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Abstract

Deep learning-based semantic segmentation methods

have an intrinsic limitation that training a model requires

a large amount of data with pixel-level annotations. To ad-

dress this challenging issue, many researchers give atten-

tion to unsupervised domain adaptation for semantic seg-

mentation. Unsupervised domain adaptation seeks to adapt

the model trained on the source domain to the target do-

main. In this paper, we introduce a self-ensembling tech-

nique, one of the successful methods for domain adaptation

in classification. However, applying self-ensembling to se-

mantic segmentation is very difficult because heavily-tuned

manual data augmentation used in self-ensembling is not

useful to reduce the large domain gap in the semantic seg-

mentation. To overcome this limitation, we propose a novel

framework consisting of two components, which are com-

plementary to each other. First, we present a data aug-

mentation method based on Generative Adversarial Net-

works (GANs), which is computationally efficient and effec-

tive to facilitate domain alignment. Given those augmented

images, we apply self-ensembling to enhance the perfor-

mance of the segmentation network on the target domain.

The proposed method outperforms state-of-the-art semantic

segmentation methods on unsupervised domain adaptation

benchmarks.

1. Introduction

Semantic segmentation has been widely studied in the

computer vision field. Its goal is to assign image category

labels to each pixel in the image. A wide variety of algo-

rithms based on deep neural networks have achieved high

performance with sufficient amounts of annotated datasets.

However, creating large labeled datasets for semantic seg-

mentation is cost-expensive and time-consuming [7]. To

overcome the annotation burden, researchers utilize mod-

ern computer graphics to easily generate synthetic images

with ground truth labels [36]. Unfortunately, in practice,
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Figure 1. The overall framework of our method. Given labeled

synthetic data and unlabeled real data, we propose a Target-Guided

and Cycle-Free Data Augmentation (TGCF-DA) method to gener-

ate labeled augmented data (green). We introduce two segmenta-

tion networks as the teacher and the student in order to implement

the self-ensembling algorithm (orange). Both segmentation net-

works are trained by augmented data as well as synthetic and real

data. During the learning process, the teacher network transfers its

knowledge to the student network.

models trained with synthetic data do not perform well on

a realistic domain because there exists a distribution differ-

ence called domain shift. Unsupervised domain adaptation

handles the domain shift by transferring knowledge from

the labeled dataset in the source domain to the unlabeled

dataset in the target domain [3].

Recent approaches for domain adaptation focus on align-

ing features extracted from the source and target data. In

particular, most of the domain adaptation methods in se-

mantic segmentation depend on adversarial training aiming

to minimize the domain discrepancy through domain con-

fusion [15, 14, 44, 41, 16, 52]. However, adversarial ap-

proaches suffer from a significant drawback. Since these

methods seek to align the global distributions of two dif-
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ferent domains, the adversarial loss may trigger a negative

transfer, which aligns the target feature with the source fea-

ture in an incorrect semantic category. The negative trans-

fer can have adverse effect on features that are already well

aligned. Thus, this adaptation often performs even worse

than a network trained solely on the source domain. In-

stead of adversarial training, we take an alternative way to

perform feature-level domain alignment. We adopt self-

ensembling [9], one of the effective methods for domain

adaptation in classification.

Self-ensembling is composed of a teacher and a student

network, where the student is compelled to produce con-

sistent predictions provided by the teacher on target data.

As the teacher is an ensembled model that averages the stu-

dent’s weights, predictions from the teacher on target data

can be thought of as the pseudo labels for the student. While

recent self-ensembling proves its effectiveness in classifi-

cation, these approaches require heavily-tuned manual data

augmentation [9] for successful domain alignment. Further-

more, although such data augmentation consisting of vari-

ous geometric transformations is effective in classification,

it is not suited to minimize the domain shift in semantic

segmentation. Two different geometric transformations on

each input can cause spatial misalignment between the stu-

dent and teacher predictions. Thus, we propose a novel data

augmentation method to deal with this issue.

