
Optimizing Network Structure for 3D Human Pose Estimation

Hai Ci1, Chunyu Wang2, Xiaoxuan Ma1, and Yizhou Wang1,3,4

1 Computer Science Dept., Peking University
2 Microsoft Research, Asia

3 Deepwise AI Lab 4 Peng Cheng Laboratory

{cihai, maxiaoxuan, yizhou.wang}@pku.edu.cn, chnuwa@microsoft.com

Abstract

A human pose is naturally represented as a graph where

the joints are the nodes and the bones are the edges. So

it is natural to apply Graph Convolutional Network (GCN)

to estimate 3D poses from 2D poses. In this work, we pro-

pose a generic formulation where both GCN and Fully Con-

nected Network (FCN) are its special cases. From this for-

mulation, we discover that GCN has limited representation

power when used for estimating 3D poses. We overcome

the limitation by introducing Locally Connected Network

(LCN) which is naturally implemented by this generic for-

mulation. It notably improves the representation capability

over GCN. In addition, since every joint is only connected

to a few joints in its neighborhood, it has strong general-

ization power. The experiments on public datasets show it:

(1) outperforms the state-of-the-arts; (2) is less data hun-

gry than alternative models; (3) generalizes well to unseen

actions and datasets.

1. Introduction

A 3D human pose is naturally represented by a skele-

tal graph parameterized by the 3D locations of the body

joints such as elbows and knees. See Figure 1. When we

project a 3D pose to a 2D image by the camera parameters,

the depth of all joints is lost. The task of 3D pose estima-

tion solves the inverse problem of depth recovery from 2D

poses. This is an ambiguous problem because multiple 3D

poses may correspond to the same 2D pose after projec-

tion. But it is practically solvable because 3D poses lie on a

low-dimensional manifold which provides strong structural

priors to reduce the ambiguities [36].

A recent work [18] introduces a variant of Fully Con-

nected Network (FCN) to map a 2D pose to 3D space. It

achieves promising results on the benchmark datasets. But

we experimentally find it has degraded cross action and

cross dataset performance which is also observed in [17].

This may be attributed to the dense connections in FCN

0. hip
1. right hip

2. right knee

3. right foot

4. left hip

5. left knee

6. left foot

7.belly

9. nose
10. head

11. left shoulder

12. left elbow

13. left hand

14. right shoulder

15. right elbow

16. right hand

8. neck

Figure 1. Human pose is essentially a skeletal graph model con-

sisting of a number of body joints linked by the bones. The figure

shows the graph model used in this paper.

and limited variations in the training set, which increase the

chance of linking unrelated joints. This also contradicts the

fact that human can perceive a 3D joint by only seeing the

2D joints in its neighborhood.

The Graph Convolutional Network (GCN) [3, 5, 6, 8, 10,

14, 27, 28, 34] is a promising alternative for 3D pose esti-

mation because it only aggregates the features of the “se-

lected” nodes to compute features for a node of interest.

See Figure 2 (b) for conceptual illustration. We propose a

generic formulation in which both GCN and FCN are spe-

cial cases. We factor the Laplacian operator in GCN [6] into

the product of a structure matrix which encodes the depen-

dence relation among the nodes, and a weight matrix which

defines how to aggregate the dependent features. Based

on the formulation, we discover two main limitations of

GCN. First, the weight matrix has an inherent weight shar-

ing scheme which harms the model’s representation ability.

For example, in Figure 2 (b), the learnable operators T are

the same for all nodes. Second, the structure matrix is di-

rectly determined by node distance which lacks flexibility

to support customized node dependence.

In this work, we present Locally Connected Network

(LCN) on top of our generic formulation to overcome the

limitations of GCN. First, we discard the weight sharing

scheme by freeing all of the parameters in the weight ma-

2262

A

B

C

Input

Graph Features

FCN

A

B

C

Output

Graph Features

B

A

C

B

A

C

A

B

C

Input

Graph Features

A

B

C

A

B

C

A

B

C

T

T

T

(A, B)

(A, B, C)

(A, C)

GCN

A

B

C

Output

Graph Features

A

B

C

Input

Graph Features

A

B

C

A

B

C

A

B

C

TB

TA

TC

(A, B)

(A, B, C)

(A, C)

LCN

A

B

C

Output

Graph Features

(a) (b) (c)

B

A

C

B

A

C

Figure 2. Conceptual difference between FCN, GCN and LCN. The input is a graph with three nodes and two edges. Each node is associated

with a 2-dimensional feature vector, e.g. its 2D location in the task of 3D pose estimation. (a) In FCN, the input features of different nodes

are mixed by dense connections making every output feature dependent on the input features of all nodes. (b) In GCN, the output features

of a node only depend on the nodes which are regarded as “related” determined by the Laplacian matrix. For example, when we compute

the features for the node B (top branch), it only takes the features of nodes A and B as input. Different nodes share the same filter T

(the blue rectangles). (c) In LCN, each node has a different filter. In addition, the dependence between the joints are specified in a more

straightforward and flexible way than GCN which we will discuss in detail in the paper.

trix to fully unleash its representation ability. For example,

see Figure 2 (c) that the three nodes (branches) have their

own operators TA, TB and TC . Second, we propose a more

straightforward and flexible way to construct the structure

matrix according to human anatomy which allows us to

freely determine the joint dependence. In summary, LCN

combines the advantages of GCN and FCN. First, it has

sparse joint connections among the nodes which reduces the

risk of over-fitting the datasets with limited variations and

enhances the model’s generalization ability. Second it has

strong representation ability by freeing all of the learnable

parameters in the weight matrix.

