic segmentation benchmark Cityscapes,

in which our SPGNet attains 81.1% on the test set using

only ‘fine’ annotations.

1. Introduction

Semantic segmentation [21], as a step towards scene un-

derstanding [30,53,54,67], is a challenging problem in com-

puter vision. It refers to the task of assigning semantic la-

bels, such as person and sky, to every pixel within an im-

age. Recently, Deep Convolutional Neural Networks (DC-

NNs) [29, 31] have significantly improved the performance

of semantic segmentation systems.

In particular, DCNNs, deployed in a fully convolutional

manner [39,48], have attained remarkable results on several

semantic segmentation benchmarks [14,16,75]. We observe

two key design components shared among state-of-the-art

semantic segmentation systems. First, multi-scale context

module, exploiting the large spatial information, enriches
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Figure 1. Three different frameworks for re-weighting local fea-

tures. Dotted square areas with lighter color in (a) and (b) denote

average pooling operations.

the local features. Typical examples include DeepLab [7]

which adopts several parallel atrous convolutions [22, 43]

with different rates and PSPNet [73] which performs pool-

ing operations at different grid scales. Recently, SENets

[25] and GENets [24] employ the ‘squeeze-and-excite’

(Figure 1 (a)) or more general ‘gather-and-excite’ frame-

work (Figure 1 (b)) and obtain remarkable results on image

classification task. Motivated by this, we propose a simple

yet effective attention module, called Semantic Prediction

Guidance (SPG), which learns to re-weight the local fea-
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ture map values via the guidance from pixel-wise semantic

prediction. Unlike the ‘gather-and-excite’ module [24, 25]

(where context information is gathered from a large spatial

extent and local features are excited accordingly), our SPG

module adopts the ‘supervise-and-excite’ framework (Fig-

ure 1 (c)). Specifically, we inject the semantic supervision

to the feature maps followed by a simple 1× 1 convolution

with sigmoid activation function (i.e., ‘supervise’ step). The

resulting feature maps, called “Guided Attention”, are used

as a guidance to re-weight the other transformed feature

maps correspondingly (i.e., ‘excite’ step). We further add

an ‘identity’ mapping in the module, similar to the residual

block [20]. Additionally, our learned “Guided Attention”

allows us to visually explain the “re-weighting” mechanism

in our SPG module.

Another important design component is the encoder-

decoder structure, where high-level semantic information is

captured in the encoder path while the detailed low-level

boundary information is recovered in the decoder path. The

systems [1, 3, 11, 35, 42, 44–46, 60, 63, 72], employing the

single-stage encoder-decoder structure (i.e., the encoder-

decoder structure is stacked only once), have demonstrated

outstanding performance on several semantic segmentation

benchmarks. On the other hand, the multi-stage encoder-

decoder models [5, 27, 32, 40, 41, 59, 66], also known as

stacked hourglass networks [41], refine the keypoint esti-

mation iteratively by propagating information across stages

for the task of human pose estimation. Interestingly, we

observe that the multi-stage encoder-decoder structure is

seldom explored in the context of semantic segmentation,

except [19, 49]. In this work, we revisit the multi-stage

encoder-decoder networks on the Cityscapes dataset [14].

We find that by carefully selecting features across stages, a

two-stage encoder-decoder network coupled with our pro-

posed SPG module can significantly outperform its one-

stage counterpart with similar parameters and computa-

tions.

On Cityscapes test set [14], our proposed SPGNet out-

performs the strong baseline DenseASPP [64] when only

exploiting the ‘fine’ annotations. Our overall mIoU is

slightly behind the concurrent work DANet [18] but de-

tailed class-wise mIoU reveals that our model is better than

DANet in 14 out of 19 semantic classes. Furthermore, our

SPGNet requires only 22.7% computation of DANet [18].

To summarize our main contributions:

• We propose a simple yet effective attention mod-

ule, called SPG, which adopts a ‘supervise-and-excite’

framework.

