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Abstract

In this paper, we propose a novel on-line visual track-

ing framework based on the Siamese matching network and

meta-learner network, which run at real-time speeds. Con-

ventional deep convolutional feature-based discriminative

visual tracking algorithms require continuous re-training of

classifiers or correlation filters, which involve solving com-

plex optimization tasks to adapt to the new appearance of

a target object. To alleviate this complex process, our pro-

posed algorithm incorporates and utilizes a meta-learner

network to provide the matching network with new appear-

ance information of the target objects by adding target-

aware feature space. The parameters for the target-specific

feature space are provided instantly from a single forward-

pass of the meta-learner network. By eliminating the ne-

cessity of continuously solving complex optimization tasks

in the course of tracking, experimental results demonstrate

that our algorithm performs at a real-time speed while

maintaining competitive performance among other state-of-

the-art tracking algorithms.

1. Introduction

Visual object tracking is one of the fundamental and

practical problems among the fields of computer vision re-

search, and it has seen applications in automated surveil-

lance, image stabilization, robotics and more. Given the

initial bounding box annotation of an object, visual track-

ing algorithms aim to track the specified object throughout

the subsequent part of the video without losing the object

under various circumstances such as illumination change,

blur, deformation, fast motion, and occlusion.

Recently, with the increasing use of deep learning and

convolutional neural networks (CNN) [27] in computer vi-

sion applications for their rich representation power and

generalization capabilities [26, 40, 43], there have been

numerous studies on utilizing the rich and general fea-

ture representation of the CNNs for visual tracking task

[50, 31, 36, 48, 45]. Most algorithms incorporate the deep
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Figure 1: Motivation of the proposed visual tracker. Our

framework incorporates a meta-learner network along with

a matching network. The meta-learner network receives

meta information from the matching network and provides

the matching network with the adaptive target-specific fea-

ture space needed for robust matching and tracking.

convolutional features used in object recognition systems

[26, 43, 40]. On top of these feature representations, addi-

tional classifiers or correlation filters are trained for on-line

adaptation to the target object [36, 21, 48, 31, 9, 30, 7, 56].

While these methods were successful in obtaining

high performance metrics in well-known benchmarks and

datasets [4, 51] using deep representations, the majority of

these algorithms were not designed as an integrated struc-

ture, where two different systems (i.e. deep feature network

system and target classifier systems) are built and trained

separately, not being closely associated. This causes sev-

eral problems when the framework is naively applied to the

problem of visual tracking, where the classifier system is in

constant need of being updated in order to adapt to the ap-

pearance changes of the target object, while the number of

positive samples are highly limited.

Since an update operation requires solving complex op-

timization problems for a given objective function using

methods such as stochastic gradient descent (SGD) [36],
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Lagrange multipliers [21], and ridge regression [21, 9, 7],

most tracking algorithms with deep representations run at

low speeds under 20 fps, thus making real-time applica-

tions unrealizable. Moreover, since the updates are often

achieved by utilizing a handful of target appearance tem-

plates obtained in the course of tracking, while this strategy

is inevitable, classifiers are prone to overfitting and losing

generalization capabilities due to insufficient positive train-

ing samples. To deal with this prevalent overfitting prob-

lem, most algorithms incorporate a hand-crafted regulariza-

tion term with a training hyper-parameter tuning scheme to

achieve better results.

Our approach tackles the aforementioned problems by

building a visual tracking system incorporating a Siamese

matching network for target search and a meta-learner net-

work for adaptive feature space update. We use a fully-

convolutional Siamese network structure analogous to [2]

for searching the target object in a given frame, where

target search can be done fast and efficiently using the

cross-correlation operations between feature maps. For the

meta-learner network, we propose a parameter prediction

network inspired by recent advances in the meta learning

methodology for few-shot learning problems [35, 47, 14].

The proposed meta-learner network is trained to provide

the matching network with additional convolutional ker-

nels and channel attention information so that the feature

space of the matching network can be modified adaptively

to adopt new appearance templates obtained in the course

of tracking without overfitting. The meta-learner network

only sees the gradients from the last layer of the match-

ing network, given new training samples for the appear-

ance. We also employ a novel training scheme for the meta-

learner network to maintain the generalization capability of

the feature space by preventing the meta-learner network

from generating new parameters that cause overfitting of the

matching network. By incorporating our meta-learner net-

work, the target-specific feature space can be constructed

instantly with a single forward pass without any iterative

computation for optimization and is free from innate overfit-

ting, improving the performance of the tracking algorithm.