We evaluate LCN on the public datasets H36M [11]

and MPI-INF-3DHP [19]. It outperforms FCN, GCN and

the state-of-the-arts on both datasets. First, when the in-

put 2D poses are the ground truth, the 3D pose error of

LCN is smaller than that of FCN [18] which has dense

connections. This indicates LCN has sufficient represen-

tation ability although the connections are sparse. Second,

when the 2D poses are estimated from images and inaccu-

rate, the 3D pose error of LCN is smaller than the state-of-

the-arts although some of them even use additional train-

ing datasets. Third, when we apply our model learned on

H36M to the MPI-INF-3DHP dataset, it achieves better per-

formance than the state-of-the-arts. The promising cross-

datasets results suggest that the generalization ability of our

approach is strong because the unrelated joints are not con-

nected which reduces the risk of over-fitting.

2. Related Work

We classify the 3D human pose estimators into unsu-

pervised and supervised classes. Unsupervised approaches

[16, 30, 35, 36, 37] explicitly model the relations between

2D features, 3D model and camera parameters, and opti-

mize the parameters of the 3D model such that its projec-

tion matches the 2D features. For example, Lee and Cohen

[16] use data-driven MCMC to search the high dimensional

parameter space of the 3D model to maximize the likeli-

hood of the image features including skin color, contour

and ridges. Some works [30, 36, 37] propose to estimate

3D poses from 2D poses by minimizing the distance be-

tween the projected 2D poses and the estimated 2D poses.

They use limb length priors to reduce the ambiguity. Ijaz

and Black [2] propose to learn a pose-dependent bending

angle prior to prevent invalid poses. Later works [25, 36]

propose to learn a low dimensional representation to sup-

press illegitimate estimations.

Another class of approaches (e.g., [12, 22, 23, 24, 29, 31,

33, 38, 39]) treat 3D pose estimation as a supervised regres-

sion problem. Agarwal and Triggs [1] extract shape descrip-

tors from images and learn a relevance vector regression

machine to map the descriptors to 3D poses. Similarly, Paul

et al. [21] extract edge histograms and hash the features to

3D poses. Recently, since 2D human pose estimation is rel-

atively accurate, many approaches (e.g., [18, 22, 26]) have

focused on learning the mapping from 2D poses to 3D and

achieved the state-of-the-art results. In particular, Martinez

et al. [18] propose a variant of FCN to map a 2D pose to

3D. Similarly, Sun et al. [29] propose an end-to-end learn-

ing method to estimate 3D poses from 2D pose heat maps.

Our work belongs to this class and learns a mapping from

2D poses to 3D poses. But the difference is that our work

focuses on optimizing the joint dependence based on human

anatomy which is not addressed in the previous works.

3. Reformulate GCN

We first revisit a popular implementation of GCN [6].

Then we factor the Laplacian operator in GCN into the

product of a structure matrix and a weight matrix. Based

on the formulation, we can clearly see why GCN has limi-

tations when it is used for 3D pose estimation. Then we ob-

tain a more generic model based on the formulation which

overcomes the limitations. Finally, we discuss the relation

between the generic model, FCN and GCN.

2263

3.1. Revisit GCN

GCN processes features defined on a graph G =
(V, E ,W) where V denotes a set of N nodes, E denotes

a set of edges and W ∈ RN×N denotes a weighted adja-

cency matrix encoding the dependence between the nodes.

We denote x ∈ RN as a feature defined on the N nodes

where each dimension corresponds to one node. There are

M features in total for each node. We put all features of

all nodes into a big matrix X ∈ RM×N . We use X(:, n)
to denote the features of the nth node and use X(m, :) to

denote the mth feature of all nodes. We use Xr and Xc to

denote the flattened copies of X in row and column major

order, respectively.

The essential operator in GCN is Graph Laplacian. The

combinatorial definition is L = D − W ∈ RN×N where

D is the diagonal degree matrix with Dii =
∑

j Wij . The

Laplacian can be diagonalized by the Fourier basis U =
[u1, · · · ,uN] ∈ RN×N such that L = UΛU⊤. The graph

Fourier transform of a feature vector x ∈ RN is

y = gθ(L)x = gθ(UΛU⊤)x = Ugθ(Λ)U⊤x, (1)

where gθ(Λ) can be parameterized with the use of a polyno-

mial filter gθ(Λ) =
∑K−1

k=0 θkΛ
k where K is the expansion

order and θk is the learnable parameter.