• We explore multi-stage encoder-decoder networks on

semantic segmentation task. Incorporating our pro-

posed SPG module to the multi-stage encoder-decoder

networks further improves the performance.

• We demonstrate the effectiveness of our SPGNet on

the challenging Cityscapes dataset. Our model outper-

forms the strong baseline DenseASPP [64], and is bet-

ter than DANet [18] in 14 out of 19 semantic classes.

Our SPGNet strikes a better accuracy/speed trade-off,

requiring only 22.7% computation of DANet.

• We provide detailed ablation studies along with the

visualization of our learned attention maps. We also

discuss the effectiveness of employing multi-stage

encoder-decoder networks on semantic segmentation.

2. Related Works

Semantic Segmentation: Most state-of-the-art semantic

segmentation models are based on FCN [39, 48]. The de-

tailed object boundary information is usually missing due to

the pooling or convolutions with striding operations within

the network. To alleviate the problem, one could apply the

atrous convolution [7, 22, 43, 48] to extract dense feature

maps. However, it is computationally expensive to extract

output feature maps that are 8 or even 4 times smaller than

the input resolution using state-of-the-art network back-

bones [20, 29, 50, 52]. On the other hand, the encoder-

decoder structures [1, 3, 11, 19, 35, 42, 44–46, 60, 63, 72]

capture the context information in the encoder path and

recover high resolution features in the decoder path. Ad-

ditionally, contextual information has also been explored.

ParseNet [38] exploits the global context information, while

PSPNet [73] uses spatial pyramid pooling at several grid

scales. DeepLab [8, 9, 37, 65] uses several parallel atrous

convolution with different rates in the Atrous Spatial Pyra-

mid Pooling module, while DPC [6] applies neural archi-

tecture search [76] for the context module. Finally, our pro-

posed Semantic Prediction Guidance (SPG) bears a simi-

larity to the Layer Cascade method [33] which treats each

pixel differently. Instead of classifying easy pixels in the

early stages within the network, our SPG module weights

each pixel according to the predictions in the first stage of

our stacked network.

Multi-Stage Networks: Multi-stage networks [5,27,32,40,

41, 51, 57, 59, 66] have been widely used and explored in

human pose estimation. Multi-stage networks aim to itera-

tively refine estimation. To maximally utilize the capacity

of each stage, CPM [59] and Stacked Hourglass [41] prop-

agate not only features to the next stage, but also remap

predicted heatmaps into feature space by a 1x1 convolu-

tion and concatenate with feature maps. MSPN [32] further

optimizes feature flow across stages by propagating inter-

mediate features of encoder-decoder of previous stage to

the next stage. MSPN [32] demonstrates superior perfor-

mance over single stage counterpart with similar parameters

and computations. On the other hand, Stacked Deconvolu-

tional Network [19] uses multiple deconvolution networks
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Figure 2. The overall structure of SPGNet. Only two stages are shown for simplicity and it can be easily generalized to more stages. (a)

Our encoder-decoder design. (b) Upsample module. (c) Cross stage feature aggregation [32]. GAP: global average pooling [38]. Residual

Block: same bottleneck module used in ResNet [20]. Upsample: bilinear upsampling by x2. SPG: semantic prediction guidance module.

for semantic segmentation. However, it only passes features

across stages and neglects predictions of every stage. Ad-

ditionally, Zhou et al. [75] propose a cascade segmentation

module. In this work, we find predictions can be served as a

special attention to propagate useful features across stages.