Our augmented image synthesis method is based on gen-

erative adversarial networks (GANs) [12]. We aim to gen-

erate augmented images, in which semantic contents are

preserved, because these images with the inconsistent se-

mantic content impair the segmentation performance due

to the pixel-level misalignment between augmented images

and source labels. Hence, we add a semantic constraint for

the generator to preserve global and local structures, i.e. the

semantic consistency. Furthermore, we propose a target-

guided generator, which produces images conditioned on

style information extracted from the target domain. In other

words, our generator synthesizes augmented images main-

taining semantic information, while only transferring styles

from target images.

Most previous studies for GAN-based Image-to-Image

translation methods [53, 49, 27, 25, 21, 19, 31] rely on

various forms of cycle-consistency. However, incorporat-

ing cycle-consistency into unsupervised domain adaptation

has two limitations. First, it needs redundant modules such

as a target-to-source generator and corresponding computa-

tional burden. Second, cycle-consistency may be too strong

when target data are scarce compared to source data [17],

which is the general setting of unsupervised domain adap-

tation. Our proposed model does not consider all kinds of

cycle-consistency. We refer to our method as Target-Guided

and Cycle-Free Data Augmentation (TGCF-DA).

Our universal framework is illustrated in Fig. 1. We em-

ploy TGCF-DA to produce augmented images. Then, the

segmentation network learns from the source, target and

augmented data through self-ensembling. The main con-

tributions of this paper are summarized as follows:

• We propose a novel data augmentation method with a

target-guided generator and a cycle-free loss which is

more efficient and suitable for semantic segmentation

in unsupervised domain adaptation.

• We build a unified framework that collaborates the

self-ensembling with TGCF-DA.

• Our approach achieves the state-of-the-art perfor-

mances on challenging benchmark datasets. Also, we

conduct extensive experiments and provide compre-

hensive analyses for the proposed method.

2. Related work

Unsupervised Domain Adaptation for Semantic Seg-

mentation: Recently unsupervised domain adaptation for

semantic segmentation has received much attention. The

first attempt to this task is FCNs in the wild [15], which si-

multaneously performs the global and local alignment with

adversarial training. Adversarial training is the predomi-

nant approach focusing on a feature-level adaptation to gen-

erate domain-invariant features through domain confusion,

e.g., [6, 5, 44, 41, 16, 39, 18]. This idea is extended to

jointly adapt representations at both pixel and feature level

through various techniques such as cycle-consistency loss

[14, 34] or style transfer [8, 47]. Except for adversarial

training methods, there is a different approach based on

self-training. CBST [57] introduces self-training to produce

pseudo labels and retrain the network with these labels.

Self-Ensembling: Self-Ensembling [56, 38] is proposed

in the field of semi-supervised learning. A popular method

for semi-supervised learning is the consistency regulariza-

tion, which employs unlabeled data to produce consistent

predictions under perturbations [40, 2]. Laine and Aila [24]

propose Temporal Ensembling using a per-sample moving

average of predictions for the consistent output. Tarvainen

and Valpola [43] suggest an exponential moving average of

the model weights instead of average of predictions. The

self-ensembling method [9] applies a Mean Teacher frame-

work to unsupervised domain adaptation with some mod-

ifications. In [35], Perone et al. address medical imaging

segmentation tasks by applying the self-ensembling method

akin to the previous method. Yonghao et al. [48] utilize

the self-ensembling attention network to extract attention-

aware features for domain adaptation.

Image-to-Image Translation: Recent approaches for

Image-to-Image (I2I) Translation are based on Generative

Adversarial Networks (GANs) [12]. In the case of unpaired

training images, one popular constraint is cycle-consistency
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Figure 2. An overview of the proposed framework. 1) The source and target images are fed into Target-Guided generator to produce

augmented images. 2) The supervised loss is a multi-class cross-entropy loss with source images and augmented images. 3) The consistency

loss is a mean squared error between both prediction maps extracted from the student and teacher network. 4) A total training loss is the

weighted sum of the supervised loss and the consistency loss. 5) We perform data augmentation only for target samples to complement the

consistency loss. 6) The teacher network’s weights are the exponential moving average (EMA) of those of the student network.