Fig.1 illustrates the motivation of the proposed visual track-

ing algorithm. We show the effectiveness of our method

by showing consistent performance gains in 5 different vi-

sual tracking datasets [51, 12, 29, 33, 4] while maintaining

a real-time speed of 48 fps.

2. Related Work

General visual tracking approaches: Conventional

tracking algorithms can be largely grouped into two ap-

proaches. One approach builds a generative appearance

model of the target based on previously observed examples.

This generative model can be used to find the target in the

upcoming frames by finding the region that can be best de-

scribed by the model, where sparse representation and lin-

ear subspace representation is often utilized [41, 54, 55, 32].

The other approach aims to build a discriminative classifier

to distinguish the target region from the background region.

This discriminative classifier can be used to find the target

region in the upcoming frames by solving a binary classifi-

cation problem [20, 22, 8, 53, 17, 23]. Recently, correlation

filters have gained great popularity among the visual track-

ing methods since the seminal works of [3] and [20] due to

their simplicity and computational efficiency in the Fourier

frequency domain. Many new approaches have been pro-

posed based on the correlation filter learning framework

such as color attribute features [10], using multi-resolution

feature maps [38, 9], accurate scale estimation [6], spatial

regularization [6], and factorized convolution operators [5].

Visual tracking methods using deep representations:

With the growing popularity of the application of deep con-

volutional networks to a wide range of computer vision

tasks, many novel visual tracking algorithms make use of

the powerful representation capabilities of the convolutional

neural networks (CNN). Starting with [50], where the en-

coder representation of the denoising autoencoder was used,

[36] used feature representations of the VGG-M network

[43] and [48] also used VGG feature maps. Many correla-

tion filter-based tracking algorithms also utilize the power-

ful representation capacity of the CNN by training the corre-

lation filters on the feature maps of the network. Recent ap-

proaches include hierarchical correlation filters [31], adap-

tive hedging of correlation filters [38], continuous convolu-

tional operators [9], sequential training of features [49], and

spatial regularization [7]. Other than correlation filter-based

algorithms, approaches to design an end-to-end framework

for visual tracking have recently emerged. They employ the

two-flow Siamese architecture networks commonly used in

stereo matching [52] and patch-matching [16] problems.

[45] and [19] trained a Siamese network to learn the two-

patch similarity function that shares the convolutional rep-

resentation. [2] proposed a more end-to-end approach to

visual tracking where the Siamese network can localize an

exemplar patch inside a search patch. They use a fully

convolutional architecture that adopts a cross-correlation

layer which significantly lowers the computational com-

plexity. Based on the framework of [2], recent approaches

incorporate triplet loss [11], region proposal networks [28],

distractor-aware features for suppressing semantic distrac-

tors [58] and two-fold Siamese networks for semantic and

appearance features [18].

Meta learning methods for few-shot image recognition

task and visual tracking: There are recent approaches

for learning to classify from a few given examples using

meta learning methodologies [47, 14, 39, 35]. In [47], au-

thors proposed a network architecture that employs charac-

teristics of non-parametric nearest-neighbor models to solve
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Figure 2: Overview of proposed visual tracking framework. The matching network provides the meta-learner network

with meta-information in the form of loss gradients obtained using the training samples. Then the meta-learner network pro-

vides the matching network with target-specific information in the form of convolutional kernels and channel-wise attention.

N-way, k-shot learning tasks, where a small support set is

given. [14] made use of a pre-trained network as a good

initialization and then trained the meta-learner to effectively

fine-tune the network based on few given examples. In [35],

a two-level structure of meta-learner and base-learner both

equipped with fast and slow weights was used. The meta-

learner acquires the meta information from the base-learner

in the form of loss gradients, and then provides the based-

learner with fast parameterization while preserving general-

ization capabilities. Recently, [37] proposed a meta-learner

based optimizer analogous to [14] for the visual tracking

task, where they chose [44] and [36] as the baseline algo-

rithms to show the effectiveness of their update step, de-

creasing the number of training iterations thus improving

the speed of the baseline methods. Whereas the aim of our

method is to update the network using the meta-learner with

a single iteration at real-time speeds, providing the network

with new adaptive kernels and feature space representation

without overfitting, which can be achieved by our regular-

izing training scheme.