Attention Module: Attention mechanism has been widely

used recently in multiple computer vision tasks. Chen et

al. [10] learn an attention module to merge multi-scale fea-

tures. Kong and Fowlkes [28] propose a gating module

that adaptively selects features pooled with different field

sizes. Recently, the self-attention module [55] has been

explored by several works [13, 18, 23, 26, 58] for com-

puter vision tasks. In contrast, our proposed SPG mod-

ule is more similar to the other works that employ the

‘squeeze-and-excite’ or ‘gather-and-excite’ framework. In

particular, Squeeze-and-Excitation Networks (SENets) [25]

squeeze the features across spatial dimensions to aggre-

gate the information for re-weighting feature channels. Hu

et al. [24] generalize SENets with ‘gather-and-excite’ op-

erations where long-range spatial information is gathered

to re-weight (or ‘excite’) the local features. Motivated by

this, our proposed SPG module employs the ‘supervise-and-

excite’ framework, where our local features are guided by

the semantic supervision. Additionally, EncNet [70] also

adds supervision to their global feature. However, our su-

pervision is pixel-level instead of image-level.

3. Methods

3.1. Overall Architecture

Figure 2 shows our proposed SPGNet, which consists

of multiple stages and each stage is based on an encoder-

decoder architecture: encoder produces dense feature maps

at multiple scales and also an image-level feature vector us-

ing global average pooling (GAP). Decoder starts with this

feature vector and gradually recovers spatial resolution by

combining corresponding encoder feature map using an up-

sample module, described in Sec 3.3.

Our SPGNet stacks multiple stages, where earlier de-

coder output is fed into a semantic prediction guidance

(SPG) module (detailed in Sec 3.4) to generate input fea-

ture for the next stage. In addition, we employ Cross Stage

Feature Aggregation [32] to enhance latter stage encoders

by taking advantage of earlier stage encoder / decoder fea-

tures, as shown in Figure 2(c). The decoder output in the

final stage is bilinearly upsampled to input image resolu-

tion, generating per-pixel semantic prediction results.

The multi-stage design of SPGNet is inspired by Stacked

Hourglass [41] for human pose estimation. Our method dif-

fers from Stacked Hourglass in 1) we carefully design the

encoder-decoder architecture in each stage instead of using

a symmetric hourglass network, and 2) latter stage input is

generated from SPG module rather than simply passing the

features combined with predictions from previous stage.
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Figure 3. Our Semantic Prediction Guidance (SPG) module.

3.2. Encoder / Decoder Design

Hourglass networks [41] assign equal computation to

both encoder and decoder, making it unavailable to use

pre-trained weights on ImageNet [15]. In contrast, Feature

Pyramid Networks (FPN) [36] use well-designed classifica-

tion networks for encoder and design a simple decoder con-

sisting of only nearest-neighbor interpolations to upsample

decoder feature maps. Our encoder-decoder design princi-

ples follow FPN (e.g., all the feature maps in the decoder

contain 256 channels), but we employ two more compo-

nents to make it more efficient and effective. First, we incor-

porate a global average pooling [38] after the output of en-

coder to generate the 1×1 image-level features followed by

another 1 × 1 convolution to transform its feature channels

to 256. Second, instead of using a single nearest-neighbor

interpolation, we design an efficient upsample module, as

described in the next section.

3.3. Upsample module

As illustrated in Figure 2(a, b), our decoder adopts up-

sample module to recover feature map resolution step-by-

step. Specifically, each module in the decoder takes two in-

put feature maps, one from encoder and one from previous

layer output. The input from encoder is first transformed by

a residual block to reduce the dimension to output channel

of the decoder. Then, the input from previous layer out-

put is bilinear upsampled and added to the transformed en-

coder output. Instead of passing this merged feature directly

to next upsample module, we further add another residual

block to better fuse features from two different sources.

3.4. Semantic Prediction Guidance

Using contextual information to re-weight feature chan-

nels [24,25] has brought significant improvements to image

classification task. This process usually includes a ‘gather’

step which collects information over a large spatial region.

In contrast, in our multi-stage encoder-decoder network, the

output features generated from each stage already contain

information from multiple scales. This inspires us to de-

sign a simple yet effective SPG module (Figure 3) which

treats the features from earlier stage as ‘gathered’ informa-

tion. Specifically, the previous stage decoder output feature

xd ∈ R
H×W×D is first fed into a 1× 1 convolution to pro-

duce per-class logits xl ∈ R
H×W×C , where H and W are

decoder output height and width, D is the number of chan-

nels used in the decoder and C is the number of semantic

classes in the dataset. We then produce a per-pixel, per-

channel Guided Attention mask m ∈ R
H×W×D from xl via

a simple 1× 1 convolution followed by sigmoid activation.