that maps a given image to the target domain and recon-

structs the original image [23, 53, 49]. UNIT [27] intro-

duces a constraint for learning a shared latent space. How-

ever, all the aforementioned methods suffer from a lack of

diversity in translated images. To produce multi-modal out-

puts, one possible approach injects noise vectors as addi-

tional inputs to the generator [54, 1, 11], but it could lead to

the mode collapse problem. Also, Since cycle-consistency

is too restrictive, variants of cycle-consistency [54, 21, 25]

are developed for multi-modal I2I translation. A different

approach is to apply neural style transfer [10, 45, 22, 20].

In particular, concurrent works [21, 31] employ an adap-

tive instance normalization [20] to transfer style from the

exemplar to the original image. In addition, the authors of

AugGAN [19] exploit the segmentation information for im-

proving I2I translation network. Our task is entirely differ-

ent from AugGAN because domain adaptation cannot use

segmentation labels of the target data.

3. Proposed Method

In this work, we introduce the unified framework, which

is built upon the self-ensembling for semantic segmenta-

tion. The key to improve the capacity of the self-ensembling

for semantic segmentation is the GAN-based data augmen-

tation to align representations of source and target rather

than geometric transformations mostly used in existing self-

ensembling for classification. To achieve this goal, we

present a novel Target-Guided and Cycle-Free Data Aug-

mentation (TGCF-DA) with a target-guided generator and a

semantic constraint. The target-guided generator translates

source images to different styles in the target domain. Our

student network learns the source images and augmented

images from TGCF-DA with a supervised loss by comput-

ing cross-entropy loss. Also, we only use target samples to

compute the consistency loss, which is defined as the mean

squared error between prediction maps generated from the

student and teacher networks.

More formally, let XS and XT denote the source domain

and target domain. We have access to Ns labeled source

samples {(xi
s, y

i
s)}

Ns

i=1 with xi
s ∈ XS and the correspond-

ing label maps yis. The target domain has Nt unlabeled tar-

get samples {xi
t}

Nt

i=1, where xi
t ∈ XT . PS and PT denote

the source and target data distributions, respectively. The

source and target data share C categories. Let fS and fT be

a student segmentation network and a teacher segmentation

network.

3.1. Targetguided generator

Based on the assumption that image can be decomposed

into two disentangled representations [27, 21], a content and

a style, we adopt a source encoder for generating content

representation and a target encoder for extracting style rep-

resentation. To combine these two representations properly,

we apply Adaptive Instance Normalization (AdaIN) [20]

to feature maps of source images. As in [21], the target

encoder with multiple fully connected layers provide the

learnable affine transformation parameters (γt, βt) to nor-

malize the feature maps of a source image for each channel.

The AdaIN operation is defined as:

F̃ i
s = γi

t (
F i
s − µ(F i

s)

σ(F i
s)

) + βi
t , (1)

where F i
s denotes the source feature map for the i-th chan-

nel. µ(·) and σ(·) respectively denote mean and variance

across spatial dimensions. Our generator is guided by

the style information of target samples through AdaINs at
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Figure 3. The overview of TGCF-DA based on GAN [12]. The

blue box describes the target-guided generator G. The red box is

the pretrained segmentaion model fseg with fixed weights. The

purple box is the discriminator D.

intermediate residual blocks while preserving the spatial

structure of source images, i.e. the semantic consistency of

source images is retained.

