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Abstract

We propose a method for unsupervised domain adapta-

tion that trains a shared embedding to align the joint dis-

tributions of inputs (domain) and outputs (classes), making

any classifier agnostic to the domain. Joint alignment en-

sures that not only the marginal distributions of the domains

are aligned, but the labels as well. We propose a novel ob-

jective function that encourages the class-conditional dis-

tributions to have disjoint support in feature space. We fur-

ther exploit adversarial regularization to improve the per-

formance of the classifier on the domain for which no anno-

tated data is available.

1. Introduction

In the context of classification, unsupervised domain

adaptation (UDA) consists of modifying a classifier trained

on a labeled dataset, called the “source,” so it can function

on data from a different “target” domain, for which no an-

notations are available. More in general, we want to train a

model to operate on input data from both the source and tar-

get domains, despite absence of annotated data for the latter.

For instance, one may have a synthetic dataset, where anno-

tation comes for free, but wish for the resulting model to

work well on real data, where manual annotation is scarce

or absent [30].

The most successful methods learn the parameters of a

deep neural network using adversarial (min-max) criteria.

The idea is to simultaneously recognize the class (output) as

well as the domain (e.g., “real vs. synthetic”) by training the

classifier to work as well as possible on both while encoder

is fooling the discriminator for the latter. In a sense, the

classifier becomes agnostic to the domain. This can be un-

derstood as aligning the marginal distribution of the inputs

from the two domains. Unfortunately, this does not guar-

antee successful transfer, for it is possible that the source

(say synthetic images) be perfectly aligned with the target

(say natural images), and yet a natural image of a cat map

to a synthetic image of a dog. It would be desirable, there-
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Figure 1. The network structure of the proposed approach. We

propose to learn a joint distribution P (d, y) over domain label d

and class label y by a joint predictor (purple). The encoder (or-

ange) is trained to confuse this joint predictor by matching the

features corresponding to the same category samples of both do-

mains. Since labels for the target data is not known, predictions of

the class predictor (blue) on the target data is used with the help

of consistency loss. Unlabeled data is further exploited with input

smoothing algorithm VAT [26] from the SSL literature.

fore, for the adaptation to align the outputs, along with the

inputs. This prompted other methods to align, instead of

the marginal distributions, the joint or conditional distribu-

tion of domain and class. This creates two problems: First,

the target class labels are unknown; second, since there is a

shared representation of the inputs, aligning the joint distri-

butions may cause them to collapse thus losing the discrim-

inative power of the model.

To address these problems, we propose a method to per-

form the alignment of the joint distribution (Sect. 2.2). We

employ ideas from semi-supervised learning (SSL) to im-

prove generalization performance (Sect. 2.3). We propose

an optimization scheme that uses a two-folded label space.

The resulting method performs at the state of the art without

pushing the limits of hyperparameter optimization (Sect. 3).

We analyze the proposed objective function in the super-

vised setting and prove that the optimal solution condition-

ally aligns the distributions while keeping them discrimi-

native (Sect. 4). Finally, we discuss our contribution in
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relation to the vast and growing literature on UDA (Sect.

5).

Formalization

We are given Ns labeled source samples xs ∈ Xs with

corresponding labels ys ∈ Y s and N t unlabeled target sam-

ples, xt ∈ Xt. The entire training dataset X has cardinal-

ity N = Ns + N t. Labeled source data and unlabeled

target data are drawn from two different distributions (do-

main shift): (xs, ys) ∼ P s, (xt, yt) ∼ P t where their

discrepancy, measured by Kullbach-Liebler’s (KL) diver-

gence, is KL(P s||P t) > 0 (covariate shift). Both dis-

tributions are defined on X × Y where Y = {1, ...,K}.

Marginal distributions are defined on X and samples are

drawn from them as xs ∼ P s
x , xt ∼ P t

x. Given finite sam-

ples {(xs
i , y

s
i )}

Ns

i=1 := {(xs
1, y

s
1), (x

s
2, y

s
2), ..., (x

s
Ns , ysNs)}

from P s and {(xt
i)}

Nt

i=1 := {xt
1, x

t
2, ..., x

t
Nt} from P t

x, the

goal is to learn a classifier f : X → Y with a small risk

in the target domain. This risk can be measured with cross-

entropy:

min
f

E(x,y)∼P tℓCE(f(x); y) (1)

where

ℓCE(f(x); y) := −〈y, log f(x)〉 (2)

is the cross-entropy loss calculated for one-hot, ground-

truth labels y ∈ {0, 1}K and label estimates f(x) ∈ R
K ,

which is the output of a deep neural network with input x,

and K is the number of classes.