3.2. Reformulation

We obtain an output feature vector y ∈ RN for N nodes

by applying a filter gθ to the input features X

y = gθ(X) =

K−1
∑

k=0

M
∑

m=1

θkm ·Lk ·X(m, :)⊤ (2)

The filter has different θ for different feature dimensions

(M in total) and expansion orders (K in total). However,

different nodes in the graph share the same filter θ. See the

above equation that the same set of θ’s is used for comput-

ing different dimensions of y which correspond to different

nodes. Let us take a closer look at the output feature corre-

sponding to the qth node yq , which is the qth dimension of

y, by modifying the above formulation

yq =

K−1
∑

k=0

M
∑

m=1

θkm ·Lk(q, :) ·X(m, :)⊤, (3)

Based on the definition of the Laplacian matrix Lk [9, 6],

if the minimum number of edges connecting the joints i

and j (i.e. their distance on the graph) is larger than k, then

Lk(i, j) = 0. So the above formulation can be interpreted

as aggregating features from the neighboring nodes whose

distance is less than K. The feature yq can be written as:

yq =

K−1
∑

k=0

M
∑

m=1

X(m, :) ·Lk(q, :)⊤ · θkm

=

K−1
∑

k=0

M
∑

m=1

X(m, :) ·
(

Lk(q, :)⊤ ⊙Θkm

)

(4)

where Θkm ∈ RN×1 with θkm repeated N times. Then we

reformulate the inner summation over m by a more compact

matrix form and obtain

yq =

K−1
∑

k=0

[

M

‖
m=1

X(m, :)

] [

M

‖
m=1

(

Lk(:, q)⊙Θkm

)

]

=
K−1
∑

k=0

Xr

[(

M

‖
m=1

Lk(:, q)

)

⊙

(

M

‖
m=1

Θkm

)]

=

K−1
∑

k=0

Xr

(

Sk
q ⊙W k

q

)

,

(5)

where ‖ denotes concatenation. Sk
q ∈ RMN×1 is a vector

with Lk(:, q) repeated N times. It contains the neighbour-

hood information of node q. We can generalize the formu-

lation to all nodes in the graph as follows:

y =
K−1
∑

k=0

Xr

(

Sk ⊙W k
)

(6)

where both Sk and W k are 2D matrices with the shape of

MN ×N . Specifically, Sk
q is the the qth column of Sk and

W k
q is the qth column of W k.

3.3. Limitations

The main limitation of GCN lies in the weight sharing

scheme in W k. First, we can see from Eq. (5) that each

W k
q has only M unique parameters because each Θkm has

one unique parameter. Recall Θkm is obtained by repeating

θkm N times. Second, GCN computes features for differ-

ent nodes using the same set of parameters, i.e. W k
q = W k

p

for all p and q. See Figure 2 (b) that the three nodes share

the same operator T . The weight sharing in W enhances

the model’s generalization ability on the semi-supervised

node classification task [6, 14] where the number of train-

ing data is small. However, it will harm its representation

capability when it is used for 3D pose estimation because

each joint needs to aggregate features from its neighbors in

unique ways in order to infer its 3D location.

Another minor limitation lies in the way GCN constructs

the structure matrix S. As shown in Eq.(6), it treats all

neighbors of the same distance to the node of interest with-

out discrimination, leaving us no flexibility to freely con-

nect the joints of arbitrary distance.

2264

3.4. Generalization

We obtain a more generic model by dropping the struc-

ture constraints in Sk and W k:

y = X (S ⊙W) (7)

We will show in the next subsection that both FCN and

GCN are special cases of the generic model. More impor-

tantly, on top of the generic model, we propose a straight-

forward approach to construct the structure matrix S to di-

rectly reflect the joint dependence. See Figure 3 for the

conceptual illustration. Together with the constraint-free

weight matrix, we obtain the LCN model which has en-

hanced representation capability. We will describe the ap-

proach in more detail in the next section.

3.5. Relation to FCN and GCN

We now discuss the relation between the above generic

model and FCN. First, FCN is essentially represented by

the product of a weight matrix and a feature matrix. Cus-

tomizing the generic model (7) into FCN can be achieved

by setting all values in S to be 1

y = X (1⊙W) , (8)

which means all of the nodes are connected. The param-

eters in W are all free, and are learned end-to-end from

training datasets. We can see that FCN does not take advan-

tage of the graph structures but simply connects all nodes.

See Figure 2 (a). We observe in experiments this impacts

its generalization ability.

GCN can be obtained by initializing Sk and W k ac-

cording to Eq. (4 and 5) and stacking Sk,W k, (k =
0, · · · ,K − 1) vertically to generate S and W in Eq. (7).

The input features X should also be repeated for K times.

So GCN is a specialization of the generic model.

4. Locally Connected Network

LCN is also a specialization of the generic model in

Eq.(7). But it combines the advantages of FCN and GCN:

(1) it has adequate representation ability as there are no con-

straints in W ; (2) it has strong generalization ability as the

joints are sparsely connected in S.