3.2. Semantic constraint

We utilize a semantic constraint to preserve semantic

content at pixel level. Given the labeled source data, we

can pretrain the segmentation model such as FCN-8s [29]

for constraining the generator. The pretrained segmenta-

tion model fseg with fixed weights encourages the semantic

consistency between the images before and after the trans-

lation. Thanks to this semantic constraint, our network can

preserve the objects in images without distortion. Further-

more, this constraint is crucial to stabilizing the adversar-

ial training without the cycle-consistency. Since the cycle-

consistency enforces the strict constraint for matching two

distributions, it is effective to prevent the mode collapse and

to stabilize the adversarial training [26]. Without the cycle-

consistency, our adversarial training is vulnerable to insta-

bility of GAN training. However, this semantic constraint

guarantees stable adversarial training by strongly enforcing

semantic consistency. We define the semantic constraint

loss as the cross-entropy loss:

Lsem(fseg, G) =

−1

HW

H×W∑

k=1

C∑

c=1

y(k,c)s log(fseg(G(xs, xt))
(k,c)) ,

(2)

where G(xs, xt) is the generated image of size H×W pro-

duced by the target-guided generator G.

3.3. Targetguided and cyclefree data augmenta
tion

We introduce a GAN designed for Target-Guided and

Cycle-Free Data Augmentation (TGCF-DA). As in Fig. 3,

G is the target-guided generator and D is the discrimina-

tor proposed in [46]. We use the adversarial objective from

LSGAN [32] and apply the spectral normalization [33] to

stabilize the GAN training. The GAN loss is defined as:

LGAN (G,D) = E(xs,xt)∼(PS ,PT )[D(G(xs, xt))
2]

+ Ext∼PT
[(D(xt)− 1)2] .

(3)

This loss ensures that G produces new images visually sim-

ilar to target images without losing semantic content in

source images. Since the segmentation model fseg is fixed,

we jointly train the target-guided generator and discrimina-

tor to optimize the overall loss:

LTGCF−DA = LGAN + λsemLsem , (4)

where λsem is a weight to balance the contribution of the

GAN loss and semantic constraint. The pretrained target-

guided generator is employed to synthesize augmented im-

ages with the purpose of data augmentation in the self-

ensembling.

3.4. Selfensembling

We construct the teacher network fT and the student net-

work fS . The teacher’s weights ti at training step i are up-

dated by the student’s weights si following the formula:

ti = αti−1 + (1− α)si , (5)

where α is an exponential moving average decay. During

training, each mini-batch consists of source samples, aug-

mented samples, and target samples. We use source sam-

ples and augmented samples to compute the supervised loss

Lsup, which is cross-entropy function for semantic segmen-

tation. This loss function enables the student network to

produce the semantically accurate prediction for the source

and augmented samples. The consistency loss Lcon is for-

mulated as the mean-squared error between the prediction

maps generated from the student and teacher network:

Lcon(fS , fT ) = Ext∼PT
[‖σ(fS(xt))− σ(fT (xt))‖

2] ,

(6)

where σ is a softmax function to compute probability of

prediction maps. The total loss Ltotal is the weighted sum

of the supervised loss Lsup and the consistency loss Lcon:

Ltotal = Lsup + δconLcon , (7)

where δcon is the weight of consistency loss subject to the

ramp-ups. Contrary to [9], we empirically observe that

weight ramp-up is necessary for enhancing the effectiveness

of the consistency loss.

3.5. Data augmentation for target samples

Here, data augmentation for target samples is not rele-

vant to TGCF-DA. This data augmentation is only applied
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to target samples in order to compute the consistency loss

for the self-ensembling in Section 3.4. In classification [9],

the goal of random data augmentations for target samples is

forcing the student network to produce different predictions

for the same target sample. Aforementioned above, image-

level transformations such as geometric transformations are

not helpful for the pixel-level prediction task like semantic

segmentation [28]. Thus, we inject Gaussian noise to tar-

get samples, which are fed to student and target networks

respectively. In addition, we apply Dropout [42] for weight

perturbation. As a result, our student network is forced to

produce consistent predictions with the teacher network un-

der different perturbations for target samples and parame-

ters of each network.

4. Experiments

This section describes experimental setups and details

of synthetic-to-real domain adaptation. Then, we will re-

port the experiment results compared with the previous re-

searches. Furthermore, we will provide ablation studies to

validate the effectiveness of our method.