2. Proposed Method

In this section, we show how to formalize the criterion

for aligning both inputs and outputs, despite the latter being

unknown for the target classes in the absence of supervision.

Alignment of the marginal distributions can be done us-

ing Domain Adversarial Neural Networks (DANN) [10],

that add to the standard classification loss for the source data

a binary classification loss for the domain: Source vs. tar-

get. If all goes well, the class predictor classifies the source

data correctly, and the binary-domain predictor is unable to

tell the difference between the source and the target data.

Therefore, the class predictor might also classify the target

data correctly. Unfortunately, this is not guaranteed as there

can be a misalignment of the output spaces that cause some

class in the source to map to a different class in the target,

e.g., a natural cat to a synthetic dog.

The key idea of our approach is to impose not a binary

adversarial loss on the domain alignment, but a 2K-way

adversarial loss, as if we had 2K possible classes: The first

K are the known source classes, and the second K are the

unknown target classes. We call the result a joint domain-

class predictor or joint predictor in short, since it learns a

distribution over domain and class variables. The encoder

will try to fool the predictor by minimizing the classification

loss between a dog sample in the source and a sample in the

target domain whose predicted label in the aligned domain

is also dog.

During training, the probabilities assigned to the first K

labels of the joint predictor are very small for the target sam-

ples, and they eventually converge to zero. Therefore, we

need a separate mechanism to provide pseudo-labels to the

target samples to be aligned by the joint predictor. For this,

we train another predictor, that we call class predictor out-

putting only class labels. The class predictor is trained on

both the source data using ground-truth labels and the target

data using semi-supervised learning (SSL) regularizers.

Both the joint predictor and the class predictor can be

used for inference. However, we find that the class predictor

performs slightly better. We conjecture this is because joint

predictor is trained on a harder task of domain and class

prediction while only the latter one is needed at inference

time.

We consider UDA as a two-fold problem. The first step

deals with domain shift by aligning distributions in feature

space. Given a successful alignment, one can use a source-

only trained model for inference. But, once the domains are

matched, it is possible to further improve generalization by

acting on the label space. Ideas from SSL can help to that

end [26].

The overall architecture of the model is described in Fig.

1.

2.1. Network structure

We denote the shared encoder with g, the class predictor

with hc, the joint predictor with hj and the overall networks

as fc = hc ◦ g and fj = hj ◦ g. Then, the class-predictor

output for an input x can be written as,

fc(x) = hc(g(x)) ∈ R
K . (3)

Similarly, the joint-predictor output can be written as,

fj(x) = hj(g(x)) ∈ R
2K . (4)

2.2. Loss functions

The class predictor is the main component of the net-

work which is used for inference. Its marginal features are

aligned by the loss provided by the joint predictor. The class

predictor is trained with the labeled source samples using

the cross-entropy loss. This source classification loss can

be written as,

Lsc(fc) = E(x,y)∼P sℓCE(fc(x), y). (5)

Both the encoder (g) and the class predictor (hc) are up-

dated while minimizing this loss.
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We also update the joint predictor with the same classifi-

cation loss for the labeled source samples. This time, only

the joint-predictor (hj) is updated. The joint-source classi-

fication loss is

Ljsc(hj) = E(x,y)∼P sℓCE(hj(g(x)), [y, 0]) (6)

where 0 is the zero vector of size K, chosen to make the

last K joint probabilities zero for the source samples.