We first present how we implement an LCN layer as

shown in Figure 3, where the core is to construct S and

learn W . Then we describe how we build a deep network

for 3D pose estimation using the LCN layers. Note that

S is shared for all LCN layers which is offline constructed

based on the specified joint dependence. Different layers

have their own W which is learned end-to-end.

4.1. Joint Dependence

Our principal for determining the joint dependence rela-

tion is “locality” which means each joint only depends on

𝑥𝑥𝒉𝒉(𝟏𝟏) 𝒉𝒉(𝟐𝟐) 𝒉𝒉(𝟑𝟑)
𝑊𝑊(1,1) 𝑊𝑊(1,𝟐𝟐) 𝑊𝑊(1,𝟑𝟑)
𝑊𝑊(2,1) 𝑊𝑊(2,2) 𝑊𝑊(2,3)
𝑊𝑊(3,1) 𝑊𝑊(3,2) 𝑊𝑊(3,3)

𝑦𝑦𝒖𝒖(𝟏𝟏) 𝒖𝒖(𝟐𝟐) 𝒖𝒖(𝟑𝟑)

𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 1 1

1 𝟎𝟎 1

𝑊𝑊

𝑆𝑆

node1 node2 node3 node1 node2 node3

𝑀𝑀 𝑀𝑀𝑀

𝑀𝑀
𝑀𝑀𝑀

Figure 3. Illustration of an LCN layer. Suppose we have 3 nodes

whose features are represented as the blue bars. The weight matrix

W and structure matrix S ∈ R3M×3M
′

are evenly divided into

3 × 3 blocks. We fill zeros in the structure matrix at appropriate

locations to remove the dependence between the corresponding

pairs of joints. For example, output features of node 1 only depend

on the input features of nodes 1 and 3.

those which have short manifold distance to it. The mani-

fold distance between two joints is defined by their distance

on the graph (i.e. the skeleton body model). For instance,

the manifold distance between the left-elbow and left-hand

is one because they are directly connected. See Figure 1 for

the definition of our skeleton model.

In this paper, we investigate a simple way to determine

the joint dependence, i.e. each joint depends on the neigh-

bors whose manifold distance to the joint is less equal than

K. For instance, when K = 2, the joint 12 is dependent

on the joints 13, 11, 8 and 7. We denote this approach as

LCN (K-NN). We will evaluate the 3D estimation accuracy

when different K is used. It is worth noting that there are

other alternatives to determine the joint dependence but it

is not the focus of this paper to explore them. The point

is that our model can leverage any pre-determined joint de-

pendence relation as a prior.

4.2. Structure Matrix

We construct S to reflect the above defined joint depen-

dence which is very straightforward due to the reformula-

tion. If joint j is dependent on the joint i, then we set the

(i, j) block of S to be ones. Otherwise, we set it to be zeros.

In this way, the features of the ith node will not contribute

to the computation of the output features of the jth node.

See Figure 3 for the conceptual illustration.

We now mathematically verify that the constructed S has

the desired property. It is helpful to also refer to Figure

3. For notation simplicity, we use h(i) to denote the M

input features of the ith joint h(i) = X(:, i)⊤ where h(i) ∈
R1×M . Similarly, we use u(j) to denote the M ′ output

2265

features of the node j where u(j) ∈ R1×M ′

. The operation

in LCN is then defined as:

N
∑

i=1

h(i)(S(i,j) ⊙W (i,j)) = u(j) (9)

We can see that if S(i,j) is zero, then h(i) will not contribute

to the computation of u(j) as we expect. We call this op-

eration, which is illustrated in Figure 2 as one LCN layer

which generates output features for all nodes.

We can further replace the ones in S by continuous val-

ues to reflect the “importance” among the joints. Instead

of manually specifying the values, we can also learn them

from the training dataset end-to-end by replacing the non-

zero values in S with learnable parameters.

4.3. Application to 3D Pose Estimation

For the task of 3D pose estimation, we build a deep neu-

ral network which uses the above discussed LCN layer as

the basic building block. Inspired by the network structure

proposed by Martinez et al. [18] and Defferrard et al. [6],

our LCN has several cascaded blocks with each consisting

of two LCN layers, interleaved with BN, LeakyReLU and

Dropout. Each block is wrapped in a residual connection.

The number of output features M ′ in each LCN layer is set

to be 64. It is worth noting that different layers share the

same structure matrix but have different weight matrices.

The input to the LCN network is the 2D locations of the

body joints and the output is the corresponding 3D loca-

tions. We use L2 loss between the outputs and the ground

truth. The network can be trained end-to-end.

5. Experiments

5.1. Datasets and Metrics

We evaluate our approach on the public datasets H36M

[11] and MPI-INF-3DHP [19]. For H36M, we use subjects

1, 5, 6, 7, 8 for training and subjects 9, 11 for testing follow-

ing [18]. We train a single model for all actions. We com-

pute the Mean Per Joint Position Error (MPJPE) between

the ground truth and the 3D pose estimation [18] after align-

ing the mid-hip joints. We refer to this as protocol #1. We

also report results when the estimations are aligned with the

ground truth via a rigid transformation. We call this post-

processing protocol #2. For MPI-INF-3DHP, we directly

apply the model trained on H36M to the test set to validate

the generalization ability of our approach. We use the met-

rics of average PCK and AUC. Following previous works

[40, 17], we assume global scale is known for experimental

evaluation.