This Guided Attention will be element-wise multiplied to a

transformed decoder feature map, generated from 1×1 con-

volution on top of xd, resulting in an attention-augmented

feature map. Similar to residual block, this feature map is

added back to decoder output feature xd, followed by an-

other 1× 1 convolution to produce input feature to the next

stage encoder. During training, we minimize the loss of

last-stage semantic prediction and per-class logits xl in all

previous stages.

Our proposed SPG module differs from SENets [25] and

GENets [24] on using supervised semantic predictions to

guide the ‘excite’ step. We further verified having explicit

supervision improves model performance. The benefit of

our proposed SPG module are twofold: the ‘gather’ step

is implicitly folded into the encoder-decoder architecture,

which allows SPG module to be computationally efficient

(about 1% increase in FLOPs) and have a small memory

footprint (2.3% higher peak memory usage). Meanwhile,

using semantic prediction makes SPG module more ex-

plainable. See Section 4.5 for visualization.

4. Experiments

4.1. Dataset

We perform experiments on the Cityscapes dataset

[14], which contains 19 classes. There are 5,000 images

with high quality annotation (called “fine”), divided into

2,975/500/1,525 images for training, validation and testing.

We only use the “fine” annotation in this paper.

4.2. Implementation Details

Networks. We employ ResNet [20] in the encoder mod-

ule. The “Stem” in Figure 2 consists of a 7 × 7 convolu-

tion with stride = 2 followed by a 3 × 3 max pooling with

stride = 2. We replace BatchNorm layers with synchro-

nized Inplace-ABN [47], and adopt bilinear interpolation in

all the upsampling operations.

Training settings. We use mini-batch SGD momentum op-

timizer with batch size 8, initial learning rate 0.01, momen-

tum 0.9 and weight decay 0.0001. Following prior works

[38], we use the “poly” learning rate schedule where the
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Method Backbone mIoU (%) #Params #FLOPs†

RefineNet [35] ResNet-101 73.6 - -

DUC-HDC [56] ResNet-101 77.6 65.0M 2234.3B

SAC [71] ResNet-101 78.1 - -

DepthSeg [28] ResNet-101 78.2 - -

PSPNet [73] ResNet-101 78.4 65.7M 2117.3B

BiSeNet [68] ResNet-101 78.9 51.6M 429.5B

DFN [69] ResNet-101 79.3 112.0M 2239.6B

PSANet [74] ResNet-101 80.1 - -

DenseASPP [64] DenseNet-161 80.6 35.4M 1240.1B

DANet [18] ResNet-101 81.5 66.5M 2878.9B

SPGNet (Ours) 2× ResNet-50 81.1 59.8M 654.8B

†
#FLOPs take all matrix multiplication into account.

Table 1. Comparison to state-of-the-art on Cityscapes test set.

learning rate is scaled by (1 − iter
itermax

)0.9. For data augmen-

tation, we employ random scale between [0.5, 2.0] with a

step size of 0.25, random flip and random crop. We train

the model for 80, 000 iterations on “train”set for ablation

study. To evaluate our model on the “test” set, we train the

model on the concatenation of “train” and “val” set.

4.3. Comparison with StateoftheArts

In Table 1, we report our Cityscape “test” set result. We

only use “fine” annotations and thus compare with the other

state-of-art models that adopt the same setting in the ta-

ble. Similar to other models, we use the multi-scale in-

puts (scales = {0.75, 1.0, 1.25, 1.5, 1.75, 2.0}) during infer-

ence. We also report the model parameters and computation

FLOPs (w.r.t., a single 1024× 2048 input size).