Similarly, the joint predictor is trained with target sam-

ples. As ground-truth labels for the target samples are not

given, label estimates from the class predictors are used as

pseudo-labels. The joint target classification loss is

Ljtc(hj) = Ex∼P t

x
ℓCE(hj(g(x)), [0, ŷ]) (7)

where ŷ = ek and k = arg maxk fc(x)[k] =
arg maxk hc(g(x))[k], ek is the identity of size K whose

kth element is 1.1 Here, we assume that the source-only

model achieves reasonable performance on the target do-

main (e.g. better than a chance). For experiments where the

source-only trained model has poor performance initially,

we apply this loss after the class predictor is trained for

some time. Since the joint predictor is trained with the esti-

mates of the class predictor on the target data, it can also be

interpreted as a student of the class predictor.

The goal of introducing a joint predictor was to align

label-conditioned feature distributions. For this, encoders

are trained to fool the joint predictor as in [10]. Here, we

apply conditional fooling. The joint source alignment loss

is

Ljsa(g) = E(x,y)∼P sℓCE(hj(g(x)), [0, y]). (8)

The encoder is trained to fool by changing the joint label

from [y, 0] to [0, y]. Similarly, the joint-target alignment

loss is defined by changing the pseudo-labels from [0, ŷ] to

[ŷ, 0],

Ljta(g) = Ex∼P t

x
ℓCE(hj(g(x)), [ŷ, 0]). (9)

The last two losses are minimized only by the encoder g.

2.3. Exploiting unlabeled data with SSL regulariz­
ers

Once features of the source and the target domains

are matched, our formulation of UDA turns into a semi-

supervised learning problem. In a way, adversarial domain

adaptation deals with the large domain shift between source

and target datasets while adversarial input smoothing re-

moves the shift in predictions within a small neighborhood

of a domain (See Fig. 2).

1We use the notation x[k] for indexing the value at the kth index of the

vector x.

Adversarial 
Feature Matching

With Input Smoothing

Without Input Smoothing

A domain 
classifier 

Figure 2. Left. In the UDA setting, there exist domain classifiers

(e.g. orange line segment) being able to distinguish the source

samples (green and purple dots) from the target samples (gray

dots). Conditional feature matching is applied until there is no

such classifier in the finite-capacity classifier space. As a result,

the label-conditioned feature distributions of the source and the

target data are matched. Right. Once the features are matched,

exploiting unlabeled data using SSL regularizers like VAT [26]

becomes trivial. Only using labeled samples (green and purple

dots) gives a poor decision boundary (blue line segment). When

input adversarial training is applied using unlabeled samples (gray

dots), the desired decision boundary is achieved (red curve). Best

viewed in color.

For a discriminative model to exploit unlabeled data,

there has to be some prior on the model parameters or on

the unknown labels [5]. Applying entropy minimization for

the predictions on the unlabeled data is a well-known regu-

larizer in the SSL literature [13, 15, 7]. This regularization

forces decision boundaries to be in the low-density region, a

desired property under the cluster assumption [5]. Our class

predictor is trained to minimize this target entropy loss,

Lte(fc) = Ex∼P t

x
ℓE(hc(g(x))) (10)

where ℓE(f(x)) := −〈f(x), log f(x)〉. Since the joint pre-

dictor is already trained on the low-entropy estimates of the

class predictor, it is enough to apply it to the class predictor.

Minimizing entropy satisfies the cluster assumption only for

Lipschitz classifiers [13]. The Lipschitz condition can be

realized by applying adversarial training as suggested by

[27, 26]. VAT [26] makes a second-order approximation for

adversarial input perturbations ∆x and proposes the follow-

ing approximation to the adversarial noise for each input x:

∆x ≈ ǫx
r

||r||2

subject to r = ∇∆xℓCE(f(x), f(x+∆x))
∣

∣

∣

∆x=ξd
(11)

where d ∼ N(0, 1). Therefore, the regularization loss of

[27, 26] is

ℓV AT (f(x)) := ℓCE(f(x), f(x+ ǫx
r

||r||2
))

subject to r = ∇∆xℓCE(f(x), f(x+∆x))
∣

∣

∣

∆x=ξd
(12)
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for one input sample x. We will apply this regularizer both

on the source and the target training data as in [35, 17]. So,

the source and target losses are given as follows:

Lsvat(fc) = E(x,y)∼P sℓV AT (fc(x)) (13)

and

Ltvat(fc) = Ex∼P t

x
ℓV AT (fc(x)). (14)

SSL regularizations can be applied in a later stage once fea-

ture matching is achieved [35]. But, we find that in most

tasks, applying SSL regularizers from the beginning of the

training also works well. More details are given in the Supp.