3. Tracking with Meta-Learner

In the following subsections, we first provide an

overview of our proposed visual tracking framework, where

a brief explanation of our framework and the visual tracking

procedure are given. Then we describe the implementation

and training details for the components of our framework.

3.1. Overview of Proposed Method

3.1.1 Components

Our framework is largely composed of two components, a

matching network and a meta-learner network. The match-

ing network is a fully-convolutional Siamese network that

takes two images as inputs where x is denoted as an im-

age patch of the target and z is an image patch of the larger

context area that contains the target. The matching network

takes these inputs, extracts the feature maps using the N -

layer feature extractor CNN network φw(·), and produces

the final response map fw(x, z) by cross-correlation oper-

ation between the feature maps. This process can be ex-

pressed as follows,

fw(x, z) = φw(x) ∗ φw(z), (1)

where ∗ represents the cross-correlation operator between

two feature maps and w = {w1, w2, ..., wN} represents the

set of trained kernel weights for each layer of the feature

extractor CNN. To train the feature extractor CNN, we min-

imize a differentiable loss function given as ℓ(fw(x, z), y),
where the loss function measures the inaccuracy in predic-

tions of fw, given y as the ground-truth response map.

The meta-learner network provides the matching net-

work with target-specific weights given an image patch of

the target x with context patches zδ = {z1, ..., zM} previ-

ously obtained and cropped around the target’s vicinity. To
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adapt the weights to the target patch, we use the averaged

negative gradient δ of the loss function for the last layer of

the matching network taken as,

δ =
M∑

i=1

−
1

M

∂ℓ(fw(x, zi), ỹi)

∂wN

, (2)

where ỹi is the generated binary response map assuming the

target is located at the correct position inside the context

patch zi. The meta-learner network is designed based on

the fact that the characteristic of δ is empirically different

according to a target. Then, given δ as an input, the meta-

learner network gθ(·) can generate target-specific weights

wtarget corresponding to the input as,

wtarget = gθ(δ), (3)

where θ is the parameter for the meta-learner network. The

new weights are used to update the matching network’s

original weights as in,

fwadapt(x, z) = φwadapt(x) ∗ φwadapt(z), (4)

where w
adapt = {w1, w2, ..., [wN , wtarget]}, concatenat-

ing wtarget to wN of the last layer for feature extraction.

The meta-learner network also generates channel-wise sig-

moid attention weights for each channel of the feature map

to further adjust the feature representation space where

the weights can be applied by channel-wise multiplication.

Fig.2 shows an overview of the proposed method.

3.1.2 Tracking algorithm

Tracking is performed in a straightforward and simplistic

manner to ensure fast performance. Given a target patch x
and its previous state, a context image z in a new frame can

be cropped based on the previous state. Processing both im-

ages through the matching network, the estimated response

map ŷ = fwadapt(x, z) is obtained. The new position of

the target can be found by finding the maximum position in

the response map ŷ ⊗ h, where ⊗ is an element-wise mul-

tiplication operator and h is a cosine window function for

penalizing large displacements. Scale variation of the target

can be covered by using multiple size crops of z matched

with x. Scale changes are also penalized and damped by a

constant to ensure smooth changes of target size over time.

During the course of tracking, we keep a memory of

the context images as zmem = {z1, ..., zK} along with

the corresponding estimated response maps used for track-

ing ŷmem = {ŷ1, ..., ŷK}. We store a context image z to

the memory only if it is considered to be confident, where

the maximum response value in the corresponding map ŷ is

over a certain threshold τ . To update the appearance model

of the target, we choose M samples from this memory un-

der the minimum entropy criterion on ŷmem as in [53] with-

out replacement. This criterion is used to avoid ambiguous

Algorithm 1: Visual tracking with meta-learner network

input : Tracking sequence of length L

Initial target state s1

Corresponding initial target template x

output: Tracked target states st

// For every frame in a tracking sequence

for t = 2 to L do

Obtain a candidate context image z′ based on the

previous target state st−1;

Obtain a response map ŷ using the matching network as

in eq.(1) or eq.(4);

Apply cosine window h to ŷ, find the position and scale

with maximum response, and obtain a new state st;

// Store context image in the memory if confident

if ŷ[st] > τ then
Obtain new context image zt based on st and store

it in the memory zmem;

end

// Update weights every T frames

if (t mod T ) == 0 then
Choose M samples zδ from memory zmem under

minimum entropy metric (5);