Our best SPGNet model variant employs a 2-stage

encoder-decoder structures with ResNet-50 as encoder

backbone and decoder channels = 256. Our model out-

performs most top-performing approaches on Cityscapes

with much less computation. Notably, most state-of-the-

art methods are mainly based on systems using atrous con-

volutions to preserve feature maps resolution, which how-

ever requires a large amount of computation (as indicated by

#FLOPs in Table 1). On the contrary, our proposed SPGNet,

built on top of an efficient encoder-decoder structure, strikes

a better trade-off between accuracy and speed.

To be concrete, the computation of our SPGNet is almost

half of DenseASPP, the previous published state-of-the-art

model using only fine annotations, but our performance is

0.5% mIoU better. We also compare our SPGNet with an-

other concurrent work DANet [18]. Our computation is

around 22.7% of DANet with only 0.4 mIoU degradation.

We further compare per-class results with the top-2 per-

forming approaches in Table 2. Surprisingly, our SPGNet

outperforms DenseASPP in 15 out of 19 classes and DANet

in 14 out of 19 classes. The main degradation of our over-

all mIoU comes from the “truck” class which is 10.7 IoU

worse than DenseASPP and 9.5 IoU worse than DANet. We

think it is because there are only few “truck” annotations in

Cityscapes and our SPGNet requires supervision for learn-

ing the guided attention.

4.4. Ablation Studies

Here, we provide ablation studies on Cityscapes val set.

Effect of SPG module. We perform ablation studies on

the SPG design in Table 3. The baseline is a simple 2-

stage encoder-decoder network by directly passing the 1st

stage decoder features to the 2nd stage encoder. This

baseline model uses the Cross-Stage Feature Aggregation

(CSFA) [32] which is slightly better than the case with-

out CSFA by 0.18%. We first verify whether passing se-

mantic prediction together with the decoder features to next

stage is helpful. We transform the predictions from the 1st

stage decoder output by applying a 1 × 1 convolution. The

sum of the transformed predictions and the 1st stage de-

coder output is passed to the next stage (denoted as SPG

(sum)). It achieves 76.96% mIoU which is 0.65% mIoU

better than the baseline. Additionally, our proposed SPG

module uses the transformed semantic predictions to ‘ex-

cite’ the decoder features. We explore two ways for exci-

tation: one is by applying softmax on the spatial dimen-

sion H × W (SPG (softmax)) and the other is using sig-

moid (SPG(sigmoid)). The SPG (softmax) scheme im-

proves the baseline by 0.86% mIoU while the SPG (sig-

moid) scheme achieves the best mIoU of 77.67% (1.36%
mIoU better than the baseline). Comparing results of SPG

(sigmoid) scheme (77.67% mIoU) with SPG (sum) scheme

(76.96% mIoU), it shows the importance of using ‘Excite’

to re-weight features. Finally, we investigate the effect of

adding the identity mapping path and the supervision in

SPG module. Dropping the identity mapping path in Fig-

ure 3 degrades the performance from 77.67% to 77.24%,

while removing the supervision on learning the guided at-

tention decreases the performance to 77.12% in which our

SPG module degenerates to a special case of ‘gather-and-

excite’ (where the features are ‘gathered‘ from the 1st-stage

decoder output).

SPG module vs SE/GE module. To demonstrate the gain

of SPG module comes from supervision, we compare SPG

module with its unsupervised counterpart, i.e. SE [25] and

GE [24] modules. Using SE and GE modules achieves

77.09 mIoU and 77.22 mIoU respectively, both results

are better than the baseline 76.31 mIoU and using GE is

slightly better than SE which is consistent with the find-

ings in [24]. However, they are still worse than using our

proposed supervise-and-excite (i.e. SGP with 77.67 mIoU).

The additional gain mainly comes from adding supervision

in supervise-and-excite.