Mat.

We combine the objective functions introduced in this

section and the previous section. The overall adversarial

loss functions for the source and the target samples can be

written as follows,

Ladv(g) = λjsaLjsa(g) + λjtaLjta(g) (15)

The remaining objective functions are

L(g, hj , hc) = Ls(g, hj , hc) + λtLt(g, hj , hc). (16)

where

Ls(g, hj , hc) = Lsc(fc) + λsvatLsvat(fc)+

λjscLjsc(hj) (17)

Lt(g, hj , hc) = Lte(fc) + λtvatLtvat(fc)+

λjtcLjtc(hj). (18)

The proposed method minimizes Eq. 15 and Eq. 16 in an

alternating fashion.

2.4. Connection to domain adaptation theory

The work of [2] provides an upper bound on the target

risk: ℓt(h, y) = E(x,y)∼P t [|h(x) − y|] where h is the clas-

sifier. One component in the upper bound is a divergence

term between two domain distributions. In UDA, we are

interested in the difference of the measures between sub-

sets of two domains on which a hypothesis in the finite-

capacity hypothesis space H can commit errors. Instead of

employing traditional metrics (e.g. the total variation dis-

tance), they use the H-divergence. Given a domain X with

P and Q probability distributions over X , and H a hypoth-

esis class on X , the H-divergence is

dH∆H(P,Q) := 2 sup
h,h′∈H

|Prx∼P (h(x) 6= h′(x))−

Prx∼Q(h(x) 6= h′(x))|. (19)

Now, we can recall the main Theorem of [2]. Let H be

an hypothesis space of VC dimension d. If Xs, Xt are un-

labeled samples of size m′ each, drawn from P s
x and P t

x re-

spectively, then for any δ ∈ (0, 1), with probability at least

1− δ (over the choice of the samples), for every h ∈ H:

ℓt(h) ≤ ℓs(h) +
1

2
d̂H∆H(Xs, Xt)+

4

√

2d log(2m′) + log( 2
δ
)

m′
+ λ (20)

where λ = ℓs(h
∗)+ℓt(h

∗), h∗ = arg minh∈H ℓs(h)+ℓt(h)

and d̂H∆H(Xs, Xt) is empirical H divergence. In words,

the target risk is upper bounded by the source risk, empirical

H-divergence and combined risk of ideal joint hypothesis λ.

If there is no classifier which can discriminate source

samples from target samples then the empirical H-

divergence is zero from Lemma 2 of [2]. DANN of [10]

minimizes d̂H∆H(Xs, Xt) by matching the marginal distri-

butions (i.e. by aligning marginal push-forwards g#P s
x and

g#P t
x). But, if the joint push-forward distributions (g#P s

and g#P t) are not matched accurately, there may not be a

classifier in the hypothesis space with low risk in both do-

mains. Hence, λ has to be large for any hypothesis space

H.

Our proposed method tackles this problem, by making

sure that the label-conditioned push-forwards are aligned

disjointly. With disjoint alignment, we mean that no two

samples with different labels can be assigned to the same

feature point. Moreover, the third term in the upper bound

decreases with the number of samples drawn from both do-

mains. This number can increase with data augmentation.

VAT has the same effect of augmenting the data with adver-

sarially perturbed images where the small perturbations are

nuisances for the task.

3. Empirical Evaluation

3.1. Implementation details

We evaluate the proposed method on the standard

digit and object image classification benchmarks in UDA.

Namely, CIFAR → STL, STL → CIFAR, MNIST →
SVHN, SVHN → MNIST, SYN-DIGITS → SVHN and

MNIST → MNIST-M. The first three settings are the most

challenging ones where state-of-the-art (SOA) methods ac-

curacies are still below 90%. Our method achieves SOA

accuracy in all these tasks.

CIFAR ↔ STL. Similar to CIFAR, STL images are ac-

quired from labeled examples on ImageNet. However, im-

ages are 96 × 96 instead of the 32 × 32 images in CIFAR.

All images are converted to 32 × 32 RGB in pretraining.