4.1. Datasets

For a synthetic source domain, we used SYNTHIA [37]

and GTA5 [36] datasets. Then, we evaluated our method on

Cityscapes dataset [7] as a real-world target domain follow-

ing similar settings in [15, 51, 44, 41]. We briefly introduce

the details of datasets as following:

GTA5. GTA5 [36] contains 24966 urban scene images with

pixel-level annotations. These high-resolution images are

rendered from the gaming engine Grand Theft Auto V. Fol-

lowing [15], we used the 19 categories of the annotations

compatible with those of the Cityscapes. We randomly

picked 1000 images from GTA5 for validation purpose.

SYNTHIA. SYNTHIA [37] is a large-scale dataset of

video sequences rendered from a virtual city. We used

SYNTHIA-RAND-CITYSCAPES, consisting of 9400 im-

ages with pixel-level annotations. Inheriting from the pre-

vious work [51], we chose 16 categories common in both

SYNTHIA and Cityscapes. We randomly selected 100 im-

ages for evaluation.

Cityscapes. Cityscapes [7] contains urban street scenes

collected from 50 cities around Germany and neighboring

countries. It has a training set with 2975 images and a vali-

dation set with 500 images.

We can utilize source images and labels from either

SYNTHIA or GTA5, as well as target images without la-

bels from the training set of Cityscapes. The validation set

in Cityscapes is treated as the evaluation set for our domain

adaptation experiment. We report IoU (Intersection-over-

Union) for each class and mIoU (mean IoU) to measure the

segmentation performance. In supplementary material, we

provide additional experimental results on the BDD100K

dataset [50].

4.2. Experiment setup and implementation details

TGCF-DA. Our augmentation network for TGCF-DA is

composed of the generator, the discriminator and the seg-

mentation model. The generator is built upon the auto-

encoder architecture used by MUNIT [21], but modified to

act as the cycle-free generator. It consists of the source en-

coder, the target encoder and the decoder. The source en-

coder includes strided convolutional layers to downsample

the source images and residual blocks [13] to compute the

content representations. The decoder consists of residual

blocks and transposed convolutional layers to upsample the

combined representations. The target encoder is comprised

of strided convolutional layers and fully connected layers

to provide the style representations. Multi-scale discrimi-

nators described in [46] are employed as our discriminator.

We set the weight λsem to 10 in all experiments.

Self-Ensembling. In all our experiments, we employed a

VGG-16 backbone for our semantic segmentation network.

Following Deeplab [4], we incorporated ASPP (Atrous Spa-

tial Pyramid Pooling) as the decoder and then used an up-

sampling layer to get the final segmentation output. Before

the upsampling layer, the output of the final classifier is used

to compute the consistency loss in Section 3.4. Motivated

by [43], we utilized the sigmoid ramp-up for the consistency

loss weight δcon. The details of the consistency loss weight

is analyzed in Section 5.3. During training process, the im-

ages are resized and cropped to 480×960 resolution, and for

evaluation we upsample our prediction maps to 1024×2048

resolution. The details of our architecture and experiments

will be available in the supplementary material.

4.3. Experimental results

We report experimental results of the proposed method

on two adaptation experiments in Table 1. We compare our

proposed method with Curriculum DA [51], CyCADA [14],

MCD [39], LSD-seg [41], AdaptSegNet [44], ROAD [5],

Conservative Loss [55], DCAN [47], and CBST [57]. In

Table 1, Self-Ensembling (SE) represents the segmentation

performance of the network trained by source and target

through the self-ensembling, without our data augmentation

method. TGCF-DA indicates the segmentation network

trained by the source data and augmented data generated

from TGCF-DA with corresponding labels. Ours (TGCF-

DA + SE) denotes our proposed framework comprised of

TGCF-DA and the self-ensembling method. The proposed

method significantly outperforms the baseline by 14.2% on

GTA5→Cityscapes and 13.1% on SYNTHIA→Cityscapes.