5.2. Implementation Details

Coordinate system Denote the 3D location of a joint in

the world Coordinate System (CS) as PW. We first trans-

Model Coordinate System Error

Martinez et al. [18] camera CS 67.50

Martinez et al. [18] pixel CS 63.21

LCN (3-NN) camera CS 62.95

LCN (3-NN) pixel CS 57.56

Table 1. The average 3D pose estimation error of two models when

using different coordinate systems on the H36M dataset under pro-

tocol #1. The 2D poses used for training and testing are estimated

by SH [20] which is trained on MPII.

form it to the camera CS by the extrinsic camera param-

eters: PC = R(PW − T). Then we project PC =
(Xc, Yc, Zc) to the pixel CS: Pp = (u, v) using the intrinsic

camera parameters where u = f Xc

Zc

+cx and v = f Yc

Zc

+cy .

Many works [18] learn a mapping from Pp to PC. How-

ever, it is impossible to determine the pose scale from a

single image because a “large-but-far” person may have

the same projection (u, v) as a “small-but-close” person.

Although they claim to estimate 3D poses in the camera

CS (which has scale information), they actually assume the

pose scales and focal lengths in the training and testing sets

are similar which is a limitation.

We propose to remove the scale in PC. Specifically, we

seek for a scalar λ which makes λPC have similar scale as

Pp by minimizing ‖λP̂C − P̂p‖2 where P̂C and P̂p denote

the poses centered around their pelvis joints. We only use

the x, y coordinates of the poses when computing λ.

We propose to estimate λPC from Pp which is indepen-

dent of the actual body scale. For evaluation purpose, the

estimation is transformed back to the camera CS using λ.

We find this coordinate system benefits for different models

as shown in Table 1.

2D detections The input to our network is 2D poses es-

timated by the Stacked Hourglass (SH) [20] model trained

on the MPII dataset. In some experiments, we also finetune

SH on the H36M dataset which will be described clearly.

Training details We train our model for 200 epochs using

Adam, a start learning rate of 0.001 and exponential decay,

using mini-batches of size 200. During testing, it can pro-

cess about 47K samples per second using batch processing

mode (200 samples per batch) on a single GTX 1080ti GPU.

5.3. Baselines

The first baseline is an FCN variant proposed by Mar-

tinez et al. [18]. The second baseline is a GCN variant pro-

posed by Defferrard et al. [6], which is originally designed

for semi-supervised node classification tasks. We slightly

modify its public implementation to make it suitable for 3D

pose estimation. We also evaluate different variants of LCN.

2266

Model Error # Parameters

Martinez et al. [18] 63.21 4.3M

Defferrard et al. [6] 66.37 0.05M

LCN (1-NN) 58.77 0.95M

LCN (2-NN) 57.73 1.85M

LCN (3-NN) 57.56 2.92M

LCN (4-NN) 58.37 3.96M

LCN (2-NN)-Learn 57.80 1.85M+111

LCN -Learn 59.22 4.3M+289

Table 2. The average 3D pose estimation error of different models

on the H36M dataset under protocol #1. The 2D poses used for

training and testing are estimated by SH [20] which is trained on

MPII. The third column shows the number of learnable parameters

of the “weight matrix” + “structure matrix”.

In particular, we investigate LCN (K-NN) where K ranges

from 1 to 4. In addition, for LCN (K-NN), we can replace

the blocks of ones in S by learnable parameters to reflect

its degree of dependence on the other joints. We denote

this approach as LCN (K-NN)-Learn. We also investigate

an approach when we do not specify S according to human

anatomy but completely learn it from data. This approach

is denoted as LCN-Learn.

5.4. Comparison to the Baselines

The results shown in Table 2 are obtained when the 2D

poses are estimated by the SH model [20] which is only

trained on the MPII dataset. First, the FCN model [18]

gets an error of 63.21mm. Second, directly using GCN

[6] increases the error to 66.37mm. The degraded accuracy

should be attributed to the weight sharing scheme in GCN

which harms the model’s representation ability.

LCN obtains a smaller error than its two rivals. When

a joint only depends on its nearest neighboring joints, i.e.

LCN (1-NN), the error is already reasonably small. This

indicates the 3D location of a joint can be estimated by ob-

serving a small number of 2D joints in its neighborhood.

Increasing the number of dependent joints further decreases

the error when it is smaller than four. Then the error begins

to increase. This may be because the redundant connec-

tions with the unrelated joints have negative impacts on the

model’s generalization ability.

The estimation error of LCN (2-NN)-Learn is similar to

LCN (2-NN). Figure 4 shows the learned structure matrix.