We down-sampled images by local averaging. Note that we

only used the labeled part of STL in all the experiments. CI-

FAR and STL both have 10 classes, 9 of which are common
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Dataset Number of training samples Number of test samples Number of classes Resolution Channels

MNIST [18] 60, 000 10, 000 10 28× 28 Mono

SVHN [28] 73, 257 26, 032 10 32× 32 RGB

CIFAR10 [16] 50, 000 10, 000 10 32× 32 RGB

STL [8] 5, 000 8, 000 10 96× 96 RGB

SYN-DIGITS [10] 479, 400 9, 553 10 32× 32 RGB

Table 1. Specs of the datasets used in the experiments.

for both datasets. Like previous works [17, 9] we removed

the non-overlapping classes (class frog and class monkey)

reducing the problem into a 9-class prediction. See Table 1

for the specs of the datasets.

MNIST ↔ SVHN. We convert MNIST images to RGB

images by repeating the gray image for each color channel

and we resize them to 32 × 32 by padding zeros. Follow-

ing previous works [17, 9], we used Instance Normalization

(IN) for MNIST ↔ SVHN, which is introduced by [40] for

image style transfer. We preprocess images both at training

and test time with IN.

SYN-DIGITS → SVHN. SYN-DIGITS [10] is a dataset

of synthetic digits generated from Windows fonts by vary-

ing position, orientation and background. In each image,

one, two or three digits exist. The degrees of variation were

chosen to match SVHN.

MNIST → MNIST-M. MNIST-M [10] is a difference-

blend of MNIST over patches randomly extracted from

color photos from BSDS500 [1]. I.e. Ioutijk = |I1ijk − I2ijk|,
where i, j are the coordinates of a pixel and k is a channel

index. MNIST-M images are RGB and 28 by 28. MNIST

images are replicated for each channel during preprocess-

ing.

No data augmentation is used in any of the experiments

to allow for a fair comparison with SOA methods [17, 35].

Again, to allow fair comparison with the previous works

[9, 35], we have not used sophisticated architectures like

ResNet [14]. Networks used in the experiments are given

in the Supp. Mat. We report inference performance of the

class-predictor.

We feed source and training samples into two different

mini-batches at each iteration of training. As we are using

the same batch layers for both source and target datasets,

mean and variance learned – to be used at inference time

– are the running average over both source and target data

statistics.

Office UDA experiments (Amazon→Webcam,

Webcam→DSLR, DSLR→Webcam) were used as the

standard benchmark in early UDA works [23, 34, 19, 38].

However, recent SOA methods [31, 17, 35, 9] did not

report on these datasets, as labels are noisy [3]. Moreover,

this is a small dataset with 4, 652 images from 31 classes

necessitating the use of Imagenet-pretrained networks.

Hence, we also choose not to report experiments on this

dataset.

3.2. Results

We report the performance of the proposed method in Ta-

ble 2. In all the experiments, the proposed method achieves

the best or the second-best results after Co-DA [17]. Espe-

cially in the most challenging tasks, for which SOA accu-

racies are below 90%, our method outperforms all the pre-

vious methods. Numbers reported in the corresponding pa-

pers are used except DANN for which reported scores from

[35] are used.

Works we compare to include [11] which proposed Deep

Reconstruction Classification network (DRCN). The cross-

entropy loss on the source data and reconstruction loss

on the target data are minimized. [35] applied the SSL

method VAT to UDA which they call VADA (Virtual Ad-

versarial Domain Adaptation). After training with domain-

adversarial loss of [10] and VAT, they further fine-tune only

on the target data with the entropy and VAT objectives. [17]

suggested having two hypotheses in a way that they learn

diverse feature embeddings while class predictions are en-

couraged to be consistent. They build this method on VADA

of [35]. The proposed method can be further improved by

combining with Co-DA even though we ignore it to high-

light the effectiveness of the clean method. Compared to

Co-DA, our method has the memory and computational

time advantage of not training multiple encoders. [31] in-

troduced ATT where two networks are trained on the source

data and predictions of the networks are used as pseudo la-

bels on the target data. Another network is trained on the

target data with pseudo labels. A pseudo label is assigned if

two networks agree and at least one of them is confident.