Obtain a loss gradient δ as in eq.(2);

Obtain target-specific adaptive weights wtarget as

in eq.(3)

Update w
adapt for the matching network in (4)

end

end

response maps where false positive samples may exist in

the corresponding context image. Finding the response map

with the minimum entropy can be defined as,

argmin
ŷi∈ŷmem

−
∑

p∈P

ρ(ŷi[p]) log(ρ(ŷi[p])), (5)

where p corresponds to a position in a set of all possible

positions P in the response map and ρ(·) is the normal-

ization function. Using the chosen M appearance samples

zδ , target-adaptive weights wtarget are obtained using the

meta-learner network as in (2) and (3), and then the match-

ing network is updated as in (4), and it is used to track the

object in subsequent frames. Since updating the model too

frequently is unnecessary and cumbersome for the perfor-

mance, we only update the model every T frames as in other

algorithms [5]. The overall tracking process is described in

Algorithm 1.

3.2. Network Implementation and Training

3.2.1 Matching Network

The matching network consists of a shared feature ex-

tractor CNN φ(·), channel-wise attention step, feature ℓ2-
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Figure 3: Training scheme of meta-learner network. The

meta-learner network uses loss gradients δ in (2) as meta

information, derived from the matching network, which ex-

plains its own status in the current feature space [35]. Then,

the function g(·) in (3) learns the mapping from this loss

gradient to adaptive weights wtarget, which describe the

target-specific feature space. The meta-learner network can

be trained by minimizing the loss function in (7), which

measures how accurate the adaptive weights wtarget were

at fitting new examples {z1, ..., zM ′} correctly.

normalization step, and cross-correlation step. For feature

extraction, we use a CNN with 5 convolutional layers and

2 pooling layers of kernel size 3 and stride 2 are applied

after the first two convolutional layers. Batch normaliza-

tion layer is inserted after each convolutional layer. The

overall structure of the CNN is analogous to [2], where ker-

nel size and input/output dimensions for each layer are w1 :

11×11×3×128, w2 : 5×5×128×256, w3 : 3×3×256×384,

w4 : 3×3×384×256, w5 : 1×1×256×192. For inputs, we

use a RGB image of size 127 × 127 × 3 for x and a RGB

image of size 255×255×3 for z, and the matching network

produces a response map of size 17× 17.

To train the matching network, we used ILSVRC 2015

[42] object detection from video dataset with additional

training data from ILSVRC 2017 dataset, which contains

objects of 30 classes in 4000 videos in the training set and

1314 videos in the validation set, with a total of 11566 in-

dependent object trajectories. Each frame of the video is

annotated with bounding box notations of objects appear-

ing in the video. We only used videos in the training set

to train the matching network. At training time, pairs of

(x, z) are randomly sampled from an object trajectory in

a chosen video clip. Then, a ground-truth response map

y ∈ {−1,+1}
17×17

is generated where the value is +1 at

the position of the target and −1 otherwise. For the loss

function ℓ(fw(x, z), y), we use the logistic loss function de-

fined as,

ℓ(fw(x, z), y) =

1

|P|

∑

p∈P

ζ(y[p]) · log (1 + exp(−fw(x, z)[p] · y[p])) ,

(6)

where p represents a position in the set of every possible

positions P in the response map and ζ(y[p]) is a weighting

function for alleviating label imbalance. The loss function

is optimized with Adam [25] optimizer with the learning

rate of 10−4 using batch size of 8, and run for 95000 itera-

tions.

3.2.2 Meta-Learner Network

We then train the meta-learner network subsequent to pre-

training the matching network. The meta-learner network

gθ(·) consists of 3 fully-connected layers with 2 intermedi-

ate layers of 512 units. Each intermediate layer is followed

by a dropout layer with the keep probability of 0.7 when

training. For input, gradient δ of size 1 × 1 × 256 × 192
is used and output wtarget of size 1 × 1 × 256 × 32
is generated. These new kernels are used to update the

weights of the matching network by concatenating wtarget

to the kernels w5 of the last layer of the Siamese match-

ing network to provide the additional feature space needed

for updates, resulting in new kernels [w5, w
target] of size

1× 1× 256× (192 + 32).
To train the meta-learner network, we use 1314 videos in

the validation set of the ILSVRC video dataset. The training

process is described hereafter. First, an anchor target image

x is randomly sampled from an object trajectory. Then, M ′

context patches are randomly sampled from the same ob-

ject’s trajectory as in zreg = {z1, ..., zM ′} where M ′ ≥ M .