More stages. We experiment the effect of using more stages

and the results are shown in Table 5. Similar to the situation

in pose estimation that performance gets saturated as the

number of stages increases. But in our case the performance
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DenseASPP [64] 80.6 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8

DANet [18] 81.5 98.6 86.1 93.5 56.1 63.3 69.7 77.3 81.3 93.9 72.9 95.7 87.3 72.9 96.2 76.8 89.4 86.5 72.2 78.2

SPGNet (ours) 81.1 98.8 87.6 93.8 56.5 61.9 71.9 80.0 82.1 94.1 73.5 96.1 88.7 74.9 96.5 67.3 84.8 81.8 71.1 79.4

Table 2. Per-class results on Cityscapes test set. SPGNet outperforms existing top approaches in 13 out of 19 classes.

#Stage SPG Id. Sup. mIoU (%) #Params #FLOPs

1 - - - 74.48 11.7M 107.6B

2 ✗ - - 76.31 23.9M 215.5B

2 ✓(sum) ✓ ✓ 76.96 23.9M 218.0B

2 ✓(softmax) ✓ ✓ 77.17 23.9M 218.0B

2 ✓(sigmoid) ✓ ✓ 77.67 23.9M 218.0B

2 ✓(sigmoid) ✗ ✓ 77.24 23.9M 218.0B

2 ✓(sigmoid) ✓ ✗ 77.12 23.9M 218.0B

Table 3. Cityscapes ablation studies of proposed SPG on validation

set. All models use ResNet-18 in encoder. Id.: Adding the identity

mapping path in SPG. Sup.: Adding the semantic supervision in

SPG. Employing sigmoid activation, identity mapping path, and

supervision in our SPG with 2 stages attains the best performance.

Module Supervise mIoU (%)

SE [25] ✗ 77.09
GE [24] ✗ 77.22

SPG (Ours) ✓ 77.67

Table 4. Cityscapes val ablation studies on Supervise-and-Excite.

All models use ResNet-18 in encoder. Our proposed Supervise-

and-Excite has advantage over Squeeze/Gather-and-Excite.

#Stage mIoU (%) #Params #FLOPs

1 74.48 11.7M 107.6B

2 77.67 23.9M 218.0B

3 77.66 36.2M 328.5B

Table 5. Cityscapes ablation studies on validation set. All models

use ResNet-18 in encoder. SPG with 2 stages is the optimal choice.

saturates very quickly and achieves optimal with 2 stages.

It is possible that by carefully balancing the loss weights

among stages the performance might be better for models

with more than 2 stages. However, for simplicity, we focus

on models with only 2 stages in this paper.

Effect of encoder combination. Our two-stage SPGNet

could potentially employ two different backbones in each

encoder module. As shown in Table 6, although employing

ResNet-18+ResNet-50 (i.e., ResNet-18 in the 1st encoder

and ResNet-50 in the 2nd encoder) and ResNet-50+ResNet-

18 have similar parameters and computation, using deeper

model in the first stage outperforms the other one. We think

Encoder combination mIoU (%) #Params #FLOPs

ResNet-18 + ResNet-18 77.67 23.9M 218.0B

ResNet-18 + ResNet-50 78.34 38.4M 336.0B

ResNet-50 + ResNet-18 78.83 38.0M 329.9B

ResNet-50 + ResNet-50 79.81 55.6M 467.6B

Table 6. Cityscapes val ablation studies of encoder combination

(ResNet-18 and ResNet-50). In our two-stage SPGNet, it is effec-

tive to employ a deeper backbone in the 1st encoder module.

Backbone #Stage Channel mIoU (%) #Params #FLOPs

ResNet-18 1 128 74.48 11.7M 107.6B

ResNet-50 1 128 77.80 24.7M 212.9B

ResNet-101 1 128 78.72 43.7M 371.7B

ResNet-152 1 128 78.33 59.4M 530.1B

ResNet-18 2 128 77.67 23.9M 218.0B

ResNet-50 2 128 79.81 55.6M 467.6B

ResNet-101 2 128 80.04 93.5M 785.3B

Table 7. Cityscapes val ablation studies on encoder depth. Using

deeper encoder in general has better performance.