Source-only models are also reported as baselines. These

models are trained without exploiting the target training

data in standard supervised learning setting using the same

learning procedure (e.g. network, number of iterations etc.)

as UDA methods. Since CIFAR has a large labeled set

(45000 after removing samples of class frog), CIFAR →
STL has a high accuracy even without exploiting the un-

labeled data. Still, the proposed method outperforms the

source-only baseline by 2.24%. The target-only models are

trained only on the target domain with class labels revealed.

The target-only performance is considered as the empirical

upper bound in some papers, but it is not necessarily the
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Source dataset MNIST SVHN CIFAR STL SYN-DIGITS MNIST

Target dataset SVHN MNIST STL CIFAR SVHN MNIST-M

[10] DANN* 60.6 68.3 78.1 62.7 90.1 94.6
[11] DRCN 40.05 82.0 66.37 58.86 NR NR

[33] kNN-Ad 40.3 78.8 NR NR NR 86.7
[31] ATT 52.8 86.2 NR NR 92.9 94.2

[9] Π-model** 33.87 93.33 77.53 71.65 96.01 NR

[35] VADA 47.5 97.9 80.0 73.5 94.8 97.7
[35] DIRT-T 54.5 99.4 NR 75.3 96.1 98.9

[35] VADA + IN 73.3 94.5 78.3 71.4 94.9 95.7
[35] DIRT-T +IN 76.5 99.4 NR 73.3 96.2 98.7

[17] Co-DA 81.7 99.0 81.4 76.4 96.4 99.0
[17] Co-DA + DIRT-T 88.0 99.4 NR 77.6 96.4 99.1

Ours 89.19 99.33 81.65 77.76 96.22 99.47

Source-only (baseline) 44.21 70.58 79.41 65.44 85.83 70.28
Target-only 94.82 99.28 77.02 92.04 96.56 99.87

Table 2. Comparison to SOA UDA algorithms on the UDA image classification tasks. Accuracies on the target test data are reported.

Algorithms are trained on entire labeled source training data and unlabeled target training data. NR stands for not reported. * DANN

results are implementation of [35] with instance normalized input. ** Results of [9] with minimal augmentations are reported. The

proposed method achieves the best or second highest score after Co-DA. The proposed method can be combined with Co-DA, but we

report the naked results to illustrate the effectiveness of the idea.

case, as seen in the CIFAR → STL setting where the target

data is scarce; thus the target-only model is even worse than

the source-only model.

The advantage of the proposed method is more appar-

ent in the converse direction STL → CIFAR where the ac-

curacy increases from 65.44% to 77.76%. STL contains a

very small (4500 after removing samples of class monkey)

labeled training set. That is why DIRT-T which fine-tunes

on the target data, gave unreliable results for CIFAR → STL

so they only report VADA result.

The source-only baseline has its lowest score in the

MNIST → SVHN setting. This is a challenging task as

MNIST is greyscale, in contrast to color digits in SVHN.

Moreover, SVHN contains multiple digits within an im-

age while MNIST pictures contain single, centered digits.

SVHN → MNIST is a much simpler experimental setting

where SOA accuracies are above 99%. We achieve SOA

in MNIST → SVHN while being second best in SVHN

→ MNIST after Co-DA. Note that our accuracy in SVHN

→ MNIST is 99.33%. MNIST → MNIST-M and SYN-

DIGITS → SVHN are other saturated tasks where our

method beats SOA in the former one while being second

best in the latter. At these levels of saturation of the dataset,

top-rated performance is not as informative.

In MNIST → SVHN, our method (89.19%) is substan-

tially better than VADA+IN (73.3%) which also uses input

smoothing but with DANN (marginal alignment). Similarly,

in STL → CIFAR, VADA achieves 73.5% while our method

is SOA with 77.76% accuracy. This shows the effectiveness

of our joint-alignment method.

To demonstrate the effectiveness of the proposed ap-

proach in aligning the samples of the same class, we vi-

sualize the t-Distributed Stochastic Neighbor Embedding

(t-SNE) [24] of the source-only baseline and the proposed

approach in Fig. 3. t-SNE is performed on the encoder

output for 1000 randomly drawn samples from both source

and target domains for STL → CIFAR setting. As one can

see, samples of the same classes are better aligned for the

proposed approach compared to the source-only method.