Then M patches are chosen from zreg to form zδ , where

we can perform matching these samples with the target im-

age x to obtain gradient δ by (2) using generated binary

response map ỹi, assuming the target is located at the center

of zi. Standard data augmentation techniques (e.g. horizon-

tal flip, noise, Gaussian blur, translation) are applied when

sampling zi. We can train the meta-learner network gθ(δ)
by minimizing the loss function with respect to parameter

θ:

argmin
θ

∑

zi∈zreg

ℓ(fwadapt(x, zi), y), where

wadapt = {w1, w2, ..., [wN , gθ(δ)]}.

(7)

Training the meta-learner network to generate new

weights wtarget = gθ(δ) that only fit examples in zδ (i.e.

M ′ = M ) can lead the meta-learner network to gener-

ate weights that will make the matching network overfit to

samples in zδ . To prevent this overfitting problem, a regu-

larization scheme is needed when training. For natural reg-

ularization, M ′ = 2M is chosen so that the weights can

fit a larger set of examples zreg instead of a smaller set zδ .

This encourages much better generalization properties for

the matching network when tracking. For the experiments,

M = 8 and M ′ = 16 are used and Adam optimizer with

the learning rate of 10−4 with batches of 8 videos are used.

Training is performed for 11000 iterations. Fig.3 shows the

training scheme of the meta-learner network.
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MLT SiamFC StructSiam DSiam CFNet SINT SRDCF PTAV ECO-HC STAPLECA BACF DSST HDT

OTB-2015 0.611 0.582 0.621 - 0.586 0.580 0.598 0.635 0.643 0.598 0.630 0.520 0.564

OTB-2013 0.621 0.607 0.638 0.642 0.611 0.635 0.626 0.663 0.652 0.621 0.678 0.554 0.603

LaSOT Protocol I 0.368 0.358 0.356 0.353 0.296 0.339 0.339 0.269 0.311 0.262 0.277 0.233 -

LaSOT Protocol II 0.345 0.336 0.335 0.333 0.275 0.314 0.314 0.250 0.304 0.238 0.259 0.207 -

FPS 48 58 45 45 43 4 5 25 60 35 35 24 10

Table 1: Quantitative results on OTB [51] and LaSOT [12] datasets. MLT denotes the proposed algorithm. The proposed

algorithm shows competitive performance on OTB datasets and outperforms other algorithms on large-scale LaSOT datasets,

obtaining performance gains with the benefit of additional feature space provided by the meta-learner. AUC for OPE is used

for the performance measures.

MLT MLT-mt MLT-mt+ft

OTB-2015 0.611 0.564 0.523

OTB-2013 0.621 0.571 0.510

LaSOT Protocol I 0.368 0.357 0.331

LaSOT Protocol II 0.345 0.330 0.305

TC-128 0.498 0.477 0.419

UAV20L 0.435 0.366 0.342

VOT-2016 Baseline 0.537 0.514 0.517

VOT-2016 Unsupervised 0.421 0.412 0.411

Table 2: Internal comparison of tracking performance

on OTB, LaSOT, TC-128, UAV20L and VOT-2016

datasets. Proposed MLT shows consistent performance

gains compared to MLT-mt and MLT-mt+ft throughout all

datasets. For performance measures, AUC is shown for all

experiments, with the exception of baseline experiment of

VOT-2016 where A-R overlap score is shown. The best re-

sults were written in boldface.

4. Experimental Results

4.1. Evaluation Environment

Our algorithm was implemented in Python using Ten-

sorFlow 1.8.0 [1] library and executed on a system with In-

tel Core i7-4790K 4GHz CPU with 32GB of RAM with

GeForce GTX TITAN X (Maxwell) GPU with 12GB of

VRAM. The algorithm ran at an average of 48.1 fps on

100 videos in the OTB-2015 [51] dataset. We considered

3 scale variations of [1.00, 1/1.035, 1.035] to adapt to the

scale change of the target, where changes in scale are pe-

nalized by a constant of 0.97 and damped by a constant

of 0.59. Cosine window h was applied with the penaliza-

tion factor of 0.25. The meta-learner network updated the

weights every T = 30 frames, and threshold of τ = 0.5 was

used for choosing confident samples. All parameters were

fixed during the entire evaluation process for all datasets.