Backbone #Stage Channel OHEM mIoU (%)

ResNet-50 2 128 ✗ 79.81
ResNet-50 2 128 ✓ 80.10

ResNet-101 2 128 ✗ 80.04
ResNet-101 2 128 ✓ 80.85

Table 8. Cityscapes val ablation studies on On-line Hard Example

Mining (OHEM). SPG benefits from OHEM.

it is crucial to “encode” the features in the early stage with a

stronger backbone. Adopting R-50+R-50 achieves the best

performance. For simplicity, we only adopt the same net-

work backbones in all the encoder modules in this paper.

Encoder depth. In Table 7, we study the effect of adopt-

ing different backbones in the encoder module(s). We ob-

serve that using deeper encoder improves the result and us-

ing ResNet-50 in a 2-stage SPGNet achieves a good trade-

off between #Params, #FLOPs and performance.

Hard example mining. We study the effects of on-line hard

example (or pixel) mining (OHEM) [4, 61, 65] in Table 8.

We apply OHEM to all stages (i.e., the decoder output in

each stage) in our SPGNet. As shown in the table, using
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Backbone Channel mIoU (%) #Params #FLOPs

ResNet-50 128 80.10 55.6M 467.6B

ResNet-50 256 80.91 59.8M 654.8B

ResNet-101 128 80.85 93.5M 785.3B

ResNet-101 256 80.42 97.8M 972.4B

Table 9. Cityscapes val ablation studies on decoder channel. All

models are #Stage=2 and use OHEM in training.

C

256

256

L2 norm

Guided Attention

Person

Figure 4. Method to visualize guided attention.

OHEM consistently improves the performance.

Decoder channels. We experiment on the effect of decoder

channels in Table 9. Employing ResNet-50 as the encoder

backbone and decoder channels = 256 achieves the best

validation mIoU.

Flip and multi-scale test. We further add flip and multi-

scale test to the best model (ResNet-50 with 2 stages, in Ta-

ble 9). By adding scales = {0.75, 1.0, 1.25, 1.5, 1.75, 2.0},

the performance further improves from 80.91 to 81.86.

4.5. Visualization of Guided Attention

In this section, we visualize the learned Guided Atten-

tion in our best model variant (a stack of two encoder-

decoder structures with ResNet-50 as encoder backbone).

The Guided Attention maps (with 256 channels) is obtained

by applying a 1 × 1 convolution with sigmoid activation to

the prediction in the 1st stage decoder output. Therefore, we

have a convolution weight matrix with size C × 256 (Fig-

ure 4 top-right), where C is the number of semantic classes

on the dataset. To visualize the attention for class c, we

would like to know which channels among the 256 chan-

nels in the Guided Attention map that the class c contributes

most. Therefore, for class c, we extract the corresponding

1× 256 convolution weight vector (Figure 4 red row in ma-

trix) from the C × 256 matrix. In the vector, we then select

the indexes of the top 15 largest weights (Figure 4 yellow

elements in vector), which is used to index the correspond-

ing channels in the Guided Attention maps (Figure 4 yellow

slices from the purple Guided Attention maps), i.e., those

channels in the Guided Attention maps have the largest re-

sponses for the class c. Then, we visualize the attention by

taking l2 norm of the selected channels.

General classes. We visualize the learned Guided Atten-

tion for four representative classes in Figure 5. ‘Car’ and

‘Person’ are most common ‘thing’ classes in the Cityscapes

Method Extra data Multi-scale mIoU (%)

Liang et al. [34] ✗ ✓ 63.57

Xia et al. [62] ✓ ✓ 64.39

Fang et al. [17] ✓ ✓ 67.60

DPC [6] ✗ ✓ 71.34

SPGNet (Ours) ✗ ✗ 67.23

SPGNet (Ours) ✗ ✓ 68.36

Table 10. Pascal Person-Part validation set performance.

dataset. ‘Building’ is a common ‘stuff’ class and ‘Pole’ is

a common thin ‘stuff’ in Cityscapes. The activations are

normalized between 0 (blue color) and 1 (red color).