4. Analysis

The main result of our analysis is that the objective in-

troduced in Sect. 2.2 is minimized only for matching condi-

tional push-forwards given the optimal joint predictor (The-

orem 1). For that, we first find the optimal joint predictor

in Proposition 1. We operate under the supervised setting,

assuming the target labels are revealed. So, we replace ŷ

in the objective functions with ground-truth labels y for the

target samples. Proofs follow similar steps to Proposition 1

and Theorem 1 in [12].

Proposition 1. The optimal joint predictor hj minimizing

Ljsc(hj) + Ljtc(hj) given in the Eq. 6,7 for any feature z
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Figure 3. t-SNE plots for STL → CIFAR. t-SNE plots of the

source-only trained (top panel) and the proposed method model

(bottom panel). Encoder outputs are projected to two-dimensional

space with t-SNE. Samples corresponding to the same class are

visualized with the same color. The symbol “+” is used for the

source samples and “o” is for the target samples. Best viewed in

color.

with non-zero measure either on g#P s
x(z) or g#P t

x(z) is2

hj(z)[i] =
g#P s(z, y = ei)

g#P s
x(z) + g#P t

x(z)

hj(z)[i+K] =
g#P t(z, y = ei)

g#P s
x(z) + g#P t

x(z)
for i ∈ {1, ...,K}.

Theorem 1. The objective Ljsa(g) + Ljta(g) given in the

Eq. 8-9 is minimized for the given optimal joint predictor

2We used P (z) both to denote the distribution of a random variable and

the corresponding density function, but the meaning should be clear from

the context.

if and only if g#P s(z|y = ek) = g#P t(z|y = ek) and

g#P s(z|y = ek) > 0 ⇒ g#P s(z|y = ei) = 0 for i 6= k

for any y = ek and z.

Theorem 1 states that no two samples with different la-

bels can be assigned to the same feature point for the en-

coder to minimize its loss given the optimal joint predictor.

Moreover, the measure assigned to each feature is the same

for the source and the target push-forward distributions to

maximally fool the optimal joint predictor.

This result indicates that the global minimum of the pro-

posed objective function is achieved when conditional fea-

ture distributions are aligned. But, this analysis does not

necessarily give a guarantee that the converged solution is

optimal in practice as we do not have access to the target

labels in UDA. But, we demonstrated empirically in Fig. 3

that with reasonably good pseudo-labels provided by a sep-

arate class predictor, the objective gives better alignment

than the source-only model.

The second issue is that finding the optimal predictor or

generator with finite samples may not be possible, as opti-

mal solutions are derived as functions of true measures in-

stead of the network parameters trained on finite samples.

Lastly, the joint predictor is not trained until convergence;

instead, a gradient step is taken in alternating fashion for

computational efficiency. So, the predictor is also not nec-

essarily optimal in practice. Even though there are still gaps

to be filled between this theory and practice, this analysis

shows us that the proposed objective function is doing a

sensible job given pseudo-labels for the target data are rea-

sonably good.

5. Discussion and Related Work

In this section, we will summarize the most relevant

works from the UDA literature. For more in-depth cover-

age of the literature see the recent survey of [41] on deep

domain adaptation for various vision tasks. Many of the

domain adaptation works can be categorized into two: (1)

the ones learning a shared feature space (symmetric-feature

based) and the ones transferring features of one domain to

another (asymmetric-feature based).

Shared feature (symmetric-feature based). Feature

transferability drops in the higher layers of a network and

there may not exist an optimal classifier for both the source

and the target data. Hence many works use two separate

classifiers for the source and the target domains while the

encoder parameters are shared. In these works, the source

classifier is trained with the labeled source data and the tar-

get classifier is regularized by minimizing a distance metric

between the source classifier using all the data.

One common such metric is the (Maximum Mean Dis-

crepancy) MMD which is a measurement of the diver-

gence between two probability distributions from their
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samples by computing the distance of mean embeddings:

|| 1
Ns

∑Ns

i=1 g(x
s
i )−

1
Nt

∑Nt

i=1 g(x
t
i)||. DDC of [39] applies

MMD to the last layer while Deep Adaptation Network

(DAN) of [21] applies to the last 3 FC layers. CoGAN of

[20] shares early layer parameters of the generator and later

layer parameters of the discriminators instead of minimiz-

ing the MMD. [23] models target classifier predictions as

the sum of source classifier predictions and a learned resid-

ual function. Central Moment Discrepancy (CMD) of [42]

extends MMD by matching higher moment statistics of the

source and the target features.