4.2. Experiments and Analysis

Object Tracking Benchmark (OTB) [51] is a visual

tracking benchmark that is widely used to evaluate the per-

formance of a visual tracking algorithm. The dataset con-

tains a total of 100 sequences and each is annotated frame-

by-frame with bounding boxes and 11 challenge attributes.

OTB-2013 dataset contains 51 sequences and the OTB-

2015 dataset contains all 100 sequences of the OTB dataset.

As evaluation metric, we used OPE success rate evalua-

tion metric that compares the predicted bounding boxes

with the ground truth bounding boxes to obtain intersec-

tion over union (IoU) scores, and measure the proportion of

predictions having larger score than a given varying thresh-

old score value. The final score is calculated by measur-

ing the area-under-curve (AUC) for each tracker. Large-

scale Single Object Tracking (LaSOT) [12] dataset is a

recently introduced large-scale visual tracking dataset con-

taining 1400 sequences with average length of 2512 frames

(83 secs) and minimum of 1000 frames per sequence, with

the total of 3.52 million frames where every frame is anno-

tated with a bounding box annotation. It contains 70 object

categories with each containing 20 sequences. Compared

to OTB, LaSOT contains 14 times more sequences and 59

times the total number of frames, with more various object

categories. For evaluation protocols, Protocol I employs all

1400 sequences for evaluation and Protocol II uses the test-

ing subset of 280 videos, where AUC of success plot is used

for the performance metric for both protocols.

We also perform internal comparisons on TC-128 [29],

UAV20L [33] and VOT-2016 [4] datasets to show the effec-

tiveness of our meta-learner update scheme. VOT-2016 is

the dataset used for the VOT Challenge [4] and it contains a

total of 60 videos with bounding box annotations. Baseline

experiment of the VOT dataset performs re-initialization of

the tracker when it misses the target, while unsupervised ex-

periment simply lets the tracker run from the first frame to

the end. Temple Color-128 (TC-128) dataset [29] contains

128 real-world color videos annotated with bounding boxes,

with 11 challenge factors. UAV20L [33] dataset contains 20

video sequences with an average length of 2933.5 frames,

where some sequences have targets leaving the video frame

(out-of-view). No explicit failure detection or re-detection

scheme was used for all experiments.

4.2.1 Quantitative Analysis

Effect of meta-learner network: We performed an in-

ternal comparison between the proposed tracker (MLT)
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Figure 4: Success plots for 8 challenge attributes of the OTB-2015 dataset

and the baseline trackers MLT-mt and MLT-mt+ft, where

MLT-mt is a variant that has only the matching network

with fixed weights without the meta-learner network, and

MLT-mt+ft performs on-line finetuning on conv5 (kernel

w5) with training examples obtained while tracking. For

fair comparison, the baseline trackers are pretrained on the

whole ImageNet video detection dataset including the val-

idation set, with the last convolutional layer of kernel size

1 × 1 × 256 × 224. For the MLT-mt+ft method, we fine-

tune the matching network every 50 frames for 30 iterations

using the Adam optimizer with the learning rate of 10−3.

As shown in Table 2, the meta-learner network improves

the performance of the baseline matching network and pro-

duces better tracking results. MLT is consistently supe-

rior to MLT-mt and MLT-mt+ft in OTB, LaSOT, TC-128,

UAV20L and VOT2016 datasets. The results demonstrate

that the adaptive weights generated by meta-learner net-

work are effective for inducing the customized feature space

for each target and for resulting in accurate visual tracking,

showing performance gains in all 5 datasets. Also, results

of MLT-mt+ft show that online finetuning without hand-

picked hyper-parameters and regularization scheme easily

results in overfitting to handful of training samples, result-

ing in lower performance.

Comparison with other trackers: We compare our

tracking algorithm MLT with 12 tracking algorithms on

the OTB and LaSOT datasets, namely, SiamFC [2],

StructSiam [57], DSiam [15], CFNet [46], SINT [45],

SRDCF [8], PTAV [13], ECO-HC [5], STAPLECA [34],

BACF [24], DSST [6] and HDT [38], where most are real-

time algorithms. As shown in Table 1, MLT achieves a com-

petitive accuracy on OTB datasets compared to other track-

ing algorithms based on deep representation, and outper-

forms other algorithms on large-scale LaSOT experiments

due to its robust meta-learner update. Especially, we were

able to obtain a noticeable performance gain compared to

SiamFC and its variants (StructSiam, DSiam and CFNet) on

LaSOT where no variant was able to outperform the original

SiamFC.