First, the learned joint dependence is approximately sym-

metric which agrees with our common sense. Second, the

strongest dependence is usually from the directly connected

joints. When we only rely on data to learn the structure ma-

trix, i.e. (LCN-Learn), it gets a larger error which implies it

is important to leverage anatomy priors to the model to pre-

vent it from over-fitting. Although learning structure matrix

Figure 4. The structure matrix learned by LCN (2-NN)-Learn. X-

axis and y-axis indicate indices of joints.

S doesn’t show a better performance, we find it has bet-

ter robustness to noise, which will be demonstrated later in

section 5.6.

5.5. Comparison to the State­of­the­arts

The H36M Dataset We compare our approach (LCN (3-

NN)) to the state-of-the-arts on the H36M dataset. The 2D

pose model SH is first pre-trained on the MPII dataset and

then finetuned on H36M. The results using the protocol #1

and #2 are shown in Table 3 and 5, respectively.

Protocol #1: First, when the 2D poses are estimated

by Stacked Hourglass [20], the 3D error is 52.7mm which

is smaller than previous state-of-the-arts. Second, our ap-

proach improves the lower bound of [18] by a notable mar-

gin when trained on GT 2D poses.

Protocol #2: Our approach also achieves comparable re-

sults with previous state-of-the-art [22] even though they

use additional ordinal annotation.

The MPI-INF-3DHP Dataset We apply the model

trained on H36M to the test set of MPI-INF-3DHP. Table

4 shows the results. First, we can see that the FCN model

[18] has poor results which indicates that the dense con-

nections in FCN impact the generalization ability. Sec-

ond, our approach outperforms the previous state-of-the-

arts [19, 40] which are dedicated to address the generaliza-

tion issue across different datasets. In particular, Pavlakos et

al. [22] use additional annotations and datasets when they

train their model. This validates the strong generalization

capability of our model to new datasets.

5.6. The Generalization Ability

We systematically evaluate the generalization ability of

our approach from three aspects.

Cross Actions We train our model on ONE of the 15 ac-

tions in the H36M dataset and test on all actions. Figure 5

shows the results. We can see that the MPJPE of our ap-

proach is about 20mm smaller than that of [18]. Recall that

the gap is about 10mm when we use all actions for training.

2267

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg

Pavlakos et al. [23] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Tekin et al. [32] 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7

Katircioglu et al. [13] 54.9 63.3 57.3 62.3 70.3 77.4 56.7 57.1 79.0 97.1 64.3 61.9 67.1 49.8 62.3 65.4

Zhou et al. [40] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 51.4 63.2 55.3 64.9

Sun et al. [29] - - - - - - - - - - - - - - - 64.1

Martinez [18] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Fang et al. [7] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Yang et al. [39] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Pavlakos et al. [22] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Ours 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7

Martinez et al. (GT) [18] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Ours (GT) 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3

Table 3. 3D estimation errors of different methods on H36M under protocol #1. GT means the 2D poses are from the ground truth.

Training Data GS noGS Outdoor ALL (PCK) ALL (AUC)

Martinez [18] H36m 49.8 42.5 31.2 42.5 17.0

Mehta [19] H36m 70.8 62.3 58.8 64.7 31.7

Yang [39] H36m+MPII - - - 69.0 32.0

Zhou [40] H36m+MPII 71.1 64.7 72.7 69.2 32.5

Luo [17] H36m 71.3 59.4 65.7 65.6 33.2

Pavlakos [22] H36m+MPII+LSP - - - 44.3 19.8

Pavlakos* [22] H36m+MPII+LSP 76.5 63.1 77.5 71.9 35.3*

Ours H36m 74.8 70.8 77.3 74.0 36.7

Table 4. Results on the test set of MPI-INF-3DHP by scene. GS

indicates green screen background. The results of [18] are directly

taken from [17]. * uses extra ordinal annotation.

25.22
15.97 15.90 16.84

15.51

25.91

18.15

35.44

26.49

17.00

21.43

23.86

22.20

15.48

21.60 21.3

0

20

40

60

80

100

120

140

M
P

J
P

E
 (

m
m

)

Ours Martinez et al. Δ

Figure 5. The 3D pose estimation errors when we train the FCN

[18] and our LCN models on each of the 15 actions and test on all

actions. X-axis indicates the action used in training.

This indicates our approach generalizes better to unseen ac-

tions.

Number of Training Data We investigate the impact of

the number of training data. We conduct two experiments.

In the first one, we randomly sample a predefined number

of training data from all actions. We denote this experiment

as “rich”. In the second one, we only sample from the first

action “Direction” which is denoted as “scarce”.