Adversarial domain adaption methods described in the

early sections [10] are another way of learning a shared

feature space without needing separate classifiers for the

source and the target data. DANN [10] proposed a shared

encoder and two discriminator branches for domain and

class predictions. This makes marginal feature distributions

similar for the domain classifier. Upcoming works [35, 17]

applied the same idea but instead of multiplying the gradient

with a negative value, they optimize the discriminator and

generator losses in an alternating fashion. [34] suggested

replacing the domain discrepancy loss with the Wasserstein

distance to tackle gradient vanishing problems. The work of

[22] resembles ours where they also condition the domain

alignment loss to labels. Unlike us, their domain discrim-

inator takes the outer product of the features and the class

predictions as input. Similarly, [6] applies conditional do-

main alignment using K different class-conditioned binary

predictors instead of one predictor with 2K-way adversarial

loss. Our approach allows to not only align the conditional

push-forward distributions, but also encourage them to be

disjoint. If our sole goal was to align the conditional dis-

tributions, a constant encoder function would be a trivial

solution. Furthermore, these methods do not exploit SSL

regularizers like VAT.

Multiple hypotheses. Another line of work trains mul-

tiple encoders and/or classifiers with some consistency loss

connecting them. Other than aforementioned methods of

[31, 17], [4] proposed domain separation network (DSN).

They have two private encoders and a shared encoder for

the source and the target samples. The classifier is trained

with the summed representations of the shared and the pri-

vate features. Similarly, [38] trained two encoders for the

source and the target data. At test time, they use the encoder

learned for the target data and the classifier trained with the

source data. [32] had one encoder and two classifiers. Both

classifiers are trained on the labeled source samples. The

distance between predictions of two classifiers on the same

target sample is minimized by the encoder and maximized

by classifiers. With the adversarial training of the encoder,

they make sure that no two classifiers can have different pre-

dictions on the same target sample. Our model also has two

predictors but unlike these methods, the purpose of the sec-

ond predictor (the joint predictor) is to provide conditional

alignment for the encoder.

Mapping representations (asymmetric-feature

based). These methods apply a transformation from the

source domain to the target domain or vice-versa [3].

Adaptive Batch Normalization (Ad-aBN) of [19] proposed

to map domain representations with first-order statistics.

Before inference time, they pass all target samples through

the network to learn the mean and the variance for each

activation and apply these learned statistics to normalize

the test instances. [36] proposed Correlation Alignment

(CORAL). They match the second-order statistics of the

source data to target by recoloring whitened source data

with target statistics.

Exploiting unlabeled data with SSL regularizers.

Given the features of the source and the target domains

are aligned, standard SSL methods can be applied. [9]

employed the Mean Teacher [37] for UDA where the

consistency loss on the target data between student and

teacher networks is minimized. Even with extra tricks like

confidence-thresholding and some data augmentation, the

accuracy they achieved for MNIST→SVHN was 34%. This

shows that, especially when domain discrepancy is high,

SSL regularizers are not sufficient without first reducing the

discrepancy.

Conditional GAN. [25] proposed conditional GAN

where generation and discrimination are conditioned onto

labels by inputting labels. [29], instead, augmented the dis-

criminator with an auxiliary task of predicting the class la-

bels. The generator also generates samples respecting the

correct class label. Our approach differs from these works

as we are not generating fake sample in the input space.

6. Conclusion

We proposed a novel method for UDA with the moti-

vation of conditionally aligning the features. We achieved

this goal by introducing an additional joint predictor which

learns a distribution over class and domain labels. The en-

coder is trained to fool this predictor within the same-class

samples of each domain. We also employed recent tools

from SSL to improve the generalization. The proposed idea

achieved state-of-the-art accuracy in most challenging im-

age classification tasks for which accuracy are still below

90%. The code will be made available after the review pro-

cess. Implementation details and proofs are provided in the

Supp. Mat.
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