We also separately analyze the performance of MLT with

respect to 8 different attributes of OTB videos. Each video

has a different attribute such as in-plane rotation, out-of-

plane rotation, motion blur, low resolution, scale variation,

illumination variation, background clutter and occlusion.

Fig. 4 shows that MLT is robust to low resolution, occlusion

and scale variation and is competitive to the other track-

ers for most of the attributes. In blurred low resolution im-

ages, the appearance of a target is frequently indistinguish-

able from that of other objects in the background. MLT can

distinguish between these appearances by customizing fea-

tures spaces for each target with the meta-learner network.

Also, MLT can learn from negative examples from the back-

ground and handle occlusions better than other trackers.

4.2.2 Qualitative Analysis

Fig.5 shows qualitative tracking results produced by

SiamFC, SRDCF, HDT, CNN-SVM, DSST, and the pro-

posed algorithm MLT. All trackers were tested on all videos

in the OTB-2015 dataset where tracking results for selected

videos are shown in Fig.5 due to the limit in the length of

the paper. MLT robustly and accurately tracks the target

in spite of several challenging conditions such as occlusion

in Box seq., pose variation in Rubik seq., background clut-

ter in Human3 seq., fast motion in Girl2 seq., and scale

variation in Car24 seq.. These qualitative tracking results

demonstrate that the proposed MLT successfully exploited

the power of the meta-learner network and utilized the adap-

tive weights customized for each target to improve tracking

accuracy, without losing the generalization capabilities. For
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(a)

(c)

(e) (f)

(d)

(b)

Figure 5: Qualitative results. Tracking results for (a) box, (b) girl2, (c) rubik, (d) car24, (e) human3 and (f) blurBody

sequences. Green, Blue, Cyan, Yellow, Violet, and Red bounding boxes denote tracking results of SiamFC, SRDCF, HDT,

CNN-SVM, DSST, and MLT, respectively. Yellow numbers on the top-left corners indicate frame numbers.

Figure 6: Visualization for the effect of the target-specific

feature space. This shows some example image patches z
(1st and 4th row) with the changes in response maps ŷ before

(2nd and 5th row) and after (3rd and 6th row) applying our

adaptive weights wtarget generated by our meta-learner.

reference, we attach a supplementary video containing more

qualitative results on the OTB-2015 dataset.

In addition, Fig.6 shows some examples of how the

target-specific feature space modifies the response maps,

thus demonstrating how the meta-learner can be benefi-

cial in the task of visual tracking. We show example im-

age patches z where the target object fixed at the center of

the image, with response maps before and after the target-

specific feature space modification. The response maps

show that the target-specific weights help the tracker to

adapt to various target appearance changes and to locate

the target, and are also effective in avoiding false positives

by suppressing incorrect responses from distractors in the

background.

5. Conclusion

In this paper, we proposed a novel visual tracking algo-

rithm based on the target-specific feature space constructed

by the deep meta-learner network. The proposed track-

ing algorithm adapts to the target appearance by generating

the target-specific adaptive weights with the meta-learner

network, where the matching network provides the meta-

information gradients as a learning signal. Our algorithm

aims to customize the feature space to discriminate a spe-

cific target appearance from the background in order to ac-

curately track the target without overfitting. Experimental

results demonstrate that our algorithm achieves a notewor-

thy performance gain in visual tracking by using the pro-

posed meta-learner network, achieving consistent perfor-

mance gains on 5 tracking datasets including the large-scale

tracking dataset LaSOT. Quantitatively and qualitatively the

algorithm shows a competitive tracking performance on

multiple visual tracking datasets with several challenging

tracking conditions, compared to other visual tracking al-

gorithms, while running at the real-time speed of 48 fps.
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[4] Luka Čehovin, Aleš Leonardis, and Matej Kristan. Visual

object tracking performance measures revisited. IEEE TIP,

25(3):1261–1274, 2016. 1, 2, 6

[5] Martin Danelljan, Goutam Bhat, Fahad Khan, and Michael

Felsberg. Eco: Efficient convolution operators for tracking.

In CVPR, 2017. 2, 4, 7

[6] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael
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