Our method makes further improvement compared to the

source only baseline and also achieves the state-of-the-art

mIoU scores on both experiments.
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Baseline (Source Only) - 61.0 18.5 66.2 18.0 19.6 19.1 22.4 15.5 79.6 28.5 58.0 44.5 1.7 66.6 14.1 1.1 0.0 3.2 0.7 28.3

Curriculum DA [51] ST 72.9 30.0 74.9 12.1 13.2 15.3 16.8 14.1 79.3 14.5 75.5 35.7 10.0 62.1 20.6 19.0 0.0 19.3 12.0 31.4

CyCADA [14] AT 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

MCD [39] AT 86.4 8.5 76.1 18.6 9.7 14.9 7.8 0.6 82.8 32.7 71.4 25.2 1.1 76.3 16.1 17.1 1.4 0.2 0.0 28.8

LSD-seg [41] AT 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

AdaptSegNet [44] AT 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

ROAD [5] AT 85.4 31.2 78.6 27.9 22.2 21.9 23.7 11.4 80.7 29.3 68.9 48.5 14.1 78.0 19.1 23.8 9.4 8.3 0.0 35.9

Conservative Loss [55] AT 85.6 38.3 78.6 27.2 18.4 25.3 25.0 17.1 81.5 31.3 70.6 50.5 22.3 81.3 25.5 21.0 0.1 18.9 4.3 38.1

DCAN [47] SR 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.3 17.0 6.7 36.2

CBST [57] ST 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

Self-Ensembling (SE) ST 76.4 16.7 71.5 13.0 13.1 17.5 17.3 8.3 76.5 16.3 67.4 42.5 10.4 78.1 27.9 37.2 0.0 22.2 7.4 32.6

TGCF-DA AT 73.9 19.8 74.8 19.7 21.8 20.7 26.7 12.4 78.0 22.3 72.0 53.4 12.9 73.3 24.5 28.5 0.0 24.3 14.1 35.4

Ours (TGCF-DA + SE) AT+ST 90.2 51.5 81.1 15.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4 42.5

Target Only - 94.3 77.7 86.6 52.9 50.4 50.1 52.9 57.0 81.4 64.8 94.1 57.8 55.5 87.6 79.0 56.1 19.6 45.3 20.9 62.3

(b) SYNTHIA → Cityscapes

Method

M
ec

h
.

ro
ad

si
d
ew

al
k

b
u
il

d
in

g

w
al

l

fe
n
ce

p
o
le

li
g
h
t

si
g
n

v
eg

et
at

io
n

sk
y

p
er

so
n

ri
d
er

ca
r

b
u
s

m
o
to

rb
ik

e

b
ik

e

m
Io

U

m
Io

U
*

Baseline (Source Only) - 6.8 15.4 56.8 0.8 0.1 14.6 4.7 6.8 72.5 78.6 41.0 7.8 46.9 4.7 1.8 2.1 22.6 24.1

Curriculum DA [51] ST 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

LSD-seg [41] AT 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 -

AdaptSegNet [44] AT 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

ROAD [5] AT 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.2 -

Conservative Loss [55] AT 80.0 31.4 72.9 0.4 0.0 22.4 8.1 16.7 74.8 72.2 50.9 12.7 53.9 15.6 1.7 33.5 34.2 40.3

DCAN [47] SR 79.9 30.4 70.8 1.6 0.6 22.3 6.7 23.0 76.9 73.9 41.9 16.7 61.7 11.5 10.3 38.6 35.4 -

CBST [57] ST 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1

Self-Ensembling (SE) ST 40.1 19.6 75.2 2.6 0.2 23.2 4.0 9.8 60.3 38.3 49.1 14.0 67.0 17.4 6.4 11.9 27.5 29.2

TGCF-DA AT 63.9 25.6 75.9 5.4 0.1 22.6 2.6 6.8 78.4 77.2 48.7 16.5 62.2 24.2 5.0 22.1 33.6 39.8

Ours (TGCF-DA + SE) AT+ST 90.1 48.6 80.7 2.2 0.2 27.2 3.2 14.3 82.1 78.4 54.4 16.4 82.5 12.3 1.7 21.8 38.5 46.6

Target Only - 89.2 85.3 90.7 65.5 60.7 21.5 2.1 7.2 74.2 93.2 61.8 40.1 78.4 81.4 36.7 24.8 57.1 64.1

Table 1. The semantic segmentation results on Cityscapes validation set when evaluating the model trained on (a) GTA5 and (b) SYNTHIA.