Figure 6 shows the results. In the “scarce” experiment,

we can see that our approach only needs about 2k examples

109.43

103.33 103.07 103.08 102 101.6

141.2
136.09

130.16 128.87 128.23 127.3

78.02

72.12
67.03

63.42 61.84 60.39

90.51

84.14

78.39
74.82

71.84 69.84

60

70

80

90

100

110

120

130

140

150

1000 2000 5000 10000 20000 50000

M
P

J
P

E
 (

m
m

)

Number of Training Data

Ours(scarce) Martinez et al.(scarce) Ours(rich) Martinez et al.(rich)

Figure 6. The 3D pose estimation errors when we train our mod-

els using different number of training data. X-axis indicates the

number of data used in training. “rich” means the training data

are from the 15 actions. “scarce” means the training data are only

from the first “Direction” action.

to reach the optimal performance. In contrast, [18] needs

more than 5K. This reflects our approach is less data hungry

to achieve reasonable generalization ability.

Robustness to Noise We evaluate the robustness of our

approach to inaccurate 2D joint locations. In this experi-

ment, all approaches are trained using the ground truth 2D

and 3D pose pairs. In testing, we sample random noises

from the Gaussian distributions of different variances, and

add them to the ground truth 2D poses. In particular, for

each 2D pose, one joint will be corrupted. Then we esti-

mate the 3D pose from the corrupted 2D pose. We compute

the average 3D error increase for the rest of joints. Results

are shown in Figure 7. We can see that when we manu-

ally specify the dependence between joints and assign them

the same “importance”, i.e. LCN (2-NN), the error increase

is smaller than [18], owing to the sparse connections. If

we further learn the dependence partially i.e. LCN (2-NN)-

Learn or completely i.e. LCN -Learn, the error increase is

2268

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg

Bogo et al. [4] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3

Pavlakos et al. [23] - - - - - - - - - - - - - - - 51.9

Martinez et al. [18] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

K.Lee et al. [15] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 33.9 56.4 38.5 46.2

Fang et al. [7] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Pavlakos et al. [22] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8*

Ours 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2

Martinez et al. (GT) [18] - - - - - - - - - - - - - - - 37.1

Ours (GT) 24.6 28.6 24.0 27.9 27.1 31.0 28.0 25.0 31.2 35.1 27.6 28.0 29.1 24.3 26.9 27.9

Table 5. 3D estimation errors of different methods on H36M under protocol #2. GT means the 2D poses are from the ground truth. * uses

extra ordinal annotations.

0

5

10

15

20

25

5 10 15 20 25

M
e

a
n

 E
rr

o
r

In
c

re
m

e
n

t
(m

m
)

Std of Gaussian Noise

Martinez et at. Ours(2NN) Ours(2NN)-Learn Ours-Learn

Figure 7. The average 3D error increment for the rest of the joints

when one joint is corrupted by different levels of noises. We show

the results for [18] and ours.

further reduced by a large margin. This may be because the

model has greater freedom to establish a connection and de-

termine its strength, so that some auxiliary connections are

weakened as shown in Figure 4.

5.7. Qualitative Results

We show several estimated 3D poses by LCN in Figure

8. The 2D poses are estimated by SH [20]. The 2D pose

estimations are not perfect especially when occlusion hap-

pens. See the first example of Figure 8 (d) where the 2D

locations of the right hand and foot are not correct. Our ap-

proach still generates reasonable 3D poses for the rest of the

body parts. This suggests that the impact of the inaccurate

2D poses is constrained to be local.

6. Conclusion

We present LCN to estimate 3D human poses from 2D

poses. It can be regarded as a generalization of GCN which

overcomes its limitations. In particular, it has strong repre-

sentation ability and generalization ability due to the appro-

priate joint dependence design. It outperforms the state-of-

the-arts on two public datasets H36M and MPI-INF-3DHP.

Detected 2d LCN GT Detected 2d LCN GT

(a)

(b)

(c)

(d)

Figure 8. Sample 3D poses estimated by our LCN approach on the

H36M and MPI-INF-3DHP datasets. Row (d) shows results for

inputs with some joints wrongly detected.

More importantly, it generalizes well to unseen actions,

datasets and even noisy 2D poses.

7. Acknowledgement

This was supported in part by NSFC grants 61625201,

61527804 and Qualcomm University Research Grant.

References

[1] A Agarwal and B Triggs. 3d human pose from silhouettes by

relevance vector regression. In CVPR, volume 2, pages II–II.

IEEE, 2004.

[2] Ijaz Akhter and Michael J Black. Pose-conditioned joint an-

gle limits for 3d human pose reconstruction. In CVPR, pages

1446–1455, 2015.

[3] James Atwood and Don Towsley. Diffusion-convolutional

neural networks. In NIPS, pages 1993–2001, 2016.

[4] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter

Gehler, Javier Romero, and Michael J Black. Keep it smpl:

2269

Automatic estimation of 3d human pose and shape from a

single image. In ECCV, pages 561–578. Springer, 2016.

[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-

Cun. Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203, 2013.

[6] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In NIPS, pages 3844–3852,

2016.

[7] Hao-Shu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu,

and Song-Chun Zhu. Learning pose grammar to encode hu-

man body configuration for 3d pose estimation. In AAAI,

2018.

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-

tive representation learning on large graphs. In NIPS, pages

1024–1034, 2017.

[9] David K Hammond, Pierre Vandergheynst, and Rémi Gri-

bonval. Wavelets on graphs via spectral graph theory. Ap-

plied and Computational Harmonic Analysis, 30(2):129–

150, 2011.