From Figure 5, we observe several interesting behaviors:

• The guided attention learns localization of objects.

The activations for ‘thing’ align quite well with the ac-

tual position of those objects.

• Guided attention focus on object co-occurrence. For

example, ‘Car’ and ‘Person’ objects are usually on the

road and the attentions for these classes learn to focus

on both corresponding instances and road.

• Guided attention can find small objects. For example,

there are multiple thin ‘Poles’ in the third row of Fig-

ure 5 and guided attention can find most of them.

Semantically similar classes. We find guided attention is

also capable of differentiating semantically similar classes.

In Figure 6, we visualize the attention for two semanti-

cally similar classes: ‘Person’ and ‘Rider’. The attention

for ‘Rider’ mainly fires for the rider instance on the right,

and it does not fire for the two person instances on the left

of the image. Our guided attention makes the features,

passed to the next stage, more discriminative to semanti-

cally similar classes through the injected supervision, al-

lowing our SPGNet to achieve better results on both ‘Per-

son’ and ‘Rider’ classes than other state-of-the-art models,

as shown in Table. 2.

Failure cases. Our SPGNet confuses among ‘Truck’, ‘Bus’

and ‘Train’. We visualize the attentions for these classes

in Figure 7. We observe that the Guided Attention maps

for these classes usually activate together on the same ob-

ject. It potentially produces features that are less discrimi-

native to those classes, resulting in our worse performance

on ‘Truck’, ‘Bus’ and ‘Train’, as shown in Table. 2.

4.6. Generalization to Other Datasets

To demonstrate that our model can be generalized to

other datasets, we perform more experiments on the PAS-

CAL VOC 2012 [16] and PASCAL Person-Part [12]. For

both datasets, we follow the settings in [11] to train the

model with a crop size of 513 × 513, batch size of 28 for

30,000 iterations.
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Image Prediction Car Person Building Pole

Figure 5. Visualization of guided attention for 4 general classes. Guided attention focuses on the boundary of co-occurred objects/things.

Image Prediction Person Rider

Figure 6. Visualization of guided attention for Person/Rider. Guided attention is capable of differentiating semantically similar classes.

Image Prediction Truck Bus Train

Figure 7. Visualization of guided attention for Truck/Bus/Train. Our failure cases where guided attention confuses among Truck/Bus/Train.

PASCAL VOC 2012: The SPGNet with a stack of

2 ResNet-50 achieves 77.33 mIoU. The performance of

SPGNet is comparable with the current state-of-the-art

ResNet-101 DeepLabV3+ [11] which achieves 77.37 mIoU

with encoder stride=32 for a fair comparison.

PASCAL Person-Part: Table 10 shows comparison with

state-of-the-art results on Pascal Person-Part. Our SPGNet

with a stack of 2 ResNet-50 achieves 67.23 mIoU with a

single scale input, and 68.36 mIoU with multi-scale inputs.

Note that our SPGNet does not require extra MPII training

data [2], as used in [17, 62].

5. Conclusion

We have proposed the SPGNet which demonstrates

state-of-the-art performance for semantic segmentation on

Cityscapes. Our proposed SPG module employs the

‘supervise-and-excite’ framework, where the local features

are reweighted via the guidance from semantic prediction.

The Guided Attention maps within the SPG module al-

lows us to visually interpret the corresponding reweight-

ing mechanism. Our experimental results show that a two-

stage encoder-decoder network paired with our SPG mod-

ule can significantly outperform its one-stage counterpart

with similar parameters and computations. Finally, we

plan to explore a more computationally efficient encoder-

decoder structure for semantic segmentation in the future.
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and Peter Kontschieder for the valuable discussion about

the global pooling kernel size.

5225



References

[1] Md Amirul Islam, Mrigank Rochan, Neil DB Bruce, and

Yang Wang. Gated feedback refinement network for dense

image labeling. In CVPR, 2017.

[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark

and state of the art analysis. In CVPR, 2014.

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE TPAMI, 2017.
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