All segmentation models in table use VGG-16 based models. The mIoU* denotes the segmentation results over the 13 common classes.

“Source Only” denotes the evaluation result of models only trained on source data. “Target Only” denotes the segmentation results in

supervised settings. The mechanism “AT”, “ST” and “SR” stand for adversarial training, self-training, and style transfer respectively.

4.4. Ablation studies

Ablation for Self-Ensembling (SE): Comparing the base-

line and SE, SE shows small improvement in mIoUs by

4.3% in Table 1-(a) and by 4.9% in Table 1-(b). However,

in details, we observe that SE does not perform well dur-

ing the whole training process as shown in Fig. 4 (blue and

orange lines). In contrast to our proposed method (TCFD-

DA + SE), the teacher and student networks do not maintain

complementary correlations.

Ablation for TGCF-DA: TGCF-DA is necessary to gener-

ate synthetic data, which help the network reduce the do-

main shift. Compared to the baseline, TGCF-DA improves

the mIoUs by 7.1% in Table 1-(a) and by 11.0% in Table 1-

(b). Such improvements validate that TGCF-DA serves as

a useful way to reduce the domain shift. Except for TGCF-

DA, SE shows the poor results in both experiments. On the

contrary, our proposed method in Fig. 4 (grey and yellow

lines) clearly demonstrates that the teacher updated by the

student continues to improve segmentation capability, and

successfully transfer its knowledge to the student. As a re-
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Figure 4. The testing mIoUs of SE (blue and orange) and our

method (grey and yellow) w.r.t training epochs on the GTA5 →
Cityscapes experiment.

sult, the teacher and student of our method enhance their

performance simultaneously. These results substantiate our

intuition that TGCF-DA enhances the capability of the self-

ensembling algorithm for semantic segmentation.

5. Analysis

In this section, we provide visualization results and anal-

ysis on varaious components of our proposed framework.
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Image / Ground Truth Student Network Teacher Network Consistency Loss

Figure 5. Visualization results of GTA5 → Cityscapes (first and second rows) and SYNTHIA → Cityscapes (third and fourth rows).

Segmentation results at 10K training steps (first and third rows) and 56K training steps (second and fourth rows). The fourth and fifth

columns illustrate the heatmap of the consistency loss and disagreement map between the student and teacher networks.

5.1. Visualization

The effectiveness of the self-ensembling is visualized in

Fig. 5. We validate that the teacher network generates bet-

ter predictions, and then different predictions between the

teacher and student networks cause consistency loss to en-

force the consistency of their predictions. In Fig. 5, the

first and third rows show that predictions of the teacher can

be a good proxy for training the student network early in

the training. In addition, we point out that the consistency

loss concentrates on the boundary of each object in the later

training stage. Hence, the consistency loss can play a role in

refining boundaries of semantic objects where the segmen-

tation model are likely to output wrong predictions.

In Fig. 7, we show the example results of TGCF-

DA compared with other Image-to-Image (I2I) translation

methods: CycleGAN [53], UNIT [27], and MUNIT [21].

Both CycleGAN and UNIT often generate distorted images

containing corrupted objects and artifacts. MUNIT is ca-

pable of preserving objects in images, but we observe that

the style of the majority classes in the target image is of-

ten matched to elements of different classes in the source

image, which is similar to “spills over” problem in [30].

For example, the translated image from MUNIT shows arti-

facts in the sky like road texture of the target domain. Com-

pared to the methods mentioned above, our method is not

only computationally cheap and memory efficient due to the

cycle-free loss but also demonstrating compelling visual re-

sults with preserving semantic consistency.
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Figure 6. Per-class IoU gains through the self-ensembling. The

blue bar represents per-class IoU gains in GTA5→Cityscapes ex-

periment. The orange bar indicates the per-class IoU gains in

SYNTHIA→Cityscapes experiment.