[10] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convo-

lutional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015.

[11] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3. 6m: Large scale datasets and pre-

dictive methods for 3d human sensing in natural environ-

ments. T-PAMI, 36(7):1325–1339, 2014.

[12] Angjoo Kanazawa, Michael J Black, David W Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In CVPR, 2018.

[13] Isinsu Katircioglu, Bugra Tekin, Mathieu Salzmann, Vincent

Lepetit, and Pascal Fua. Learning latent representations of

3d human pose with deep neural networks. IJCV, pages 1–

16, 2018.

[14] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[15] Kyoungoh Lee, Inwoong Lee, and Sanghoon Lee. Propagat-

ing lstm: 3d pose estimation based on joint interdependency.

In ECCV, pages 119–135, 2018.

[16] Mun Wai Lee and Isaac Cohen. Proposal maps driven mcmc

for estimating human body pose in static images. In CVPR,

volume 2, pages II–II. IEEE, 2004.

[17] Chenxu Luo, Xiao Chu, and Alan Yuille. Orinet: A

fully convolutional network for 3d human pose estimation.

BMVC, page 92, 2018.

[18] Julieta Martinez, Rayat Hossain, Javier Romero, and James J

Little. A simple yet effective baseline for 3d human pose

estimation. In ICCV, volume 1, page 5, 2017.

[19] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal

Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian

Theobalt. Monocular 3d human pose estimation in the wild

using improved cnn supervision. In 3DV, pages 506–516.

IEEE, 2017.

[20] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In ECCV, pages

483–499. Springer, 2016.

[21] Gregory Shakhnarovich Paul, Paul Viola, and Trevor Darrell.

Fast pose estimation with parameter-sensitive hashing. In

ICCV. Citeseer, 2003.

[22] Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis.

Ordinal depth supervision for 3d human pose estimation. In

CVPR, pages 7307–7316, 2018.

[23] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-

nis, and Kostas Daniilidis. Coarse-to-fine volumetric pre-

diction for single-image 3d human pose. In CVPR, pages

1263–1272. IEEE, 2017.

[24] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas

Daniilidis. Learning to estimate 3d human pose and shape

from a single color image. In CVPR, pages 459–468, 2018.

[25] Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Re-

constructing 3d human pose from 2d image landmarks. In

ECCV, pages 573–586. Springer, 2012.

[26] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsu-

pervised geometry-aware representation for 3d human pose

estimation. In ECCV, pages 750–767, 2018.

[27] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-

genbuchner, and Gabriele Monfardini. The graph neural

network model. IEEE Transactions on Neural Networks,

20(1):61–80, 2009.

[28] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multia-

gent communication with backpropagation. In NIPS, pages

2244–2252, 2016.

[29] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen

Wei. Integral human pose regression. In ECCV, pages 529–

545, 2018.

[30] Camillo J Taylor. Reconstruction of articulated objects from

point correspondences in a single uncalibrated image. CVIU,

80(3):349–363, 2000.

[31] Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann, Vin-

cent Lepetit, and Pascal Fua. Structured prediction of 3d

human pose with deep neural networks. arXiv preprint

arXiv:1605.05180, 2016.

[32] Bugra Tekin, Pablo Márquez-Neila, Mathieu Salzmann, and

Pascal Fua. Learning to fuse 2d and 3d image cues for

monocular body pose estimation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3941–

3950, 2017.

[33] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-

mood, Michael J Black, Ivan Laptev, and Cordelia Schmid.

Learning from synthetic humans. In CVPR, pages 4627–

4635. IEEE, 2017.

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph

attention networks. arXiv preprint arXiv:1710.10903, 1(2),

2017.

[35] Chunyu Wang, Yizhou Wang, Zhouchen Lin, and Alan L

Yuille. Robust 3d human pose estimation from single images

or video sequences. IEEE transactions on pattern analysis

and machine intelligence, 41(5):1227–1241, 2018.

[36] Chunyu Wang, Yizhou Wang, Zhouchen Lin, Alan L Yuille,

and Wen Gao. Robust estimation of 3d human poses from a

single image. In CVPR, pages 2361–2368, 2014.

2270

[37] Xiaolin K Wei and Jinxiang Chai. Modeling 3d human poses

from uncalibrated monocular images. In ICCV, pages 1873–

1880. IEEE, 2009.

[38] Wei Yang, Wanli Ouyang, Xiaolong Wang, Jimmy Ren,

Hongsheng Li, and Xiaogang Wang. 3d human pose estima-

tion in the wild by adversarial learning. In CVPR, volume 1,

2018.

[39] Wei Yang, Wanli Ouyang, Xiaolong Wang, Jimmy Ren,

Hongsheng Li, and Xiaogang Wang. 3d human pose esti-

mation in the wild by adversarial learning. In CVPR, June

2018.

[40] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and

Yichen Wei. Towards 3d human pose estimation in the wild:

a weakly-supervised approach. In ICCV, 2017.

2271