5.2. Analysis of selfensembling with perclass IoUs

To better understand the self-ensembling, we compare

the per-class IoUs of our method with and without the self-

ensembling. In Fig. 6, we show the per-class IoU gains be-

tween TGCF-DA and Ours (TGCF-DA + SE). Although the

IoU scores in the most categories are generally improved,

there is a difference in performance gains among differ-

ent categories. Figure 6 demonstrates that the IoU gains in

majority classes (such as “road”) are generally better than

those in minority classes (like “bus”). These experimental

results are attributed to the self-ensembling and class imbal-

ance issues. Due to the class imbalance, the segmentation

network often produces incorrect predictions on minority
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Source Target CycleGAN UNIT MUNIT Ours (TGCF-DA)

Figure 7. Example images of SYNTHIA synthesized in the style of Cityscapes with CycleGAN [53], UNIT [27], and MUNIT [21].

Ramp-up coefficient δ0 EMA decay α

1 3 30 50 0.9 0.99 0.999

GTA5 41.3 42.3 42.5 33.6 37.6 38.9 42.5

SYN 35.4 36.1 38.5 32.5 36.2 38.5 37.8

Table 2. Hyperparameter sensitivity. GTA5 denotes GTA5 →
Cityscapes experiment and SYN denotes SYNTHIA → Citysc-

paes experiment.

classes [57]. In the self-ensembling method, this effect can

be strengthened because the student is iteratively learned

from predictions of the teacher, which tends to make in-

correct predictions on minority classes rather than majority

classes. Thus, the self-ensembling gives rise to large im-

provements in per class IoUs of majority classes compared

to minority classes. It is worth noting that this result accords

with our intuition that predictions of the teacher network

serve as pseudo labels for the student network.

5.3. Hyperparameter sensitivity on selfensembling

In the self-ensembling, the consistency loss weight δ and

the exponential moving average (EMA) decay α are im-

portant hyperparameters. We conduct the experiments to

explore the sensitivity of these hyperparameters. Table 2

shows that setting a proper value for the EMA decay is sig-

nificant. In all our experiments, the EMA decay is 0.99

during the first 37K iterations, and 0.999 afterward. The

teacher benefits from new and accurate student’s weight

early in the training because the student improves its seg-

mentation capacity rapidly. On the other hand, since the

student improves slowly in the later training, the teacher can

gain knowledge from the old ensembled model.

The consistency loss weight δ follows the formula δ =

1+δ0e
−5(1−x)2 , where x ∈ [0, 1] denotes the ratio between

the current epoch and the whole epochs and δ0 is a ramp-

up coefficient. Different from the usual sigmoid ramp-up

[43], we add one to the formula because it is essential to

guarantee the contribution of the consistency loss at the be-

ginning of training. We decide to use δ0 = 30 for all our

experiments.

Figure 8. The change of augmented images w.r.t the value of

weight λseg . From left to right: source input, output with λseg

= 1, output with λseg = 10.

5.4. Hyperparameter sensitivity on TGCFDA

The weight λsem for the semantic constraint is a hyper-

parameter for training our augmentation network. Figure 8

shows some example results on SYNTHIA → Cityscapes.

When we use a lower value (λsem = 1) for semantic con-

straint, the generator is prone to mix up objects and scenes

in the augmented images. On the other hand, the proper

value for semantic constraint (λsem = 10) helps the network

preserve the local and global structures of images. These re-

sults confirm that the semantic constraint enforces our aug-

mentation network to retain semantic consistency.

6. Conclusion

We have proposed a novel framework comprised of two

complementary approaches for unsupervised domain adap-

tation for the semantic segmentation. We present the GAN-

based data augmentation with the guidance of target sam-

ples. Without the use of cycle consistency, our augmenta-

tion network produces augmented images for domain align-

ment. Moreover, the self-ensembling with those augmented

images can perform successful adaptation by transferring

pseudo labels from the teacher network to the student net-

work. Experimental results verify that our proposed model

is superior to existing state-of-the-art approaches.
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